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Abstract: In order to improve the energy capture efficiency of an oscillating buoy wave energy
converter (WEC), a buoy-shape optimization design method based on the mean annual power
prediction model is proposed. According to the statistical data of long-term wave characteristics in the
Chinese sea area, the optimal design space is determined. Sixty-three sample points were randomly
selected in the optimized space. Based on simulation, the mean annual power corresponding to each
sample point is calculated to quantitatively describe the energy capture ability. The response surface
method (RSM), radial basis function neural network (RBFNN), and elliptical basis functions neural
network (EBFNN) are used to establish the mean annual power prediction models, respectively.
By combining the prediction model with the multi-island genetic algorithm (MIGA), the optimal
solution in the design space is easily obtained. The reliability of the optimal solution is further
proved by quantitative analysis about the influence of optimization parameters on the mean annual
captured power. Compared with the common RSM and RBFNN methods, the prediction model
established by the EBFNN method has a higher prediction accuracy. In the optimization process, the
simulation calculation is replaced by a prediction model, which can effectively solve the problem of
high simulation calculation cost.

Keywords: EBFNN; MIGA; wave energy converter; mean annual power; prediction model

1. Introduction

In recent years, the energy crisis and environmental problems have become increas-
ingly serious. Vigorously developing and utilizing renewable energy has become a uni-
versal consensus of the international community [1,2]. Wave energy is a kind of clean and
renewable energy. The theoretical reserve of the global wave energy resource is 3 TW, and
further development can effectively alleviate the pressure of the global energy shortage [3].
Therefore, various wave energy converters (WECs) have been developed after decades of
research and exploration. The WEC has gradually developed from the original concept of
various and different types into five of the most typical device forms, namely, oscillating,
raft, wave crossing, pendulum and oscillating water column [4–6]. The oscillating WEC has
the characteristics of a simple structure, high power generation efficiency, and is not limited
by water depth. It has received extensive attention, and many prototypes of oscillating
WECs have been developed, such as the Archimedes Wave Swing, Power Buoy, Aqua Buoy,
and Wavebob [7–10].

However, these prototypes have not been implemented into commercial operation,
because of the low power generation efficiency and poor stability of WECs. In order to
achieve the goal of high efficiency and stable output, researchers have carried out a lot
of work, such as buoy optimization, power take-off (PTO) improvement, control strategy,
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and so on. Optimizing the buoy shape is one of the important ways to improve the
wave power generation efficiency [11]. Therefore, many scholars have carried out related
research. Some scholars have studied the hydrodynamic characteristics of the oscillating
buoy, and analyzed the influence of buoy-shape parameters on energy capture efficiency
to optimize the buoy shape. In order to efficiently extract the energy, Goggins et al. [12]
established the optimal structural geometry and analyzed the optimal configuration for
devices with a different radius. Shi et al. [13] numerically simulated the heave motion of
conical bottom buoys with different masses and cross-sectional surfaces, and analyzed the
effects of mass and cross-sectional surfaces on the energy capture. In order to analyze the
effect of shape change on wave energy capture efficiency, Berenjkoob et al. [14] constructed
10 different geometric models under the same conditions. The results show that the
proper shape was more efficient in capturing wave energy. Shadman et al. [15] took the
cylindrical buoy as the research object and used the design of experiments (DOE) method
to optimize the design parameters. Under the condition of mooring, Wu [16] obtained
the optimal design parameters of the buoy by limiting the maximum displacement of the
buoy and changing the draft ratio of the buoy radius. Some scholars also have used the
heuristic algorithm to optimize buoy shape, such as genetic algorithm (GA), particle swarm
optimization (PSO) et al. McCabe et al. [17] used a B-spline surface to parameterize the
buoy geometry, and automatically optimized shapes based on GA. After 50,436 simulation
calculations, a better design scheme was obtained. Garcia-Teruel et al. [18] further analyzed
the adaptation of different algorithms such as GA and PSO, and used the non-dominated
sorting genetic algorithm (NSGA-II) algorithm for multi-objective optimization design.
Neshat et al. [19] optimized buoy shape and PTO based on bio-inspired swarm-evolutionary
optimization algorithms. In general, the optimal buoy is mainly attained by analyzing the
response relationship between the buoy parameters and the captured power, or by searching
the design space through the heuristic optimization algorithm. Whether analyzing the
response relationship or searching in the design space, enough sampling points are required.
The hydrodynamic parameters of each sampling point are obtained by simulation to
calculate the buoy captured power. Obviously, the hydrodynamic calculations take the
majority of time during the buoy optimization. The significant time cost is considered a
challenge for engineering design.

