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Abstract: As renewable electricity generation continues to increase in the United States (US), con-
siderable effort goes into matching heterogeneous supply to demand at a subhour time-step. As a
result, some electric providers offer incentive-based programs for residential consumers that aim to
reduce electric demand during high-demand periods. There is little research into determinants of
consumer response to incentive-based programs beyond typical sociodemographic characteristics. To
add to this body of literature, this paper presents the findings of a dichotomous choice contingent
valuation (CV) survey targeting US ratepayers’ participation in a direct-load-control scheme utilizing
a smart thermostat designed to reallocate consumer electricity demand on summer days when grid
stress is high. Our results show approximately 50% of respondents are willing to participate at a
median willingness-to-accept (WTA) figure of USD 9.50 (95% CI: 3.74, 15.25) per month that lasts
for one summer (June through August)—or slightly less than USD 30 per annum. Participation is
significantly affected by a respondent’s attitudes and preferences surrounding various environmental
and institutional perspectives, but not by sociodemographic characteristics. These findings suggest
utilities designing direct-load-control programs may improve participation by designing incentives
specific to customers’ attitudes and preferences.

Keywords: demand response; direct load control; incentive-based; willingness to accept; contingent
valuation

1. Introduction

The United States (US) electric grid has seen ongoing modernization efforts to incorpo-
rate renewable energy sources (e.g., hydroelectric, wind, biomass, solar, and geothermal) as
well as increasing reliability and resilience (e.g., battery storage, distributed-feeder micro-
grids). Renewable generation in the US is being widely adopted, accounting for more than
19% of consumption in 2019 [1]. With renewable generation capacity increasing annually,
specifically for wind and solar energy, intermittency in renewables generation poses a
challenge for electricity producers to meet peak energy demand cycles. For residential
consumers, these peaks occur in the morning as customers prepare to leave for work and
when they return in the evening. Wind and solar generation generally do not correspond
to the demand cycles of residential customers, with a majority of production occurring
throughout the day when customers are away from their homes. This mismatch has
spurred investments and research into programs designed to reduce residential electricity
use during peak hours, collectively known as demand response programs [2].

Demand programs currently used in the US include “price-based” programs and
“incentive-based” programs. Price-based programs utilize various forms of pricing mecha-
nisms to influence consumer behavior. For example, utilities can impose time-of-use (TOU)
pricing, which fixes higher electric rates to times of the day when demand is historically
highest, or critical peak pricing (CPP) programs where utilities change rates to mitigate
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high-energy-demand days. Additionally, real-time pricing (dynamic pricing) programs
exist which tie electric rates to production costs. Programs utilizing price-based incentives
have been shown to be influential in prompting electricity customers to respond to price
signals [3–6]. Incentive-based programs utilize mechanisms that leave prices unchanged
but offer some monetary incentive for behavior changes such as a rebate for reducing peak
demand or compensation for allowing the electric provider to control internet-connected
appliances (sometimes called direct-load-control programs). (For a more in-depth explana-
tion of price-based and incentive-based programs, see Parrish et al. [7].) Popular examples
of direct-load-control programs are various “smart thermostat programs” (STPs) [8]. STPs
typically include the installation of a smart thermostat in the home of the participant that
can be controlled by the electric utility, which can then raise the temperature setting in the
summer during high-grid-stress events to reduce the demand on the system. Participants
are typically compensated for their discomfort through credits applied to their bill. Ad-
ditionally, direct-load-control programs have great potential at the electricity aggregator
level to minimize costs and better meet demand [9–11].

Demand response programs, both trials and established programs, have seen an
increase in participation over recent years, but include a relatively low percentage of cus-
tomers. A study by Parrish et al. [7] reviewed residential demand response programs
across the world and found that for programs offering an opt-in enrollment scheme, par-
ticipation was 10% or less of the target population, with active engagement being less in
some cases. Results vary widely by the type of demand response program, opt-in versus
opt-out strategies, and other institutional and regional factors. A recent report by the US
Federal Energy Regulatory Commission by Burns et al. [12] shows that participation in US
incentive-based programs has increased 6%, or 565,000 customers, since 2013. Regardless,
participation in demand response programs needs to scale with the continued integration
of renewable energy sources. A paucity of research exists on the effectiveness of STPs both
in terms of their ability to reduce peak energy loads and their ability to retain participants.
Most research to date is descriptive and does not aim to maximize participation in demand
response programs nor determine the predictors of who participates and why [7,13–15].
The difficulty associated with participation is in its voluntary nature. Participation should
be voluntary due to the uncertain effects of the STP on a household’s electric bill and their
experience with the program, and thus customers should be allowed to re-evaluate whether
their level of compensation is sufficient. Additionally, customers may have valid privacy
concerns with the level of data and control that the provider would have on the house-
hold [16]. Additionally, most DLC programs allow the customer to manually override the
DLC intervention; Sarran et al. [17] found an average override rate of 12.9%. A mandatory
enrollment in this program may lead to legal ramifications for invasions of privacy and
loss of agency in controlling electricity use. In an effort to increase enrollment, this study
attempts to better understand the determinants of incentive demand response program
participation, using a smart thermostat program as an exemplar program type, in order to
inform on-going efforts by electric utilities across the US to increase participation in these
types of programs.

This work aims to determine residents’ willingness to participate in a demand response
program that incorporates a utility-controlled smart thermostat into the household given
some level of compensation. Willingness to participate is elicited using a contingent
valuation survey, which is a widely used stated preference technique for eliciting nonmarket
values [18]. In this study, we are particularly interested in understanding determinants of
ratepayers’ willingness to accept (WTA) compensation for participation in a hypothetical
smart thermostat program, which has both market (e.g., electricity prices) and nonmarket
components (e.g., public grid reliability, availability of electricity for critical services during
disaster events).

