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Abstract: In order to improve the design of advanced wells, the performance of such wells needs to be
carefully assessed by taking the reservoir uncertainties into account. This research aimed to develop
data-driven proxy models for the simulation and assessment of oil recovery through advanced
wells under uncertainty. An artificial neural network (ANN) was employed to create accurate and
computationally efficient proxy models as an alternative to physics-based integrated well-reservoir
models created by the Eclipse® reservoir simulator. The simulation speed and accuracy of the data-
driven proxy models compared to physic-driven models were then evaluated. The evaluation showed
that while the developed proxy models are 350 times faster, they can predict the production of oil
and unwanted fluids through advanced wells with a mean error of less than 1% and 4%, respectively.
As a result, the data-driven proxy models can be considered an efficient tool for uncertainty analysis
where several simulations need to be performed to cover all possible scenarios. In this study, the
developed proxy models were applied for uncertainty quantification of oil recovery from advanced
wells completed with different types of downhole flow control devices (FCDs). According to the
obtained results, compared to other types of well completion design, advanced wells completed
with autonomous inflow control valve (AICV) technology have the best performance in limiting the
production of unwanted fluids and are able to reduce the associated risk by 91%.
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1. Introduction

Despite the rapid progress in the area of renewable energies, the world is still depen-
dent on oil and gas for the foreseeable future. Therefore, in order to meet future energy
demands, improving oil recovery with a low-carbon footprint must be in the spotlight. Oil
recovery can be enhanced by maximizing the well-reservoir contact through the drilling of
long horizontal wells. One of the main challenges of using such wells is the early break-
through of unwanted fluids (water and/or gas) due to the heel-toe effect and heterogeneity
along the well. To tackle this problem, advanced wells are widely applied today. Advanced
(smart or intelligent) wells are horizontal wells completed with downhole flow control
devices (FCDs), annular flow isolation (AFI), sand control screens (SCSs), and monitoring
and control systems [1]. Figure 1 depicts a schematic of advanced well completion (AWC).

Inflow from annulus

FCD Screen
Production tubing

Figure 1. Schematic of advanced well completion with FCD and SCS [2].

FCDs are the key components of AWC. FCDs are divided into four main categories:
inflow control devices (ICDs), autonomous inflow control devices (AICDs), autonomous
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inflow control valves (AICVs), and interval control valves (ICVs). ICDs are installed as a
passive (fixed) flow restrictor on the production tubing and are able to passively reduce the
production of unwanted fluids by delaying water or gas breakthrough. However, ICDs
cannot limit the production of unwanted fluid after the breakthrough. To address this issue,
AICDs and AICVs have been developed as robust alternatives. AICDs and AICVs are
able to choke low-viscosity fluids (relative to oil) after the breakthrough in an autonomous
manner. As a result, in addition to delaying water or gas breakthrough, these technologies
are able to reactively limit the production of undesired fluids after breakthrough. AICDs
and AICVs cannot be controlled after the well deployment. As a result, when the inflow
needs to be flexibly controlled, ICVs are used. These valves can be regulated using an
electric, hydraulic, or wireless system from the surface. As a result, by applying ICVs, the
production of unwanted fluids can be proactively controlled. However, due to the high
cost and technical difficulties of installation, the application of ICVs is limited and they are
not studied in this paper [3].

A successful and optimized design for advanced wells can significantly improve oil
recovery. However, to achieve this, several parameters must be considered and precisely
evaluated. This is a significantly time-consuming process using physics-driven models
when the reservoir model is complex and there is uncertainty in the model design parame-
ters. This is due to the fact that for describing the multiphase fluid flow from the reservoir
pore to the production tubing through physics-driven models, a complex set of partial
differential equations (PDEs) needs to be solved for each time step. Moreover, for such
complex numerical simulations, the need for big data storage poses additional problems.
To deal with these challenges, data-driven proxy models can be considered one of the most
practical solutions. In other words, instead of a computationally expensive physics-based
numerical model, a fast and reasonably accurate proxy model can be utilized for the predic-
tion of advanced well performance and accordingly improve the advanced well completion
design. This study is an effort to assess the functionality of data-driven proxy models
for improving the design of advanced wells under uncertainty in the reservoir rock and
fluid properties. This aim is followed by establishing a workflow for developing fast and
accurate proxy models for advanced wells completed with the main types of FCDs.