Therefore, reducing the simulation calculation times can effectively improve the
optimization efficiency and reduce the optimization time cost. The prediction model is
one of the best choices because it requires only a small number of simulation calculations.
Prediction models have been used to solve the WEC optimization problems in engineering
design and have been proven to be useful. Ji et al. [20] applied the response surface
method (RSM) to build a hydrodynamic coefficients prediction model, which was used to
calculate the captured power. Koh et al. [21] used the RSM prediction model to replace the
simulation calculation, which determined the WEC geometric parameters. Colby et al. [22]
developed a neural network function approximator and combined it with an evolutionary
algorithm to optimize the WEC ballast configuration. The power output was maximized
under a specific wave climate. Avila et al. [23] have predicted the energy generated from
different WECs in the Canary Islands by using the Monte Carlo method. Avila et al. [24]
proposed two mathematical models to forecast the wave energy based on fuzzy inference
systems (FIS) and artificial neural networks (ANN), respectively. Wang et al. [25] proposed
a prediction model of WEC buoy energy absorption power based on a back-propagation
neural network (BPNN). Liu et al. [26] trained a radial basis function neural network
(RBFNN) prediction model, which took the combination of design parameters as input and
the capture factor as output. The prediction model was used with the genetic algorithm to
optimize the converters, and the high-performance converter was obtained. Commonly, the
prediction model indicates the mapping relations between the input (e.g., design parameter
combinations of the buoy) and the output (e.g., capture factors, capture power, etc.), which
is established by means of mathematical models. Combining the prediction model with
the optimization algorithm to find the optimal solution in the design space becomes an
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optimization method that can quickly obtain the optimization results. So the accuracy of
the prediction model is directly related to the reliability of the optimization results.

In recent years, methods such as RSM, BPNN, and RBFNN have been applied to WECs
optimization design, but there are some shortcomings. The RSM cannot guarantee that
the response surface passes through all the sample points, and the prediction effect of the
highly complex functional relationship is not as good as that of the RBFNN. The BPNN
has a slow convergence speed and might fall into local optimal solutions. The RBFNN has
strong fault tolerance, but the modeling time is much longer than the RSM. Compared
with the above methods, the elliptical basis functions neural network (EBFNN) has the
advantages of a fast training speed and high prediction accuracy. Therefore, in order to
improve the optimization efficiency, this paper proposes a mean annual power prediction
model based on EBFNN. Compared with RSM and RBFNN, this method can establish a
more accurate prediction model. Combining the mean annual power prediction model with
MIGA can effectively reduce the simulation calculation time and improve the optimization
design efficiency that an oscillating buoy with high performance can be easily designed. In
this study, the optimization method not only optimizes the oscillating buoy, but also has
the potential to solve other types of WECs optimization problems.

The remainder of this paper is organized as follows. Section 2 introduces the opti-
mization method, including the geometric model, mathematical models, and optimization
procedures. Section 3 is based on the wave statistics of the ocean near Chengshantou,
Weihai City, Shandong Province, China; the mean annual power of the sample points is
calculated. The prediction models with optimized parameters as input and mean annual
power as output are established, respectively, by using RSM, RBFNN and EBFNN. Section 4
introduces the optimization results and discussion. Section 5 presents the conclusions.

2. Methodology
2.1. Geometric Model

The schematic diagram of the oscillating buoy WEC is shown in Figure 1. In this study,
a generalized WEC is considered, which is a single buoy with an ideal linear damper as the
PTO system. The buoy only does heave motion under wave excitation. In the case of slack
mooring, the mooring force has little effect on the wave energy capture by the buoy [20,21].
Therefore, this paper ignores the mooring force acting on the buoy. The origin of the
Cartesian coordinate system is at the calm waterline. The x-axis points to the direction of
wave propagation. The z-axis passes vertically upward through the center of gravity of the
buoy. The y-axis is perpendicular to the former according to the right-hand rule.
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2.2. Mean Annual Power

The modified Pierson–Moskowitz (P–M) spectrum is used to describe the distribution
of wave energy relative to each component wave [27]. The spectrum can be expressed as:

Sη(ω) =
173H2

s T−4
av

ω5 exp
(
−691T−4

av ω−4
)

(1)

where Hs is the significant wave height, Tav is the average wave period, ω is the wave
angular frequency.