Our findings suggest sociodemographic characteristics are not significant determinants
of smart thermostat program participation compared to energy and environmental attitudes,
preferences, and ideologies. We also find that the median compensation required for
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participation is USD 9.50 (95% CI: 3.74, 15.25) per month for each of the summer months.
This compensation amount is robust to the inclusion or exclusion of determinants for
participation, indicating that monetary compensation is relatively homogeneous. Our
results further show that in addition to direct ratepayer compensation, electric providers
seeking to increase participation in STPs should also carefully tailor their programs to
customer preferences, which has the potential to significantly increase participation rates
beyond what can be achieved by compensation alone.

2. Background and Literature Review

Demand response programs aiming to shift residential electricity demand away from
peak demand times or reduce demand entirely are becoming more common as renewable
energy is generated throughout the day when most residential users are not home. A
recent literature review categorized residential demand response programs into price-
based schemes and incentive-based schemes [7]. Price-based schemes attempt to alter
residential electricity consumption by shifting demand to off-peak times through a dynamic
pricing structure. These programs simply charge more for electricity when the grid is
strained, and the marginal cost of production is high, and charge less when the demand
is low. This price-based mechanism requires consumers to make intertemporal decisions
regarding electricity use to successfully optimize with respect to their budget constraints.
Incentive-based schemes attempt to produce the same outcome without allowing the price
of electricity to fluctuate throughout the day. These means are achieved by offering rebates
for customers reducing electricity use during peak times or by allowing the utility to control
the scheduling and use of certain appliances—known often as direct load control. A large
majority of demand response research centers around price-based programs and their
efficacy and retention rate.

A review of the current literature suggests there is an overarching theme of complica-
tion that customers associate with dynamic pricing schemes. Studies show that dynamic
pricing complicates the optimization problem for customers and introduces uncertainty in
the electric bill [15,19]. Dynamic pricing programs require considerable effort to optimize
consumption to achieve the same level of spending as before and may not equate to the
same level of utility as before due to changing of habits and loss of convenience. In addition,
dynamic pricing can be tied to market prices for inputs, causing unexpected fluctuations
and severe inequity in bill savings exists among groups of customers [20]. Dynamic pricing
is also further complicated by the fact that smart meters and advanced metering infras-
tructure (AMI) are a prerequisite for participation. AMI enables high-resolution two-way
communications with the electric provider that incur capital, operational, and maintenance
costs. While the net benefits of AMI are positive in utility-scale projects, they require large
amounts of capital to implement. Cost estimates for AMI vary greatly across the world.
Costs can range from USD 140–450 per meter in the Northeast USA to EUR 180–200 per
meter in the European Union [21,22]. It is important to note that the true cost to utility
coffers is convoluted by public assistance and grant funding. Additionally, larger utilities
can negotiate lower costs per meter by leveraging their buying power.

The incentive-based approach to demand response, specifically direct-load-control
programs, may offer a less complicated alternative to price-based programs. For example,
customers on a direct-load-control program are not subject to the risk associated with chang-
ing market prices and do not need to rely on self-optimization. STPs are a common type of
direct-load-control program in the US. Such programs typically involve the installation of
an internet-enabled thermostat, and participants in the program agree to a set number of
temperature increases during the summer in order to reduce demand on the grid during
critical peak periods. In several studies done by the US Department of Energy, customers
with programmable control thermostats saw higher and more predictable reductions in
electricity demand than those without [23]. In addition, all studies experienced positive
benefit–cost ratios. While much of the research centers on the US, several studies show that
STPs have the potential to reduce residential electricity demand in the Kingdom of Saudi
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Arabia [24,25], Turkey [26], and Canada [27] just to mention a few. It is for these reasons
that STPs are a worthwhile companion in the ongoing effort to increase the prevalence of
demand response programs as the “set it and forget it” nature of smart thermostats allows
for customers to more easily participate in demand response programs [28]. The question
then becomes, how do we increase enrollment rates in a smart-thermostat-style program?

The determinants of enrollment in these programs are of significant interest to the
industry. Several large electric providers in the US have already implemented STPs (e.g.,
Public Service Company of New Mexico (PNM) with a customer base of ~500,000 people,
Nevada Energy (NVEnergy) with a customer base of 1.3 million people) without a clear
understanding of what types of people will join, or how to target their efforts to maximize
enrollment. In order for direct-load-control programs to affect residential demand in a
meaningful way, an empirical-based approach to recruitment and optimal compensation
amount is required (which this the contribution of this work). Such knowledge is critical
as the US continues in its era of grid modernization, as STPs are an important way for
increasing the reliability and resilience of electric grids, such as by reducing blackouts and
brownouts [29,30]. STPs are designed to reduce the electricity demand of a number of
households during periods of high grid stress—thereby reducing the probability of lapses
in electricity service. In combination with other demand response strategies, these types of
direct-load-control programs are crucial in the solution for intermittency-related problems.

There is a limited body of research focusing on determinants of enrollment as well
as the compensation required for direct load control programs. A recent Belgian survey
showed respondents were willing to accept USD 49 annually to participate in a smart-
appliance-based demand response program, with environmental attitudes, length of con-
trol, and sociodemographic characteristics impacting participation [31]. When focusing
specifically on direct-load-control programs of heating and cooling appliances (using smart
thermostats), the research is sparse. A 2018 study of California, Texas, Virginia, and Ten-
nessee ratepayers found approximately half of respondents were willing to participate
in a summer smart thermostat program without compensation, and that participation
rates are boosted if an override option is allowed and an incentive of USD 30 is given [32].
While research into this area is becoming more popular, questions on the determining
characteristics of direct-load-control participation and their magnitude remain.