Khuri et al. [4] introduced response surface methodologies (RSMs), reduced-order
models (ROMs), and reduced physics models (RPMs) as the first techniques to generate
the proxy models. Among these techniques, RSM is the most commonly used approach.
By accounting for a set of statistical and mathematical techniques, RSM develops a logical
relation between the outputs of interest and associated input parameters. Nonetheless,
these days, data-driven models as a newly proxy-generating approach are being developed.
Indeed, based on data mining and artificial intelligence, scientists are developing proxies
to simulate a system [5].

Providing an appropriate data set, data-driven proxies are memorized and learned
throughout a training process. Then, the prepared proxy is utilized to predict the performance-
related tasks [6]. Data-driven proxy models have adequate potential, especially in the oil
and gas industry with a wide scope of application [6,7]. In a study, the artificial neural
network (ANN) was applied as a proxy model to assess the uncertainty in production
prediction [8]. Another study investigated the different architectures of the neural networks
in reducing the time of reservoir simulation [9]. The artificial neural network, separately
or in combination with the genetic algorithm, was utilized to obtain the nonlinearities of
problems [8,10]. Apart from the optimization of the algorithm, there are several studies
related to the application of ANN in petroleum engineering. Shaik et al. predicted the
lifetime of a pipeline by applying ANN [11]. Otchere et al. forecasted the features of
a petroleum reservoir using supervised machine learning paradigms [12]. Moreover,
the application of neural networks in production prediction was also proposed by Yuan
et al. [13]. In all the previous studies, it is mentioned that the quality and accuracy of a
proxy model highly depend on the training step. Apart from this, Mohaghegh et al. [14-16]
investigated the applicability of the neural network, generic algorithm, and fuzzy logic in
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the oil and gas industry and showed that the neural network approach has a better ability
to model complex reservoirs.

The aforementioned studies show that the data-driven proxy models developed by
the ANN approach can offer a potent tool for resolving performance forecasting problems
in the oil and gas industry. ANN is generally classified into two types, namely, the
feedforward neural network and feedback neural network. The feedback neural network
has a much more complicated network structure than that of the feedforward neural
network and as a result, it is more sophisticated for solving a wide range of forecasting
problems [6]. However, due to the complexity of proxy models developed by the feedback
neural network and the difficulty associated with using such models, in this study, the
data-driven proxy models were developed by taking advantage of the feedforward neural
network. The required data sets for training the proxy models were generated by the
industry-standard physics-based reservoir simulator Eclipse™. The Latin hypercube
sampling approach (LHS), which is a pseudo-random sampling method, was applied for
the design of experiment (DOE). Moreover, by enlisting a new algorithm, the developed
proxy models were able to predict cumulative oil and water production through advanced
wells by passing the time. The developed data-driven proxy models were utilized to
efficiently and accurately investigate the performance of advanced wells with different
completion designs. Therefore, the developed methodology enables petroleum engineers
to improve the design of advanced wells under uncertain geological parameters.

2. Data and Methods
2.1. Development of the Physics-Based Integrated Well-Reservoir Model

In this paper, this study was conducted through the modeling and simulation of oil
recovery from an advanced horizontal well in a synthetic heterogeneous reservoir with
uncertain rock and fluid properties. It is assumed that a strong aquifer attached to the
bottom face of the reservoir maintains the reservoir pressure. The reservoir has a length
of 1000 m, a width of 70 m, and a thickness of 30 m. The length of the horizontal well is
considered to be the same as the length of the reservoir and it is located 5.5 m below the top
of the reservoir. Oil is produced with a constant pressure drawdown of 8 bar as long as the
liquid production rate is below 1000 m3/day. To maintain the liquid production rate below
its threshold, the pressure drawdown is lowered when the rate of liquid production rises
over 1000 m>/day. A schematic of the horizontal well and reservoir is shown in Figure 2.
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Figure 2. Schematic of the well and reservoir.