Divide the wave spectrum into 200 parts, the frequency ωi is from 0.02 to 4 rad/s, then
the frequency interval is 0.02 rad/s [28]. The energy per unit area of an irregular wave is
given by:

E = ρg
N

∑
i=1

Sη(ωi)∆ωi =
1
2
ρg

N

∑
i=1

α(ωi)
2 (2)

where ρ is the density of the fluid, g is the acceleration due to gravity, ∆ωi is the frequency
interval, N is the number of component angular frequencies (200), and α(ωi) are the
component wave amplitudes. Hence, the component wave amplitudes can be expressed as:

α(ωi) =
√

2Sη(ωi)∆ωi (3)

Each sea state is assigned a set of proprietary random number generator seeds, from
which repeatable normal distribution phase sets can be generated. The wave surface
function of the i-th regular wave can be expressed as:

ηi,j(t) = α(ωi)cos
(
ωit + εi,j

)
j = 1, 2, · · · , 10 (4)

where εi,j is the initial phase uniformly random distributed between 0 and 2 π, and is asso-
ciated with angular frequency ωi. j is the number of sea states. The corresponding incident
wave is then synthesized by the linear superposition of all frequency components, as:

ηj(t) =
N

∑
i=1

ηi,j(t) (5)

Assuming an irrotational, non-viscous, and incompressible flow in the fluid domain,
the waves are of small amplitude. Potential flow theory and three-dimensional radia-
tion/diffraction theory are applied in the analysis. The velocity potential of the flow motion
can be expressed as:

φ =
(→

X, t
)
= ϕ

(→
X
)
e−iωt (6)

where t is the time, ϕ
(→

X
)

is the spatial velocity potential function, ω is the wave frequency.

ϕ
(→

X
)
= ϕI + ϕD +

6

∑
j=1

ϕrjxj (7)

where ϕI is the incident wave potential, ϕD is the diffracted wave potential, ϕrj is the

radiation wave potential. ϕ
(→

X
)

satisfies the Laplace equation that can be expressed as:

∇2ϕ = 0 (8)

The radiation force acting on the buoy can be expressed as follows:

FR = ρ
x

ϕrj·nds = −ω2 Am − iωBC (9)
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where n is the direction vector, Am is the added mass, BC is the radiation damping. The
complex amplitude of the exciting force acting on the buoy can be expressed as:

Fex = −iωρ
x

(ϕI + ϕD)·nds (10)

Based on the linear potential flow theory and Newton’s second law, the heave response
in the frequency domain is:(

−ω2(M + Am)− iω(BC + CPTO) + K
)
Z(ω) = Fex(ω) (11)

where M is the mass of the buoy, Am is the added mass, BC is the radiation damping, CPTO
is damping coefficient of the PTO system, K is the restoring force coefficient, Z(ω) is the
buoy displacement, Fex(ω) is the excitation force.

Z(ω) =
Fex(ω)

(−ω2(M + Am) + iω(BC + CPTO) + K)
(12)

In irregular waves, the buoy heave displacement can be expressed as:

ηj(t) =
N

∑
i=1

Z(ωi)ηi,j(t) j = 1, 2, · · · 10 (13)

The instantaneous power can be expressed as:

Pj(t) = CPTO

{ .
η j(t)

}2
(14)

With a spectral frequency interval of 0.02 rad/s, the maximum duration of any non-
repeating time series derived from this spectrum is t = 2π/0.02 ≈ 314 s. Then, the mean
power over time series can be expressed as:

P(Hs, Tav, j) =
1
t

t∫
0

Pj(t)dt (15)

Considering the random nature of waves, the mean power value for each sea state is
the average of ten values, which can be expressed as:

P(Hs, Tav) =
1

10

10

∑
j=1

P(Hs, Tav, j) (16)

The mean annual power is obtained by taking the weighted average of the mean
power values for all the sea states.