3. Data and Methods
3.1. Overview of Contingent Valuation

This study adopts the stated-preference contingent valuation (CV) methodology. The
use of CV is helpful for determining the total economic value of a good or service—which
is a combination of use and nonuse values [18]. Use values are benefits that the participant
receives directly from participation. In the case of a smart thermostat program, use values
could include both a monetary incentive or a potential expenditure decline due to reduced
electricity use. These values are often measurable through market structures (e.g., the
electricity market), but the CV methodology allows us to additionally elicit more difficult
nonmarket values for private goods that a respondent may have as well. These nonmarket
values could include the value of participating in a cause or the value of future benefits
to themselves and others [33]. Grid modernization, of which smart thermostats are a part,
encompasses a broad spectrum of both market and nonmarket benefits. Grid moderniza-
tion efforts increase reliability, resilience (e.g., reductions in the number of brownouts and
blackouts), and the number and type of renewable generation sources. By using the CV
methodology in this work, we provide estimates of the total economic value to society
of a hypothetical smart thermostat program, which we operationalize as eliciting mone-
tary estimates of ratepayers’ willingness to accept (WTA) compensation to participate in
the program. The WTA framework is used as it most accurately reflects the real-world
conditions in which smart thermostat programs are marketed to customers—customers
are asked to participate in the program given some form of incentive, often monetary.
Beyond simply estimating WTA, we also devote considerable attention to comparing and
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contrasting monetary and nonmonetary determinants of program participation, including
how participation varies by attitudinal and socioeconomic characteristics.

3.2. Survey Design

In June of 2019, a nationwide survey of 497 US electric ratepayers was conducted
using the Qualtrics online platform. (Israel [34] shows that the sample size for a pop-
ulation larger than 100,000, a 95% confidence interval, and a 5% margin of error is 400.
Additionally, Bujang et al. [35] show that sample sizes may need to be larger when using
logistic regression and find that a sample size of 500 is sufficient for a large population.
Additionally, calculating the minimum sample size for a 95% CI, margin of error of 5%, and
50% population proportion using Cochran’s sample size formula following Taherdoost [36]
results in a sample size of 385). Qualtrics uses a double opt-in process where potential
respondents sign up for a panel, and if their demographics match the quotas that are set
for census representation, they then receive an invitation to participate. Respondents are
notified via email and invited to participate in the survey for a given incentive (typically
equivalent to a few US dollars). To ensure our sample consisted only of electric ratepayers,
potential respondents had to pay their electric utility bill every month and be willing
or able to install a smart thermostat in their home (if the respondent was a renter then
they must have landlord approval to do so). The survey took an average of 22 min to
complete, and those that completed the survey were awarded an average of USD 3.30 as
a participant incentive. The survey questions were designed using the best practices for
internet-based surveys found in the work Dillman et al. [37], including the use of pretesting
and the tailored design method, and we further followed the recommendations of Johnston
et al. [38] for designing a stated preference valuation instrument.

Survey respondents were presented with a hypothetical smart thermostat program
that is similar to ones currently in use across the US (e.g., PNM’s Power Saver (New Mexico),
NVEnergy’s Powershift (Nevada), and SoCalGas’s Smart Therm Program (California)). In
the scenario, the electricity provider would install a smart thermostat free of charge, under
the condition that during high-peak-demand events, the provider would automatically
increase the respondent’s temperature setting (by various amounts and for various lengths
of time) to lower grid stress. (The smart thermostat that was described to the respondent
was a Wi-Fi-enabled digital thermostat that would be installed by their electric provider
and would allow the provider to adjust the temperature setting on specific days.) Several
potential benefits of the program were presented to the respondents, including a reduction
in their household’s electric bill, potential gains to the reliability of their power supply
if this program was widely adopted in their service area (a nonmarket dimension), and
that additional infrastructure investments in power plants and transmission lines could be
delayed due to the reduction in grid stress (a full description of the impacts of the program
presented to respondents is available in Appendix A). Respondents were also told about
potential costs of the program, such as losing direct control of their air-conditioner (A/C) or
other cooling system for short periods of time on high-grid-stress days, potential discomfort
from a warmer home, and any inconvenience associated with learning how to operate a
new thermostat device. Following a dichotomous choice format, respondents were shown
a level of compensation picked randomly from a discrete uniform distribution ranging
from USD 1 to USD 20. Respondents were also presented with a cheap talk script which
aims to reduce the hypothetical bias associated with CV results [39]. If the respondent
agreed to participate at the presented level of compensation, the monthly reward would be
in addition to any savings on the electric bill that the respondent received from reduced
electricity use during peak times. (Offering compensation in addition to bill savings is
required to elicit nonmarket values associated with a hypothetical program.) The specific
language of the valuation question asked of all respondents is presented below (the full
valuation text can be found in Appendix A):

Assuming that you do not know by how much your electric bill would decrease under
[the smart thermostat program], would your household participate in [the smart thermostat
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program] for one summer (June–August) if your electric provider gave you a USD [uniform
random offered payment amount between USD 1 and USD 20] monthly money reward for
each of the months of June, July, and August?

0—No
1—Yes
2—Not Sure
When asked to participate from June through August given a randomly distributed

compensation amount, 49.3% of respondents said Yes, 29.4% of respondents said No, and
21.3% of respondents said they were Not Sure. This finding suggests that nearly a majority
of surveyed US electric ratepayers are willing to participate in a smart thermostat program
if they receive some form of compensation that randomly varies between USD 1 and
USD 20. In the next section, we outline the empirical methods for calculating the average
amount of compensation required for participation and the methods used to investigate
determinants of program participation.

3.3. Determinants of Participation and Median WTA

The empirical analysis focuses on (i) determinants of respondent participation in the
smart thermostat program and (ii) estimation of median WTA for program participation.
For estimating (i), a logistic maximum likelihood estimation (often referred to as a logit) is
used to investigate the magnitude by which attitudes, preferences, and sociodemographic
characteristics impact a respondent’s willingness to participate in the smart thermostat
program when some nonzero amount of compensation is provided. The use of a logit model
in economics to provide this type of inference is well documented [40] and a precursor to
(ii) estimation of the median WTA for the average ratepayer [41]. The probability that a
respondent chose Yes is defined to be logistic in nature where participation is dependent on
a vector of observable characteristics, X. These characteristics take on the form of attitudes,
preferences, and sociodemographic characteristics that were asked throughout the survey.
The log-likelihood that a respondent participates is then described as

lnL = ∑n
i=1 y∗i ln

(
Φ
(
X′β

))
+ (1− y∗i ) ln

(
1−Φ

(
X′β

))
(1)

In Equation (1), if respondent i votes to participate in the program, the latent class
variable y∗i is equal to 1; otherwise, it is equal to 0. Equation (1) is fit using a logistic
distribution with the cumulative density function (CDF) including the logged payment
level, Φ(X′β) = (1 + exp(−X′γ− βt/σ))−1. When maximized, the γ vector represents
the point estimates that can be converted to marginal effects to be evaluated at the mean
of each variable; β is the point estimate for the payment level a respondent was assigned,
t; and finally, σ is the estimated variance. These estimates describe how the likelihood of
compensated participation by a respondent changes with a deviation from the average
response.