The reservoir pressure and temperature are 130 bar and 68 °C, respectively. The
reservoir contains live oil with a viscosity of 2.7 cP and a density of 900 kg/m?. Table 1
provides information on the reservoir’s characteristics and their range of uncertainty.
The ratio of vertical permeability to horizontal permeability is defined as permeability
anisotropy.
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Table 1. The reservoir characteristics with their uncertainty range.

Parameter Min Mean Max Unit
Porosity 0.15 0.21 0.27 -
Absolute permeability 100 350 800 mD
Irreducible water saturation 0.1 0.15 0.2 -
Residual oil saturation 0.05 0.1 0.15 -
Maximum relative permeability of water 0.2 0.4 0.5 -
Maximum relative permeability of oil 0.85 0.95 1 -
Permeability anisotropy 0.7 0.3 0.1 -
Initial water saturation 0.12 0.2 0.25 -
Capillary pressure 2 2.7 4 Bar
Aquifer productivity index 2000 10,000 15,000 m3/d/bar

Solution Gas-Oil Ratio

Rs [m3/m3]
N w o w (<)}
o o o o o

=
o

=}

The reservoir is considered to be a heterogenous sandstone reservoir, and it is assumed
that porosity has a Gaussian distribution in the range of 0.15 and 0.27 with a mean value of
0.21 throughout the reservoir. Since permeability is related to porosity, the Carman-Kozeny
relation [17], which relates permeability to porosity, is used to calculate the variation of
permeability based on the distribution of porosity in the reservoir. Figure 3 illustrates the
variation of porosity and permeability throughout the reservoir. As can be seen in the
figure, permeability has variations in the range of 100-800 mD in the reservoir.

Porosity

Permeability

Figure 3. Porosity and permeability variations throughout the reservoir.

Using Standing’s black oil correlations [18], the reservoir oil properties as a function
of pressure at the reservoir temperature were calculated and are presented in Figure 4 and

used to develop the model in the Eclipse simulator.
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Figure 4. The physical oil properties as a function of the pressure at the reservoir temperature.

In order to model advanced wells completed with FCDs and AFIs, the Multisegment
Well Model (MSW) available in the Eclipse simulator was used. As depicted in Figure 5, in
this model, one branch is considered to model the production tubing, and each isolated
zone of the annulus is also modeled by a separate branch. Each branch consists of a series
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Differential pressure [bar)

of one-dimensional segments, including a node and a flow path. The annulus segments
can be connected to none or any number of reservoir grids to accept the inflow from the
reservoir. Moreover, a specific segment can be added between the annulus and tubing
segments to model each FCD. With this configuration, at first, the reservoir fluids enter
the annulus via the annulus segments and then pass into the production tubing through
FCDs [19].

Controlvalvel l l ‘ l l l l l Inflow

P I o I " Annulus
- - - Tubing

Packer

l l l l l l Annulus segment
I t I Valve segment

Tubing segment

Figure 5. Illustration of the MSW model [20].

In the MSW model, an AICD or AICV segment is introduced to the Eclipse simulator
in the form of a specific mathematical model describing the rate of fluid flow passing
through each AICD/AICYV as a function of the pressure drop across it. This model can be
derived by performing nonlinear regression on the available experimental data presenting
the performance of such devices. However, an ICD segment is specified for the Eclipse
simulator by its nozzle cross-sectional area (or diameter). Figure 6 shows the performance
curves of ICDs, AICDs, and AICVs for oil, water, and gas obtained by laboratory tests
under the reservoir conditions assumed in this paper.