P =
Hs

∑
Tav

∑ H(Hs, Tav)× P(Hs, Tav) (17)

where H(Hs, Tav) is the probability that each sea state occurs within a year.

2.3. Prediction Model Method
2.3.1. Response Surface Method

RSM has a wide range of applications in the field of optimization design, and also
has successful experience in the optimization of the WEC buoy shape [20]. RSM uses the
knowledge of mathematics and statistics to analyze the response of a series of sample
points in the design variable space, and usually uses the least square method to establish a
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prediction function, which is generally a low-order polynomial. Commonly, the relationship
between the response value y(x) and the design variable x can be expressed as:

y(x) = ỹ(x) + ε (18)

where ỹ(x) is the response function of the input parameter x, ε is the observation error. The
second-order RSM is the most commonly used and is expressed as:

ỹ(x) = α0 +
k

∑
i=1

αixi +
k

∑
i=1

αiix2
i + ∑

k

∑
i<j

αijxixj (19)

where k is the total number of design variables, and xi is an input design variable,
α0, αi, αii, and αij are the unknown regression coefficients of the constant, linear, quadratic
and interaction terms, respectively. The least square method is employed to estimate the
unknown coefficients α, which is expressed as:

α =
(
XTX

)−1(XTy
)

(20)

2.3.2. Radial Basis Functions Neural Network

RBFNN is a feedforward network model which consists of input layer, hidden layer
and output layer, and its basic structure is shown in Figure 2. From the input layer to
the hidden layer is a fixed non-linear transformation that maps the input vector directly
into a new space. The mapping from the hidden layer space to the output layer space
is linear, and the output layer implements a linear weighted combination in the new
linear space, where the weight is the network adjustable parameter. The RBFNN does not
need any mathematical assumptions and has the characteristics of a black box. It has a
fast learning speed, a strong ability to predict complex nonlinear functions and excellent
generalization ability.
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For n dimensional input variables x1, x2, · · · , xn ∈ R, the RBFNN can be expressed as:

y(x) =
p

∑
p=1

λp ϕp(x) =
p

∑
p=1

λp ϕp
(
‖ x− xj ‖

)
(21)

where p is the number of neurons in the hidden layer, λp is the weight factor, ϕp(x) is the
p-th basis function of the hidden layer, and ‖ x− xj ‖ is the euclidean distance between the
test point and the sample point.

The Gaussian basis function is used as the radial basis function of the neural network,
which is expressed as:

ϕp(x) = exp

(
−
‖ x− xj ‖ 2

2σ2
p

)
(22)
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2.3.3. Elliptical Basis Functions Neural Network

Kavuri et al. [29] have constructed the EBFNN based on the study of pattern recogni-
tion. The EBFNN uses hyperellipse to divide the design variable space, and the hidden
layer neurons use the ellipse function as the basis function. The EBFNN is the same as the
structure of the RBFNN. The EBFNN takes the Mahalanobis distance between the point to
be measured and the sample point as the independent variable. For n dimensional input
variables x1, x2, · · · , xn ∈ R, the basis function can be expressed as:

gi = g
(
‖ x− xj ‖ m

)
(23)

‖ x− xj ‖ m =
(
x− xj

)TS−1(x− xj
)

j = 1, 2, · · · n (24)

where S is the covariance matrix. The EBFNN prediction model is constructed by linear
superposition, and the input and output layers can be expressed as:

f in
j (x) = 1−

n

∑
i=1

(
xi − cji

)2

b2
ji

(25)

f out
j (x) =

eβ + 1
eβ
· 1

1 + exp
(
−β f in

j (x)
) (26)

where cji, bji, respectively, represent the center value and semi-axis length of the ellipse
element j on the i-th dimension. β is the adjustment parameter for the slope of the sigmoid
curve. The larger the value of β, the faster the output value of the elliptic basis function
tends to zero.

2.3.4. Error Analysis

The complex correlation coefficient R2 is used to evaluate the consistency between the
estimated value of the prediction model and the real value. It can be expressed as:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (27)

where n is the number of sample points, yi is the actual value of the response, ŷi is the
model estimated value, y is the average value of the actual value. When R2 is closer to 1,
the model accuracy is higher. It is generally considered that when the R2 is above 0.9, the
accuracy of the prediction model can meet the engineering needs [30].