Given the hypothetical nature of the program in question and the stated preference
methodology, respondents face questions that elicit protest response behavior following
best practices [42]. This question is only offered to a respondent who answers No to the
valuation question, and the respondent is asked to select the most appropriate reason for
answering No from 13 possible choices (exact question wording available in Appendix B).
Only 3 of the 13 possible choices represented a “true” economic No. (True economic No
responses indicate a disagreement with the valuation of the program as presented to them.
These responses were “I need more information about how my electricity provider would
decide on which days to raise my home temperature”, “This program is not worth it to
me”, or “The offered money reward is too small”.) All other possible responses represented
various forms of protest to the direct-load-control concept itself or the survey instrument.
Table 1 categorizes respondent answers to the valuation question using the results from the
protest question. Approximately 15% of No responses to the valuation question represent
some form of protest behavior.
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Table 1. Respondent participation results for the smart thermostat program.

Response Percent N

Yes 49.30% 245
True No 14.49% 72
Protest No 14.89% 74
Not Sure 21.33% 106

Note: A true no represents a respondent not participating due to an economic reason such as the compensation
being too low. A protest response represents a respondent who chose not to participate because of opposition to
the smart thermostat as a program and not the economic value of it.

There is no consensus in the literature for how Protest No and Not Sure responses
should be treated [43,44]. We take a conservative approach, following Carson et al. [45],
and code Protest No and Not Sure responses as No. This decision is empirically justified
based on the results of pairwise likelihood ratio tests for combining Protest No, Not Sure,
and No responses, following in the spirit of Jones et al. [46]. (The null hypothesis is
that a pair of categories can be combined. Failures to reject the null hypothesis indicate
that combining the two categories is empirically supported. True No and Protest No:
χ2 = 2.21, p = 0.137; True No and Not Sure: χ2 = 0.86, p = 0.354; Protest No and Not
Sure: χ2 = 0.422, p = 0.490. These tests are also performed by collapsing each above
category one at a time and then retesting. By collapsing True No and Protest No into a
single category and testing the combination of that category being combined with Not
Sure, the results are χ2 = 0.017, p = 0.896, indicating that we can indeed further collapse
dissenting responses into a single “No” category.)

Several predictors of participation in the smart thermostat program are evaluated in
order to be inclusive of potential heterogeneity among the diverse group of survey respon-
dents. The characteristics chosen encompass a wide range of attitudes and preferences
that may impact enrollment. Given that the program has potential environmental benefits,
environmental attitudes are included. Given that the program contains some loss of agency,
questions regarding their electric provider are included. Finally, various characteristics that
might affect electricity use habits or enrollment are also included. The specific respondent
characteristics included in X in Equation (1) are as follows: the importance of energy
conservation, whether their electric provider would consider the results of this survey,
whether the respondent would relinquish control of some smart appliances to the provider,
their concern for air and water pollution from electricity production, their political ideology,
whether a household member works from home at least three days per week, and the
likelihood that their neighbors would participate if asked to do so. In addition, several key
sociodemographic characteristics are included: age, gender, educational attainment, and
household income. Table 2 presents summary statistics for these variables. Respondents
reflected various attitudes, preferences, and behaviors but were fairly representative of
sociodemographic characteristics in the US population. Respondents averaged a household
income bracket of USD 50,000 and USD 74,999, a middle-of-the-road political ideology,
above-average education relative to census estimates, and a representative distribution of
gender. (The Qualtrics sampling procedure allowed quotas to be set for demographics so
that survey respondents match US national averages per the 2018 American Community
Survey. We used quotas for age, race, and census region.)
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Table 2. Summary statistics of determinants.

Variables Description Coding N Mean S.D. Min Max

Compensation Offer Amount offered for
participation

Discrete between USD 1 and USD
20 (USD)

497 10.8 5.7 1.0 20.0

Attitudes and Preferences

Energy Conservation Importance of
energy conservation

0–4, 0 = not at all important,
4 = very important

497 3.0 0.9 0.0 4.0

Utility
Consideration

Thinks utility will
consider survey
results

0 = no, 1 = yes 496 0.7 0.5 0.0 1.0

Utility Control Would allow utility
control of major
appliances

0 = no, 1 = yes 495 0.3 0.5 0.0 1.0

Pollution Concern for air and
water pollution from
electricity
production

0–4, 0 = not at all concerned,
4 = very concerned

497 2.6 1.1 0.0 4.0

Political Ideology Political ideology 1–7, 1 = strongly liberal, 4 = middle
of the road, 7 = strongly
conservative

495 4.0 1.8 1.0 7.0

Work at Home Whether a HH
member works from
home at least 3 times
a week

0 = no, 1 = yes 497 0.3 0.5 0.0 1.0

Neighbor
Participation

Likelihood
neighbors would
participate if asked

0–3, 0 = not likely, 3 = likely 497 1.1 0.8 0.0 3.0

Sociodemographics

Age Age of respondent Continuous 497 47.9 16.0 18.0 84.0
Gender Gender of

respondent
0 = male, 1 = female, 2 = other 497 0.5 0.5 0.0 2.0

High Education Education level of
respondent

0 = less than Bachelor’s, 1 = more
than Bachelor’s

497 0.6 0.5 0.0 1.0

Income Household income
bracket

1 = <USD 20,000, 2 = USD
20,000–29,999, 3 = USD
30,000–49,999, 4 = USD
50,000–74,999, 5 = USD
75,000–99,999, 6 = USD
100,000–149,999, 7 = USD
150,000–199,999, 8 = >USD 200,000