4 40.0
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- = = QOil- ICD = = = Qil-ICD
300
- = = Water- ICD - = = Water - ICD
25.0
- = =Gas- ICD - = =Gas-ICO
20.0
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Water - AICV Water - RCP
T 100
--" Gas- AICV Gas- RCP
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Volume flow rate [I/h) Volume flow rate [I/h]

Figure 6. Performance curves of ICDs, AICDs, and AICVs for oil, water, and gas [21].

By assuming only two phases of oil and water in the reservoir and using the given
performance curves in Figure 6 for ICDs, the nozzle’s cross-section diameter of ICDs was
calculated, which is 2 mm assuming a discharge coefficient of 0.61. Moreover, by performing
nonlinear curve-fitting on the performance curves of AICDs and AICVs, Equations (1) and
(2) were derived for the modeling of AICDs and AICVs, respectively. In these equations,
AP is the pressure drop across the valve in bar, and Q is the rate of fluid flow passing
through the valve in m®/h. p, .. and i,y are the fluid mixture density and viscosity,
respectively, and they were calculated using Equation (3) based on the water cut a. The
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derived mathematical models for AICDs and AICVs vs. the experimental data are shown

in Figure 7:

AICD experimental data vs mathematical model
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Figure 7. The derived mathematical models of AICDs and AICVs against the laboratory test data.

By integrating the developed models for the reservoir and advanced wells with
different FCDs, the oil recovery from such wells can be simulated. The obtained results
from the simulation for different cases and scenarios covering the uncertainty range were
used to generate the required data sets for training and validation of the proxy models.
Figure 8 illustrates the simulation results for the cumulative oil and water production
from advanced wells with different FCD completions compared to the conventional well

(open-hole) for the base case over 10 years.

160000

—_—

- IcD

OPENHOLE

AICD
AlcV

120000

80000

40000

Cumulative Oil Production (SM3)

Figure 8. Cont.

800

1 L 1
1600 2400 3200
Time (DAYS)

4000



Energies 2022, 15, 7484 7 of 15

1.5E+06

——=—— OPENHOLE
|- - «-- I1cD
-immmim AICD
25E+06 B /
1E+06 s
750000 e - —
/ = L
L - o
) =
. -
500000 . -
/ - e
. e a
L - L .
o -
- et o
250000 e — —

- 1 L 1 1 L
0 800 1600 2400 3200 4000
Time (DAYS)

Cumulative Water Production (SM3)

Figure 8. Cumulative oil and water production from open-hole and advanced wells with different
FCD completions for the base case.

2.2. Development of the Data-Driven Proxy Model

Figure 9 represents the algorithm utilized to develop the data-driven proxy models
in this study. The data sets and the algorithms of the model development are considered
the most important elements for establishing a data-driven proxy model. To ensure that
all aspects of the model are considered, an infinite-size data set is required, which is
practically impossible [11,22]. Therefore, some experimental design techniques should be
enlisted to extract the utmost information with the least simulations. The selection of the
input variable highly depends on the type of problem and the level of knowledge of the
project. It is recommended that all input variables are considered at the beginning and
then unimportant parameters are omitted through the sensitivity analysis step. Indeed,
sensitivity analysis filters out less significant parameters in the model, and consequently,
an appropriate dataset can be prepared. The accuracy of the proxy model originates from
the quality of training. As a result, a decent data set is required to train the proxy model
appropriately. In the case of unacceptable estimation, the consistency and the quality of the
training data sets should be improved as much as required. Improvement of the training
data sets can be achieved either by enlarging the data sets or increasing the range or number
of the input variables. Thereby, the verification of the model, which is based on prediction
accuracy, is satisfied [23].