2.4. Optimization Algorithms and Processes

The origins of GA can be traced back to the early 1960s. The algorithm is designed and
proposed according to the evolution law of organisms in nature. The GA imitates the genetic
reproduction mechanism in the process of biological evolution, encodes the individuals
in the solution space of the optimization problem, and then carries out genetic operations
on the encoded individual population (such as selection, crossover, variation, etc.), and
finds the combination containing the optimal solution or better solution from the new
species population through iteration. GA is explained in detail in the works of Eiben
and Smith [31].

The MIGA is an improvement of the parallel distributed genetic algorithm by Hi-
royasu [32]. It divides a large population into several subpopulations, which are called
“islands” vividly, and uses traditional GA algorithms to perform subpopulation evolution
on each island. The schematic diagram is shown in Figure 3. The genetic evolution among
the subpopulations does not interfere with each other. Every certain number of generations,
some individuals are randomly selected to transfer to other islands, which helps complete
the exchange of individuals between populations, and increase the diversity of individuals.
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Compared with GA, it can effectively suppress the occurrence of precocious phenomenon,
which is beneficial to obtain the global optimal result [33].
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The optimization process is illustrated in Figure 4. Some sample points are randomly
selected in the design space by the optimal Latin hypercube design (OLHD). Calculating
the hydrodynamic parameters (i.e., the wave excitation force, the additional mass, the
radiation damping), the mean annual power for each sample point is calculated. The
prediction model is established by analyzing the input and output variables of the sample
library. When the prediction model meets the accuracy requirements, it is loaded into
the optimization process. Then, the simulation calculation is replaced by the prediction
model in the next optimization process. After initialization, according to the results of
the previous generation, the parameters of the next-generation population individuals are
obtained by genetic evolution. The individual parameters are input into the prediction
model to obtain the energy capture power of the individual. The above process is repeated
until the maximum generations and the population will contain the best individual after
the maximum generations.
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3. Building and Testing Prediction Models
3.1. Sample Library
3.1.1. Determining the Design Space

In this paper, the WEC will be deployed in the sea near Chengshantou, Weihai,
Shandong, China (123◦ E, 37.5◦ N). The wave resource statistics data were obtained from
2011 to 2020 by ERA5 reanalysis data [34]. The probability of occurrences of significant
wave height and average wave period is shown in Table 1. According to the statistics data,
the average wave period concentrates in 3–6 s. the significant wave height mostly is less
than 2 m.

Table 1. The average probability of occurrences of significant wave height and average wave period
from 2011 to 2020.

Hs (m)
Tav (s)

Total
2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

0.25 3.25 14.00 7.37 2.64 0.77 0.16 0.07 0.03 0.01 0.00 28.30%
0.75 0.10 15.56 18.28 5.19 1.63 0.67 0.32 0.19 0.04 0.02 42.00%
1.25 0.00 0.54 10.88 3.37 0.46 0.14 0.08 0.02 0.02 0.02 15.53%
1.75 0.00 0.00 1.64 5.24 0.31 0.07 0.00 0.00 0.00 0.01 7.27%
2.25 0.00 0.00 0.02 2.76 0.89 0.03 0.00 0.00 0.00 0.00 3.70%
2.75 0.00 0.00 0.00 0.39 1.62 0.03 0.00 0.00 0.00 0.00 2.04%
3.25 0.00 0.00 0.00 0.01 0.79 0.08 0.00 0.00 0.00 0.00 0.88%
3.75 0.00 0.00 0.00 0.00 0.11 0.11 0.01 0.00 0.00 0.00 0.23%
4.25 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05%
4.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00%
Total 3.35% 30.10% 38.19% 19.60% 6.58% 1.34% 0.48% 0.24% 0.07% 0.05% 100%

The WEC captures wave energy through the movement of the buoy with the wave.
Energy capture efficiency mainly depends on the shape of the buoy and the response of
the PTO system [35,36]. Therefore, the radius R and the ratio of draft radius D and the
damping coefficient CPTO are selected as the optimization parameters.