492 4.9 1.8 1.0 8.0

The median WTA compensation amount is then calculated following processes de-
scribed by Cameron and James [41]. Median WTA is defined as

MDε(WTA) = exp
[
−z′δ∗

]
(2)

where the inner product of (−X′γ− βt/σ) taken from the CDF in Equation (1) is rewritten

as −(t, X′)
[
−β/σ
γ/σ

]
= −z′δ∗ and δ∗ is a vector of covariate averages. The value obtained

from Equation (2) represents the minimum amount of money needed by the respondent
to participate in the hypothetical smart thermostat program, conditional on the included
respondent characteristics. (Versions of Equation (2) with and without respondent char-
acteristics will be estimated and presented to show how characteristics impact median
WTA.) Median WTA is calculated as opposed to the mean due to mathematical limitations
exposed by the variance of the error term that arises during the derivation of the WTA for
our data. (For an in-depth explanation of why mean WTA cannot be calculated in some
cases, see Appendix B of Haab and McConnell [47].)
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4. Results and Discussion
4.1. Determinants of Participation

Three versions of Equation (1) are estimated: (1) a parsimonious model in which only
the offered payment amount is considered, (2) a model which includes the attitudes and
preferences listed in Table 2, and (3) a model which includes all the covariates listed in
Table 2. Table 3 displays the results for these three models. The presented point estimates
represent the average marginal effects of a one-unit increase from the mean of that variable.
Interpretation of these point estimates is that a one-unit increase from the mean, on average,
results in a point estimate percent change in the likelihood of a respondent voting yes to
the smart thermostat program.

Table 3. Average marginal effects of participating in the smart thermostat program.

Variable (1) (2) (3)

Log (Offered Payment) 0.0642 ** 0.0617 ** 0.0671 **
(0.0288) (0.0266) (0.0267)

Attitudes and Preferences
Energy Conservation 0.0572 ** 0.0556 **

(0.0257) (0.0260)
Utility Consideration 0.169 *** 0.175 ***

(0.0458) (0.0460)
Utility Control 0.117 ** 0.113 **

(0.0521) (0.0524)
Pollution −0.0362 * −0.0375 *

(0.0218) (0.0220)
Political Ideology −0.0216 * −0.0192

(0.0122) (0.0125)
Work at Home 0.0815 * 0.0806 *

(0.0449) (0.0458)
Neighbor Participation 0.109 *** 0.111 ***

(0.0289) (0.0292)
Sociodemographics

Age −0.00107
(0.00140)

Gender 0.0361
(0.0439)

High Education 0.0142
(0.0476)

Log (Income) 0.0199
(0.0487)

Observations 497 492 484
Pseudo R2 0.00707 0.139 0.148
Percent Correct 52.31 66.67 66.53

Note: Each column presents results from a different estimated version of Equation (1). All point estimates
represent the average marginal effects of a one-unit increase. Standard errors in parentheses. *** p < 0.01,
** p < 0.05, * p < 0.1.

An important aspect of determination is that the compensation amount is a significant
and positive predictor across all three specifications. This indicates that as the compensation
amount is increased, the probability of respondent enrollment is also increased. With the
inclusion of covariates across specifications, the magnitude in which a log-dollar increase
impacts participation is similar. (Compensation undergoes a loge(x) transformation in
accordance with the methods described by Haab and McConnell [47].) For example, an
increase in compensation by 1 log-dollar increases the probability of enrollment by 6.4%
in model (1), 6.2% in model (2), and 6.7% in model (3). The magnitude of this effect is
suggestive that monetary compensation can indeed increase respondent participation in the
program; however, as will be shown shortly, other, nonmonetary factors and characteristics
have the potential to be more impactful, by increasing participation by greater amounts
than what can be achieved from pure compensation alone.

In model (2), the attitudes and preferences of the respondent are significant and
consistent predictors of program participation. The importance of energy conservation
is positively associated with an increase in a respondent’s probability of enrollment by
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a statistically significant amount. As a respondent places a higher level of importance
on energy conservation, the probability of enrollment increases by 5.7% for every 1-point
increase. Whether a respondent believed their utility would consider the results of this
survey when developing their smart thermostat program was a significant and positive
predictor of enrollment as well, providing an important check that respondents viewed
the survey instrument as consequential [48]. A respondent who believed the utility would
consider these results has a 16.9% higher probability of enrolling than one who did not. If a
respondent is amenable to the utility having direct control of their smart appliances (not
limited to A/C), there is a significant and positive impact on the likelihood of enrollment. A
respondent who agreed to direct control had an 11.7% higher probability of enrolling than
one who did not. This makes sense as a positive response to this question is associated with
respondents being open to the concept of direct load control, while a negative response
may be associated with a reluctance to allow utility control of appliances which could
stem from a variety of reasons. The likelihood of enrolling declines for respondents more
concerned about air and water pollution. While this result may seem counterintuitive,
there is a potential explanation. Respondents who rank their concern higher for pollution
may associate an electric provider with said pollution even if the provider does not directly
generate electricity. This direct or pass-through relationship may have an adverse impact
on a respondent’s willingness to enroll in STPs, but these relationships were not elicited in
this study. Certainly, this suggests an avenue for future research as enrollment in demand
response programs is highly contingent upon the level of trust that a utility has with its
customers [49,50]. The political ideology of the respondent is also a significant and positive
determinant of enrollment. Given the scale that ideology is measured on, a higher number
indicates that a respondent is more conservative. Therefore, respondents who are more
conservative have a decreasing likelihood of participation. As a respondent ranks higher
on the scale (more conservative) by 1 point, their probability of enrolling decreases by
2.2%. This may be associated with some ideological characteristics common amongst
conservative respondents—the relationship between conservative ideologies and views
on energy-efficiency attitudes and choices is well-established [51]. Whether the household
contains an individual who works from home at least 3 days per week increased the
likelihood of enrollment in a statistically significant way. Households in this category have
an 8.2% higher probability of enrolling than those that are not. This could be attributed to
higher electricity use in the home initially, or the underlying cause of working from home
could be correlated with conservation efforts. Peer pressure or neighborhood effects also
appear to significantly impact smart thermostat program participation. Results show that
those who live near neighbors they think would participate have a 10.9% higher probability
of enrolling than those who live near neighbors they think would not participate if asked.
This result is not surprising, as social influences from neighbors have been shown to be
a significant determinant of energy conservation behavior [52]. Given the magnitude of
the impact that this determinant has, it may prove to have viable strategy implications for
providers, as is discussed in the conclusion and policy implications section of the paper.