[ Defining input variables ]
[ Doing sensitivity analysis ]

v

[ Generating training and test data sets ]

Y

[ Estimating proxy models ]

v

[—P[ Validating proxy models ]

[ Improving proxy models ]

Is the proxy model
good enough?

[ Employing proxy models ]

Figure 9. The workflow for proxy model development.
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2.2.1. Data Set Generation

This study was conducted through the modeling and forecasting of oil and water
production from an advanced horizontal well with different FCD completions in a syn-
thetic reservoir with uncertain properties for 10 years. The reservoir properties were the
model inputs, and it was also assumed that the value of the properties is uncertain. The
uncertain reservoir parameters with their uncertainty range are reported in Table 1. The
cumulative oil and water production were the model outputs and were used to evaluate the
performance of advanced wells with various completion designs under uncertainty. In this
paper, to reduce the complexity of the model development and uncertainty quantification,
only the uncertainty in the reservoir properties was considered. However, in the model
development, the inclusion of other uncertainties that can influence the performance of
advanced wells such as uncertainties associated with hydraulic fracturing, skin factor, etc.
is of great importance [24,25].

Sensitivity analysis assesses the contribution of the uncertainty of each model input
to the accuracy of the model outcomes and identifies the most important parameters of
the system. In this paper, in order to perform sensitivity analysis, differential sensitivity
analysis, which is one of the common techniques used for this purpose, was simplified
and used. In differential sensitivity analysis, the sensitivity of each input parameter is
quantified by a sensitivity coefficient, which is essentially the ratio of the change in output
to the change in input while all other parameters are kept constant. According to this
approach, for a particular independent input variable X;, the sensitivity coefficient, ¢;, with
respect to the desired output Y is calculated by Equation (4) as [26]:

Ay X

4)

where the quotient X;/Y is added to normalize the coefficient by taking the effect of units out

of the equation. For small changes in the input parameter, by neglecting the nonlinearities,

the partial derivative in Equation (4) can be approximated as a finite difference and Equation
(4) can be simplified as:

_ %AY

i = %AX;

Equation (5) was used to perform sensitivity analysis in this study. By perturbing
each uncertain reservoir parameter given in Table 1 in such a way that AX; = £10% and
measuring the percentage change in the outputs (here cumulative oil and water production),
the sensitivity coefficient of each reservoir parameter for the cumulative oil and water
production was calculated. The obtained results are depicted as a tornado diagram in
Figure 10. According to the presented results, among all the reservoir parameters, for
both oil and water production, the sensitivity coefficient for the top six parameters is
considerable. The sensitivity coefficient of the seventh parameter (maximum relative
permeability of oil) compared to the top six parameters is considerably lower, and the last
three parameters have a very small sensitivity coefficient as well. As a result, the top six
parameters, were determined as the most impactful input variables for predicting both oil
and water production. These input variables are given in Table 2 and are considered the
model inputs for the proxy model development.

©)
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Figure 10. Sensitivity analysis of uncertain reservoir parameters.

Table 2. Uncertain input variables for uncertainty assessment.

Parameter Min. Mean Max.
Porosity 0.15 0.21 0.27
Initial water saturation 0.12 0.2 0.25
Irreducible water saturation 0.1 0.15 0.2
Residual oil saturation 0.05 0.1 0.15
Maximum relative permeability of water 0.2 0.4 0.5
Absolute permeability 100 350 800

In this paper, a special proxy model for each type of well completion design was de-
veloped. This means that four main proxy models for forecasting oil and water production
from an open-hole well and advanced wells with ICD, AICD, and AICV completion were
developed. These four main proxy models were trained, validated, and tested separately
and then they were used for uncertainty quantification for different types of well comple-
tion designs. The training and verification data sets were generated by coupling MATLAB
and the Eclipse black oil simulator (E100). An efficient approach known as Latin hypercube
sampling (LHS) was used for the design of the experiments. The LHS method is a pseudo-
random sampling method based on stratification of the input probability distributions, as
opposed to the Monte Carlo approach, which is based on a fully stochastic and memoryless
sampling scheme [27]. The input domains consisted of the six variables given in Table 2,
and to generate the training data sets, four samples were picked from each variable in the
range of their uncertainty using the LHS method. As a result, for each of the 4 main proxy
models, 4096 (4°) data sets were generated for the training and improvement of the proxy
models. In the same way, for each proxy model, 3 different samples for each input variable
were used to generate 729 (3°) data sets for validation and testing of the developed proxy
models. Two-thirds of these 729 data sets were used for validation and one-third of them
(240 data sets) were considered for the test.