(1) The diameter of buoy is preferably 5–10% of the main wavelength [37]. Therefore, the
value range of the buoy diameter can be expressed as follows:

0.6 m < 2R < 6 m (28)

(2) In order to ensure the rationality of the buoy shape, the draft of the buoy is normalized,
which is expressed as D = H/R. The value range of D can be expressed as follows:

0.5 < D < 1 (29)

(3) The traditional design method for the PTO system damping is based on the spectral
peak frequency resonance, which leads to low energy capturing efficiency [20]. There-
fore, the global search method is used to find the optimal PTO system damping which
matches the wave resources. The value range of CPTO can be expressed as follows:

50 KNs/m < CPTO < 300 KNs/m (30)

According to the wave resources in the target sea area and considering the cost, the
goal of this paper is to maximize the mean annual power per unit submerged surface area
of the buoy [38]. Constraints and objective functions are as follows:
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max P/S
s.t. 0.6 m ≤ 2R ≤ 6 m

0.5 ≤ D ≤ 1
50 KNs/m ≤ CPTO ≤ 300 KNs/m

(31)

3.1.2. Hydrodynamic Calculation Verification

In order to verify the accuracy of simulation calculations and avoid the influence
of the number of meshes on the simulation results, the numerical calculation results are
compared with the results published in this paper by Mei [39]. The radius of the cylinder
buoy is 4.05 m, the draft is 4.05 m. The wave frequency varies from 0.1 to 1.9 rad/s with
an interval of 0.1 rad/s. k is the corresponding wave number. The water depth d is 15 m.
The calculation meshes are 1310, 3945, 5825 and 8000, respectively. The calculated results
are shown in Figure 5. When the total number of meshes are 1310, the response amplitude
operator (RAO) peak calculation error is larger and the root mean square error (RMSE) is
0.021. When the number of meshes are 3945, 5825 and 8000, the RMSE is 0.017, 0.016 and
0.016, respectively. The calculation results tend to be consistent, and continuous refinement
of the mesh has little effect on the simulation results. Therefore, in order to ensure high
numerical simulation accuracy, the same mesh density is used.
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3.1.3. Calculating the Sample Points

The OLHD makes all test points as evenly distributed in the design space as possible,
and has very good space filling and balance. The sample library is randomly selected in
the design space by using OLHD, which covers 63 sample points [40]. The sample points
are shown in Table 2, and the scatter diagrams of these samples are shown in Figure 6.
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Table 2. Sample library.

Run# R D CPTO Run# R D CPTO

1 0.52 0.68 240 33 2.89 0.78 240
2 2.35 0.94 90 34 3 0.58 210
3 0.41 0.88 110 35 2.24 0.62 280
4 1.16 0.76 160 36 0.52 0.82 270
5 2.78 0.6 130 37 1.7 0.6 80
6 2.89 0.7 220 38 1.27 0.96 260
7 2.68 0.5 230 39 1.49 0.52 200
8 2.03 0.74 70 40 0.95 0.54 290
9 1.7 0.98 260 41 2.57 0.98 230
10 1.81 0.56 100 42 1.16 0.7 160
11 1.49 0.96 150 43 1.81 0.86 190
12 1.06 0.54 180 44 0.41 0.64 220
13 0.3 0.66 140 45 2.68 0.66 90
14 1.27 0.58 280 46 2.78 0.88 150
15 0.62 0.92 210 47 0.73 0.9 170
16 2.24 0.64 290 48 0.62 0.56 110
17 1.38 0.9 50 49 1.06 0.74 50
18 0.95 0.72 60 50 2.03 0.84 300
19 2.57 0.86 270 51 2.46 0.94 60
20 2.14 0.82 170 52 0.3 0.76 120
21 0.73 0.84 300 53 2.73 0.8 275
22 0.84 0.52 80 54 1.11 0.65 300
23 3 0.8 120 55 1.65 0.75 175
24 2.46 1 190 56 0.57 0.55 150
25 1.6 0.78 250 57 2.19 0.5 225
26 1.92 0.62 200 58 0.3 0.85 200
27 0.84 0.92 70 59 2.46 0.95 100
28 1.38 0.72 250 60 1.92 0.6 50
29 1.6 1 130 61 3 0.7 125
30 1.92 0.8 100 62 0.84 0.9 75
31 2.35 0.5 140 63 1.38 1 250
32 2.14 0.68 180
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According to the sample points parameters, the simulation models are established.
The wave excitation force, additional mass and radiation damping are calculated for each
sample point based on ANSYS-AQWA. According to Equation (17), the mean annual power
of each sample point was calculated, and the scatter diagrams are shown in Figure 7.
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3.2. Training and Testing of the Prediction Model