In model (3), we include the set of sociodemographic characteristics shown in Table 2.
In this model, most attitude and preference determinants remained similar in magnitude to
those found in model (2) save for one notable difference. The inclusion of these characteris-
tics led to the loss of statistical significance in political ideology. This may be associated with
correlations between political ideology and the sociodemographic characteristics. To avoid
the effects of collinearity between some sociodemographic characteristics such as income
and age, or income and education, each variable was added to the regression piecewise,
and the results were robust in determining that they are not significant. (Piecewise results
available upon request.) Overall, model (3) results are consistent with current research into
how sociodemographic characteristics impact participation in demand response programs.
In a review of the literature, Xu et al. [32] found inconsistent evidence of statistical linkage
between enrollment in price-based programs and sociodemographics. Our research is the
first to conduct a parametric statistical analysis on sociodemographics and enrollment in an
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incentive-based program, and we find there is no association. This may seem counterintu-
itive since a clear relationship exists between sociodemographic characteristics and energy
consumption [53,54]. With a direct-load-control program, the behavior response becomes
less associated with the respondent’s electricity use profile and more associated with their
willingness to accept a loss of agency for some level of compensation. This decision-making
process may be loosely correlated with electricity consumption and more correlated with
the attitudes and preferences that were used in this study.

Note that across models (2) and (3), we find consistent evidence that respondent
attitudes and preferences such as views on direct utility control of at-home appliances
(including but not limited to their thermostat), survey consequentiality, neighbor partici-
pation, and working from home are each larger predictors of program participation than
an additional log-dollar of compensation alone. This is not to suggest that compensating
smart thermostat program participants is not somehow warranted (indeed our results
show that compensation can increase participation); rather, the implication of the results
in Table 3 is that compensation is only one of several factors (and perhaps not even the
most salient factor) that should be considered for program recruitment purposes. Electric
providers, based on the results presented here, likely need to carefully consider respondent
and household characteristics, especially surrounding issues of trust and neighborhood
effects, when designing their STPs and not only the level of compensation provided.

As some additional results, some literature finds that variables that may be associated
with at-home electricity usage would be significant determinants of participation in demand
response programs [53,54]. To examine these potential relationships, Table 4 presents
estimated versions of Equation (1) that include controls for the size of a home, the number
of people in the home, the average bill size, and whether or not the household has more
than one sensitive group (e.g., seniors, small children). The point estimates represent the
average marginal effects evaluated at the mean and follow the same interpretation of those
found in Table 3. All of these characteristics except for the number of people in a household
are insignificant in explaining the variation in participation in this program. The results
of the model in column 2 show that for each additional member in the household above
the mean of 2.68, the likelihood of participation in the proposed program increases by
3.86%. When these four determinants were added in various combinations to column 3
of Table 3, the result is statistical insignificance for all, including the number of people in
the household. This suggests that traditional explanatory variables that focus on potential
electricity use and sociodemographics are eclipsed by more powerful determinants such as
the attitudinal and preferential explanatory variables described in Tables 2 and 3.

Table 4. Determinants associated with electricity use.

Variables (1) (2) (3) (4)

Log (Offered Payment) 0.0649 ** 0.0680 ** 0.0667 ** 0.0660 **
(0.0289) (0.0287) (0.0289) (0.0289)

Household size (sqft) −0.00620
(0.0220)

Number of people 0.0386 **
(0.0186)

Average bill −0.0206
(0.0196)

At least one sensitive group 0.0323
(0.0481)

Observations 497 496 497 497
Pseudo R2 0.00718 0.0134 0.00867 0.00772
Percent Correct 51.51 53.43 54.73 53.92

Note: Dependent variable is whether a respondent is a Yes vote. Point estimates are average marginal effects.
Sensitive groups are defined as seniors, children, babies and toddlers, individuals with physical disabilities, or
individuals with special needs. Standard errors in parentheses. ** p < 0.05.
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4.2. Median WTA

Using the results in Table 3, Equation (2) is used to calculate the median WTA for the
smart thermostat program. The median WTA when no covariates are considered except
for the offered payment level, model (1) from Table 3, is USD 9.71 (95% CI: 3.03, 16.39).
(All confidence intervals calculated using the delta method.) When the attitudes and
preferences from model (2) are included, the median WTA is USD 9.84 (95% CI: 3.35, 16.33).
When all the covariates are included as in model (3), the median WTA is USD 9.50 (95%
CI: 3.74, 15.25). These findings calculate to approximately USD 30 per annum, which is
similar to established programs that offer USD 25 per annum (e.g., PNM Power Saver in
New Mexico). (The Turnbull empirical distribution estimator of WTA was also used to test
whether nonparametric techniques resulted in similar outcomes as the parametric technique
used in this paper [55]. The estimated lower bound of WTA was USD 7.78 with a variance
of USD 1.50.) This small change in WTA with the inclusion of covariates may indicate that
while the likelihood of participation can be significantly influenced by these covariates, the
amount of compensation required may not. These results strongly suggest that participation
in these types of programs is more significantly impacted by the attitudes and preferences
of the respondents (as discussed in the previous section) as opposed to the amount of
compensation provided. This suggests that simply increasing the compensation amount to
improve participation numbers may not be the most effective strategy for electric providers.
Given that the probability of enrollment is increased by 6.2–6.7% for an increase in the
log-dollar amount, an optimal strategy would be to use resources on determinants that
had a larger impact on enrollment. For example, targeting households with an individual
who works at home and targeting those who live near neighbors who already participate
in the program could lead to an increase in the probability of participation by 8.2% and
10.9%, respectively. Both of these determinants have stronger impacts on the probability of
enrollment than an increase in compensation.