2.2.2. Architecture of the Proxy

Generally, based on the structure of the network and the operation of neurons, neural
networks carry out a quite simple differentiable function. Indeed, after the learning phase
and stabilization of the weight, the machine as a black box forecasts the phenomenon for
new inputs [9]. Despite this, there are still some deterrents against the utilization of ANNSs.
In other words, the configuration of the architecture of ANNSs (schematically shown in
Figure 11), namely the number of layers and number of neurons in each layer, should be
found while the identification of a better architecture is lacking [28].
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Input Hidden Output
layer layers layer

Xm o Yp

Figure 11. Schematic diagram of a neural network with two hidden layers [29].

A neural network is considered a good proxy when it predicts a new case with
acceptable error. Therefore, evaluation of the model should be performed sequentially to
avoid overtraining. In this way, cross-validation, as one of the most popular methods [11,13],
was applied to stop learning when the validation error was increased. Overtraining also
comes from a poorly structured network. Thereby, the identification of the appropriate
number of hidden layers and their neurons is a requisite [7]. Moreover, the complexity of
neural networks should also be limited. For this purpose, after finishing the learning phase,
the pruning method was utilized to eliminate the connections with the smallest effect on
the output error.

2.2.3. Training and Testing the Proxy

Before feeding the inputs to the machine for training, all values were normalized
between [0, 1] based on the minimum value and maximum value. The outputs in the
dataset accounted for the accumulative oil and water production over 10 years. Because
of this, for the prediction of the fluid production of each year, the fluid production of the
previous year was considered as input too, as schematically shown in Figure 12. To test the
proxy, the values of inputs were ununiformly chosen in a way that the machine had never
experienced, although these values were between the minimum and the maximum values.

Inputs

(n— 1thyear

Inputs

nth year
Inputs

(n + N)thyear

Output

c—

Output

Output

Figure 12. Schematic flow chart of the prediction in sequential years.

3. Results and Discussions
3.1. Performance of the Developed Proxy Models

To evaluate the performance of the developed data-driven proxy, the errors in the
prediction of oil and water production through advanced wells using such models were
calculated for the test data sets within 10 years. According to the calculated errors shown in
Figure 13, the proxy models predicted the oil production better than the water production.
The mean error is presented as a horizontal line in the figure and the mean error values
are given in Table 3. As can be seen, the developed data-driven proxy models are able
to predict the production of oil and water with a mean error of less than 1% and 4%,
respectively. Moreover, the proxy models for advanced wells with AICD and AICV show a
better performance in predicting oil and water production compared to the proxy model
for the ICD case. Moreover, to evaluate the speed of simulation, the simulation time of 5000
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cases using the developed proxy models and the physics-based simulator was recorded.
The simulation time of the use of the physics-based simulator was about 290 h while it
took about 50 min for the proxy model to perform the simulations. In other words, the
developed proxy model is about 350 times faster than the physics-based model. As a result,
using the developed proxy models, some prediction accuracy is sacrificed but the speed of
the simulation is considerably improved.

AICD AICV

200 250 0 50 1(')0 150 200 250 0 50 100 150 200 250
nth set of inputs nth set of inputs

Figure 13. Prediction mean and relative error for the developed proxy models for the ICD, AICD,
and AICV cases.

Table 3. Prediction mean error for the developed proxy models.