The sample library is divided into two groups, respectively named as the training set
and the validation set. The first 52 groups of sample points are used as the training set, and
the last 11 groups of sample points are used as the verification set. The prediction models
are trained based on RSM, RBFNN and EBFNN, respectively. When the buoy radius is
constant, the mapping relationship between the PTO system damping, draft-to-radius ratio
and mean annual power is shown in Figure 8.
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The verification set is used to test the prediction performance of the three prediction
models. The predicted value is compared with the numerical simulation calculation, and
the results are shown in Figure 9. It can be seen intuitively from Figure 9 that the predicted
values of the three prediction models are in good agreement with the actual values, and
each point is distributed around the line y = x. Among the three prediction models, the
EBF prediction model has the smallest error, and the RSM prediction model has the largest
error. In addition to the use of test set verification, other evaluation methods are used. By
Equation (27), the complex correlation coefficient R2 of the training set is calculated. The R2

of RSM prediction model is 0.99269. The R2 of BFNN prediction model is 0.99913. The R2

of EBFNN prediction model is 0.99963. The test results show that the obtained model could
be used to predict the mean annual power.
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4. Optimization Results and Discussion

Based on three prediction models, the MIGA is used to optimize the shape of the buoy.
The population size is 60, the subpopulation size is 20, the number of subpopulations are 3,
the number of generations are 100, the rate of crossover is 0.85, the rate of mutation is 0.01,
the rate of migration is 0.01, and the interval generation of migration is 5. The optimization
results are shown in Figure 10.

During the optimization process, the mean annual power is calculated by the predic-
tion model. According to the calculation results of the previous generation, the optimization
variables are continuously updated to form new generations, and the iterations are repeated
until the maximum number of generations is reached. After 100 generations of evolution,
the optimization results are shown in Table 3.

Table 3. Optimization results.

Prediction
Model

R
(m)

D
(m/m)

CPTO
(KNs/m)

P/S
(W/m2)

Simulation
Result Error

RSM 0.91 0.5 50 120.18 109.80 9.45%
RBFNN 1.56 0.5 50 119.10 126.08 5.54%
EBFNN 1.34 0.5 50 131.46 131.63 0.13%
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As can be seen from Table 3, the comparison between optimization results and simu-
lation results shows that the RSM prediction model has the lowest accuracy between the
predicted value and the actual value, with an error of 9.45%. The RBFNN prediction model
has the better accuracy by comparing the predicted value with the actual value, with an
error of 5.54%. The EBFNN prediction model has the highest accuracy by comparing the
predicted value with the actual value, with an error of 0.13%. The accuracy comparison of
the three prediction models is the same as that of the corresponding complex correlation
coefficient R2. The accuracy of the prediction model established by the EBFNN method
is the best, while the accuracy of the prediction model established by the RSM method is
the worst.

In order to further verify the accuracy of the optimization results, the three design
parameters are qualitatively analyzed respectively. The influence of these three parameters
on P/S is analyzed by some simulation calculations. Figure 11 illustrates the response of
P/S with buoy-shape parameters under optimal CPTO. In Figure 11a, when the D is same,
the P/S first increases and then decreases with the increase of the buoy radius. The P/S
reaches peak when the radius is around 1.33 m. In Figure 11b, when the R is the same, the
P/S decreases with the increase of the D. According to the change trend in Figure 11, it can
be judged that the optimal parameters of the buoy are about when the R is 1.33 m and the
draft is 0.665 m.
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When the buoy is determined, the effect of CPTO on the capture power of WEC is
analyzed, as shown in Figure 12. In Figure 12a, when D is the same, the optimal CPTO
increases with the increase of R, and the smaller D, the faster the optimal CPTO increases
with the radius. In Figure 12b, when the R is the same, the optimal CPTO decreases with
the increase of the D, and the larger the radius, the faster the optimal CPTO decreases with
the increase of D. Since the wave energy is mainly distributed on the sea surface, wave
force decays rapidly with increasing water depth. In Figure 12c, the P/S first increases and
then decreases with the increase of CPTO. In the design space, each set of shape parameters
has an optimal CPTO. According to the change trend in Figure 12, it can be judged that the
optimal CPTO is 50 KNs/m.