It is possible that varying levels of compensation are required depending on institu-
tional or social constructs. To expand on this concept, a heterogeneity analysis of median
WTA was conducted. Several potential sources of heterogeneity were examined such
as political ideology, geographic region, and state-level renewable portfolio standards
(RPSs)—see Table 5.

Table 5. Heterogeneity analysis.

Specification Median WTA

Regional Variation
South USD 14.21 (8.25) *
Northeast USD 6.86 (5.45)
Midwest (Base) -
West USD 3.32 (2.83)

Political Ideology
More Liberal USD 8.28 (9.97)
Middle of the Road (Base) -
More Conservative USD 10.53 (12.02)

Maximum RPS a

No Mandate (Base) -
1–50% Renewables USD 11.84 (6.80) **
50–100% Renewables USD 6.76 (4.69) †

Note: All point estimates estimated using the covariates listed in column 3 of Table 3. Median WTA estimated
using Equation (2) in the text. a The state must have a legally mandated percentage of renewable electricity
generation by any time frame. This measures whether a state has an RPS at all, as well as the magnitude of it.
** p < 0.05, * p < 0.1, † p < 0.15.

The values in Table 5 represent the median WTA for each category as compared to the
listed base category. In terms of regional heterogeneity, the southern census region has a
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statistically different median WTA than the Midwest (base) at USD 14.21. This indicates
that the minimum compensation required by the average respondent living in the South
is USD 14.21 higher than the average respondent living in the Midwest. This result is
robust to changing the base case. (Evidence from the sample suggests that the southern
census region respondents are on average more conservative—with 74.8% of respondents
identifying as middle-of-the-road or above on the conservative scale shown in Table 3
where 1 is liberal, 4 is middle-of-the-road, and 8 is conservative. This suggests that the
difference in compensation required for the South could be driven by political ideology.)
Median WTAs amongst political ideologies displayed expected point estimates but were not
statistically different. Point estimates suggest that conservative respondents required more
compensation than middle-of-the-road respondents and liberal respondents required less,
but this finding is not statistically supported due to overlapping confidence intervals. The
magnitude of a state’s RPS has a significant impact on median WTA. The median amount of
compensation depending on the magnitude of RPS may be reflecting institutional attention
to electricity policy. If a respondent lives in a state where the RPS required renewables in
the energy mix to be between 1% and 50%, their median WTA was USD 11.84 higher than
those without any RPS. If a respondent lives in a state where the legal requirement was
to be between 50% and 100%, the median WTA was USD 6.76 higher, but this estimate is
only significant at the 85% confidence interval. While RPS levels may impact the amount
of press regarding electricity generation and conservation in the state, it is also possible
that there are unobserved characteristics that are shared across states in each category. For
example, states with an RPS requirement between 50% and 100% are California, Colorado,
Maine, Maryland, Nevada, New Jersey, New Mexico, New York, Oregon, and Washington,
as well as the District of Columbia. Respondents from these states may experience shared
determinants that impact the amount they are willing to accept for participation and can be
related to economic, environmental, political, or ideological similarities.

5. Conclusions and Policy Implications

Demand response programs have become synonymous with grid modernization ef-
forts in the US. Many US electric providers offer some form of price- or incentive-based
program. The ability to use direct-load-control programs to reduce residential demand
during off-peak times has the potential to avoid grid instability and high-cost generation.
Participation in these programs varies widely, and up until now, determinants of participa-
tion specifically related to a direct-load-control program were widely understudied. This
paper utilized an original contingent valuation study to elicit determinants for ratepayer
participation in a compensated smart thermostat demand response program. Findings
suggest nearly half of all respondents were willing to participate in the smart thermo-
stat program for USD 9.50 per month, from June through August. This amounts to USD
28.50 per annum. Given that this paper is the first to conduct a WTA analysis on such a
direct-load-control program, there are no examples in the current literature for a direct
comparison.

Our major contribution to the literature revolves around the determinants of partic-
ipation. Our findings suggest that sociodemographic characteristics are not significant
determinants of participation when attitudes and preferences of various other topics are
also considered. Participation in the direct-load-control program outlined in this paper
was largely driven by non-sociodemographic characteristics, most notably the respondents’
attitudes and preferences surrounding their views on energy conservation, the ability for
this survey to impact utility decisions, their willingness to relinquish control over appli-
ances to their utility, their political ideology, whether or not someone in the household
works from home, and whether or not they think their neighbors would participate if asked.
Unfortunately, data regarding these characteristics are not readily available to most electric
providers. While the amount of compensation that is offered will result in a statistically pos-
itive increase in enrollment, the use of a monetary-focused strategy may not be an efficient
one. When compared to the attitudes and preferences of the respondent, the magnitude
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associated with the compensation amount was reduced heavily. Powerful determinants of
enrollment were replaced by the aforementioned attitudes and preferences. To successfully
increase enrollment in a smart thermostat program, electric providers should consider
focusing their energy and resources in areas that rival compensation and may impact
enrollment at a larger scale. Electric providers can use the marginal effects presented in
columns 2 and 3 of Tables 3 and 4 that are often provided by census level data (i.e., income)
and compare the mean of this survey with the mean of their customer base. This will allow
utilities to determine whether their customers will be more or less likely to participate.
A limitation is that many of the most impactful effects are from nonpublic attitudes and
characteristics. Electric providers should survey their customers on a wide variety of
topics, and our work suggests certain characteristics (e.g., views on pollution, climate,
energy conservation) that providers may want to include to better estimate appropriate
compensation amounts.