Mean Error

Case QOil Water
ICD 0.96% 3.79%
AICD 0.48% 1.98%
AICV 0.46% 1.98%

3.2. Evaluating the Performance of Advanced Wells under Uncertainty

In order to achieve a successful design for advanced wells, the performance of such
wells needs to be assessed by taking the reservoir uncertainties into account. Therefore, un-
certainty quantification is a crucial step in improving the advanced well completion design.
Uncertainty quantification based on the probabilistic approaches is a very time-consuming
process, where several simulations need to be performed to consider all possible scenarios.
The use of data-driven proxy models can be considered a practical option to reduce the
time of simulation for uncertainty quantification. In this study, using the developed proxy
models for the open-hole and advanced wells, the performance of advanced wells with
different FCD completions under uncertainty was assessed. Although there are different
methods for probabilistic data sampling, Latin hypercubic sampling (LHS) was chosen
as an efficient sampling method. By considering the range of uncertainty of the six most
impactful parameters and taking seven samples in the range of the uncertainty of each
parameter, 7° = 117,649 possible scenarios were specified using the LHS approach. Using
the simulation results for all these scenarios, the probability distribution function (PDF) and
cumulative distribution function (CDF) of the total oil and water production from advanced
wells with different FCD completions after 10 years were determined. Figures 14 and 15
show PDF and CDF for oil and water production for different completions after 10 years,
respectively. Moreover, the mean (average), P10 (low estimation), P50 (best estimation), and
P90 (high estimation) and P10/P90 range (risk) were calculated and are given in Table 4.
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Table 4. Summary of the obtained results from the uncertainty quantification.

Case Production [m3] Mean P10 P50 P90 P10/P90 Range
Oil 2.04 x 10° 1.56 x 10° 2.01 x 10° 247 x 10° 9.10 x 104
OPENHOLE Water 1.72 x 106 1.24 x 106 1.74 x 106 2.01 x 10° 7.70 x 10°
D Oil 1.97 x 105 1.55 x 10° 1.94 x 105 2.38 x 10° 8.30 x 10%
Water 1.43 x 100 1.14 x 106 1.42 x 106 1.58 x 106 440 x 10°
AICD Oil 1.92 x 10° 1.54 x 10° 1.89 x 10° 2.29 x 10° 7.50 x 104
Water 1.06 x 100 9.36 x 10° 1.04 x 100 1.10 x 10° 8.26 x 104
AICY Oil 1.88 x 10° 1.53 x 10° 1.83 x 10° 2.22 x 10° 6.90 x 10*
Water 5.70 x 10° 498 x 10° 5.30 x 10° 5.66 x 10° 6.80 x 10%
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N w
o o
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o o

1000

0

The applied production strategy noticeably impacts the performance of advanced
wells. In this paper, the production strategy is based on producing oil with a constant
bottom hole pressure (BHP) constrained by a specified maximum liquid production rate.
Under this strategy, since open-hole wells basically give a bigger open area for the pro-
duction of reservoir fluids and the pressure drawdown is constant, the liquid (both oil
and water) production from open-hole wells is higher than that of advanced wells. As a
result, open-hole completion leads to an increase in the production of both oil and water.
Additionally, AICDs and AICVs remain fully open such as ICDs before the water break-
through. These valves, however, partially close by increasing the water cut after the water
breakthrough. Consequently, compared to ICD completion, AICD and AICV completions
produce less oil and water. Because AICVs are more capable of being closed than AICDs,
the liquid production (both oil and water) from an AICV completion is likewise lower than
that of an AICD completion.