According to the comparison between the quantitative analysis results and the opti-
mization results, it is found that the error of the optimization results of the RSM prediction
model and the RBFNN prediction model is relatively large, and the error of the optimization
results of the EBFNN prediction model is small, which further proves the reliability of the
optimization results of the EBFNN prediction model.

The comparison of optimization results, numerical simulation results and qualitative
analysis results shows that the EBFNN prediction model can reflect the function character-
istics of input parameters and mean annual power most effectively. Combining the EBFNN
prediction model with the MIGA to perform global optimization in the design space, it
is easy to obtain high-performance buoy design parameters. When the prediction model
method is adopted, only the sample points need to be calculated. After the prediction
model meets the accuracy, the prediction model is used to replace the simulation calcu-
lation in the optimization process, and a total of 63 simulation calculations are required.
When the direct optimization design method is adopted, it is necessary to perform simu-
lation calculations on the newly generated population individuals, and then the genetic
variation generates the next-generation population. This iteration is repeated until the
optimization generations are reached, which requires a total of 6300 simulation calculations.
Obviously, the number of repeated modeling and simulation calculations required by the
prediction model method is only 1% of the direct optimization design, and correspondingly,
99% of the original workload can be saved. The comparison between the prediction model
optimization design method and the direct optimization design shows that the prediction
model replacing the simulation calculation method can effectively reduce the number of
repeated simulation calculations in the optimization process, effectively shortening the
optimization design cycle, and improving the optimization design efficiency.
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5. Conclusions

In order to further improve the capture efficiency of WEC, this paper focuses on the
optimization design of the buoy shape. In view of the shortcomings of traditional optimiza-
tion methods such as long-time consumption and low optimization efficiency, this paper
discusses the feasibility of using prediction models to replace simulation calculations. The
method uses a small number of experimental samples to build a prediction model. In the
optimization process, it replaces the actual model, which greatly reduces the evaluation and
computation of the objective function and constraint function. Aiming at the shortcomings
of RSM and RBFNN to establish the prediction model, the EBFNN is proposed to train
the prediction model. The prediction models obtained by the three methods are combined
with MIGA to conduct global optimization in the design space. The obtained optimization
results are compared with the simulation calculation results and qualitative analysis results,
and the following conclusions can be obtained:

(1) The comparison shows that the prediction model established by the RSM method
has the worst accuracy, the prediction model trained by the RBFNN method has
better accuracy, and the prediction model trained by the EBFNN method has the
best accuracy. The mean annual power prediction model trained by the EBFNN
method can more accurately reflect the mapping relationship between the input and
output. According to the shape parameters of the buoy, the mean annual power can
be accurately predicted.

(2) Taking the wave statistics data of the Chengshantou sea area near Weihai City, Shan-
dong Province, China, as an example, the method of combining MIGA and the mean
annual prediction model is adopted to obtain a high-performance design scheme,
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which provides a reference for engineering design. In the optimization process, the
mean annual power prediction model replaces the simulation calculation, which
can reduce a lot of workload (i.e., repeated modeling, simulation, and calculation).
Compared with optimization design based on simulation results, this method can
save considerable time and cost, effectively shorten the optimization design cycle, and
improve the optimization efficiency. This optimization method can also be extended to
the optimal design of other sea areas or types of WECs. In the future, we will continue
to explore WEC array optimization methods. In order to promote the development
of WEC commercialization, WEC array optimization methods will be investigated in
the future.

(3) The three optimization parameters have a significant impact on the energy capture
performance. When the buoy shape is determined, the P/S first increases and then
decreases with the increase of damping, and there is an optimal CPTO. The optimal
CPTO is significantly affected by buoy radius and draft, which is positively correlated
with the buoy radius and negatively correlated with the buoy draft. When CPTO is
the optimal damping, the P/S increases first and then decreases with the increase of
radius and the P/S decreases with the increase of draft.
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