An example of this would be the peer effect that was elicited from the survey. Re-
spondents were 10.9–11.1% (depending on the model specification) more likely to enroll in
the program if they thought that their neighbors would do so if asked, a magnitude much
higher than the 6.2–6.7% increase in participation for each log-dollar of compensation. This
type of peer pressure behavior is common in decision making, which may prove useful to
program designers. Advertisements or public service announcements related to the smart
thermostat program could include statistics or words of encouragement for neighborhood
or large-scale adoption of the program. To fully optimize spending, electric providers
may simply target households surrounding a current program participant. This may be a
low-cost alternative to increasing the compensation level. In general, strategies that aim to
shape customer bases may also be an alternative strategy to increased compensation levels.
For example, campaigns focused on increasing a target population’s importance on energy
conservation and the trust relationship with the provider prove, based on our results, to
have real and positive impacts on enrollment at a magnitude much larger than that of
simply increasing the compensation level. Electric providers may find that acquiring the
attitudes and preferences of their customer base is difficult but necessary. As mentioned
from the above findings, these characteristics will inform program designers on the best ap-
proach for increasing enrollment in STPs. Complementary to the results we have presented
here, our work suggests avenues for future research. The most apparent would be to test
alternative STP structures in terms of duration, payment method, informational treatments,
etc. While this type of analysis would focus less on the overall consumer response, it would
provide useful insights into what program structure would maximize enrollment.

This research utilized a stated preference technique to elicit the median WTA estimates
for electric ratepayers in the US. Another valuation technique that could be used for this
research is a revealed preference approach, in which existing program data are used to
estimate the WTA amount. Revealed preference approaches remove the potential for
hypothetical bias and thus should be a priority for future research on the topic of STPs.
More specifically, electric utilities could require new and current customers to be surveyed
for characteristics outlined in this paper. This would allow the utility to determine which
characteristics impact enrollment, retention, and satisfaction, which are the ultimate goals
of STPs, which we leave to future research.
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Appendix A

Consider a program where a free “smart” digital thermostat will be professionally
installed in your home by your current electricity provider. This thermostat will be provided
to you at no initial cost and with no re-occurring cost. After installation, the technician will
explain the main features of the smart thermostat to you and answer any questions you
may have regarding its use.

Once installed, the smart thermostat will operate just like a regular digital thermostat
that can be adjusted to a desired temperature setting. However, during the summer months
(June–August) the thermostat may:

• Automatically raise your temperature setting by 2–3 ◦F (1.11–1.67 ◦C) above your
average weekday setting for up to 90 min at a time on summer weekdays when there
is an increased risk of a blackout or brownout.

• Automatically raise your temperature setting by up to 5 ◦F (2.78 ◦C) (but never higher
than 79 ◦F (26 ◦C)) above your average weekday setting for up to 90 min at a time on
very hot summer weekdays when the outdoor highest temperature is over 95 ◦F (35
◦C).

In total, no more than 10 separate automatic temperature increases will occur in your
household over an entire summer.

Whether the smart thermostat actually raises your home temperature will be decided
on a daily basis by your electricity provider. Typically, this will only occur on summer
weekdays when total electricity demand in your community is high.

No temperature setting changes will occur on summer weekends or during the non-
summer months.

Impacts of [the smart thermostat program]:

• Reduced electricity use, which may lower your household’s monthly electric bill.
• Improvements to the reliability of the power supply, thereby decreasing the likelihood

of blackouts or brownouts in your service area.
• Delay the need for additional infrastructure investments in power plants and trans-

mission lines.

At this point in time, it is not certain what the monthly electric bill savings would be
to any specific household participating in [the smart thermostat program]. Therefore, elec-
tricity providers are considering offering a monthly financial money reward to encourage
household participation in the program.

This money reward would be in addition to any reductions in your electric bill due to
reduced electricity use under the program. The money reward would be in the form of a
monthly dollar credit applied to your electric bill balance during the summer months of
June–August.

Since the final amount of the money reward has not been determined by providers, we
are asking different households about different amounts. Even if the amount we ask seems
very low or very high, please answer carefully. This will allow us to determine whether
people think the program is worthwhile for their household at whatever level the final
money reward is determined to be.
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For this study, it is important that you tell us which money reward you prefer, based
only on your personal evaluation of what incentive would be required for your household
to participate in [the smart thermostat program].

Aggregate results from this study will be made available to US electricity providers
and state and federal electric regulatory agencies. However, no individual-specific results
will ever be shared.

Assuming that you do not know by how much your electric bill would decrease under
[the smart thermostat program], would your household participate in [the smart thermostat
program] for one summer (June–August) if your electric provider gave you a USD monthly
money reward for each of the months of June, July, and August? [No, Yes, Not Sure].

Note: Respondents also had access to the information from the previous description
to ensure a fully informed response. Follow-up questions were asked to determine a
respondent’s level of certainty with their decision and their level of understanding, and if a
No or Not Sure answer was given, the participant was then asked why. This allowed us to
determine the difference between a true economic No and a protest No.

Appendix B

We would like to know why your household would not participate in Program A.
Please select the most important reason.

1. I’m opposed to giving my electric provider automatic control of my thermostat.
2. The proposed temperature setting changes would make it too hot in my home.
3. I don’t like smart digital thermostats.
4. I don’t feel safe having somebody come into my home to install the thermostat.
5. I need more information about how my electric provider would decide on which days

to raise my home temperature.
6. I don’t trust my electric provider.
7. This program is not worth it to me.
8. The program lasts too long (i.e., one summer is too long).
9. The duration of the temperature change (90 min) is too long.
10. The offered money reward is too small.
11. I’m concerned that my smart thermostat could be hacked.
12. Other reason (please specify).

Note: Responses were presented in random order to the respondent.
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