As can be seen in Figures 14 and 15, considering the uncertainties in the reservoir
properties, the mean value of cumulative water production employing AICDs and AICVs is
significantly lower than ICD and open-hole completions. However, this comes with the cost
of losing a small fraction of feasible oil recovery due to the application of the AICD and AICV
technologies. According to the obtained results given in Table 4, the use of ICDs, AICDs, and
AICVs reduces the mean value of cumulative water production in comparison to open-hole
completion by 16.86%, 38.37%, and 65.86%, respectively. The mean oil recovery is also reduced
by 3.43%, 5.88%, and 7.84%, respectively, due to the use of these FCDs. These simulation
results are comparable to the reported results describing the performance of advanced wells
in real cases. As an example, according to Tendeka [30], the use of advanced wells with AICD
completion reduced water production by 40-50% in an oil field in western Canada. In the
same way, the operator of a field in the Middle East reported that the use of advanced wells
with AICV completion decreased the water cut by 68% [31].

PDF (QOil Production) CDF (Oil Production)

OPENHOLE 0.90 OPENHOLE
ICD 0.80 ICD
——AICD z 0.70 | ——aicp
= 0.60
e AICV a ——AICV
§ 0.50
0 0.40
2 0.30
0.20
0.10
0.00
1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05 1.0E+05 1.5E+05 2.0E+05 2.5E+05 3.0E+05
Total Oil Production [m?3] Total Oil Production [m3]

Figure 14. Probability and cumulative distribution function for oil production after 10 years.
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According to the performed uncertainty assessment, the risk (P10 to P90) of water
production is significantly reduced by the completion of an advanced well with the AICD
and AICV technologies. According to the results, under the presence of uncertainty, the use
of ICDs, AICDs, and AICVs mitigates the risk of water production by 42.86%, 89.27%, and
91.17% compared to an open-hole completion. Moreover, as can be seen in the figures, the
probability distribution curves for both oil and water production are noticeably shrunk by
the application of AICD and AICV completions, indicating that the use of these technologies
can reduce the uncertainty and provide more reliable oil recovery.
PDF (Water Production) CFD (Water Production)
90,000 1.0
OPENHOLE
80,000 0.9
70,000 4D 038
3 60,000 = AICD ‘? 0.7
$ 50,000 ——AICV 3 06
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g 40,000 -8 0.4 OPENHOLE
i 30,000 a3 lep
20,000 02 -
10,000 0.1
00,000 0.0 ——{ICcV
0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 2.5E+06 0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06 2.5E+06
Total Water Production [m3] Total Water Production [m?3]

Figure 15. Probability and cumulative distribution function for water production after 10 years.

4. Conclusions

In this study, the functionality of data-driven proxy models as an alternative for
physics-driven models developed by commercial software packages for simulation and per-
formance assessment of advanced wells with different completion designs was investigated.
After that, the developed proxy models were applied for uncertainty quantification of oil
recovery from advanced wells completed with different types of FCDs from a heterogenous
reservoir with uncertain characteristics.

The results show that when the data-driven models for advanced wells were used,
the simulation time was reduced by 350 times while the prediction accuracy showed a
maximum error of 1% and 4% for oil and water production, respectively. As a result, it can
be concluded that the use of the developed proxy models for the simulation of advanced
wells results in some prediction accuracy being sacrificed, but the speed of the simulation
is considerably improved.

According to the obtained results from the uncertainty quantification, the use of
advanced wells completed with FCDs compared to an open-hole well can noticeably
reduce the uncertainty in oil recovery and more reliable o0il production can be achieved.
Moreover, among the different types of FCDs, the AICV and AICD technologies were able
to significantly limit the production of unwanted fluids by 38.37%, and 65.86%, respectively.
Advanced wells completed by AICVs showed the best performance in reducing the risk
associated with the production of unwanted fluids by decreasing the risk by 91%. Since the
handling and separation of unwanted fluid have huge costs and carbon footprints, the use
of advanced wells with AICD and AICV completions is a valuable measure in achieving
cost-effective and low-carbon-footprint oil recovery. Comprehensive evaluation of the
benefits and drawbacks of advanced wells completed by FCDs compared to conventional
wells requires accurate and realistic NPV analysis and this is the subject of future studies.
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