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Abstract: Forecasting the industry’s electricity consumption is essential for energy planning in a
given country or region. Thus, this study aims to apply time-series forecasting models (statistical
approach and artificial neural network approach) to the industrial electricity consumption in the
Brazilian system. For the statistical approach, the Holt–Winters, SARIMA, Dynamic Linear Model,
and TBATS (Trigonometric Box–Cox transform, ARMA errors, Trend, and Seasonal components)
models were considered. For the approach of artificial neural networks, the NNAR (neural network
autoregression) and MLP (multilayer perceptron) models were considered. The results indicate
that the MLP model was the one that obtained the best forecasting performance for the electricity
consumption of the Brazilian industry under analysis.

Keywords: energy planning; forecasting; industrial electricity consumption; artificial neural networks

1. Introduction

In recent years, projections of electricity consumption for the Brazilian industrial
sector have been studied, both for short and long term [1]. This interest is related to
the development of the sector, energy planning, and energy efficiency [2]. Furthermore,
electricity has economic and social importance for a country or region. Thus, considering
the industrial sector as one of the largest electricity consumers, studies must be carried
out to ensure a minimum of predictability for legislators and consumers’ decision-making
processes [3].

In this context, several models have been used to obtain electricity predictions, such as
the regression models using only weather variables for predicting load demand in England
and Wales [4]; linear regression models for electricity consumption projections in Italy [5];
the Box and Jenkins models as well as the exponential smothing models for electricity
demand in European countries [6]; the neural network models for power load forecast in
Brazil [7]; the Bayesian dynamic linear model for short-term forecasting of Brazilian industry
electricity consumption [8]; additive semi-parametric models for energy load forecasting in
Australia [9]; bottom–up model for electricity consumption in Taiwan’s cement industry [10];
bottom–up approach for electricity consumption forecasting of the pulp and paper sector of
the Brazilian industry [1]; and bottom–up stochastic approach for electricity consumption
forecasting of a sector of the Brazilian industry [11]. Martínez-Álvarez et al. [12] used data-
mining techniques to electricity demand forecasting; a comparative study of different time-
series models for energy consumption forecasting of smart buildings in a university campus
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in the south of Spain [13]; there was also a study about energy consumption forecasting
to an industrial building using an artificial neural network (ANN) algorithm [14], and
artificial intelligence techniques were used for energy demand planning in smart homes [15].
Sulandari et al. [16] used singular spectrum analysis, fuzzy systems, and neural networks
for electricity load time-series forecasting in Indonesia. Sulandari et al. [17] presented an
SSA-based hybrid forecasting method for a complex seasonal time series of daily electricity
load in Indonesia. Sulandari et al. [18] presented a study comparative with the methods of
Singular Spectrum Analysis, fuzzy systems, and neural networks for Indonesian electricity
load demand forecasting.

The time-series forecasting models are mathematical and computational modeling
strategies used in academic research and to help in public policies, which are oriented
by evidence. The literature concerning time-series forecasting has to a heterogeneous
and dynamic degree taken into account an extensive amount of scientific production
and competitions for evaluating models applied to observed data in different fields of
knowledge [19–21]. It is possible to find in the literature prediction comparisons in which
univariate time-series models are superior to (or as good as) multivariate models (as in the
discussion proposed in [22–25]). A possible interpretation for this result is a sparse repre-
sentation, in large-scale models, of the dynamic interactions in a system of variables [26].

The purpose of this work is to perform a comparative study between two classes of
models for time-series forecasting (statistical and artificial neural networks) applied to the
electricity consumption in the Brazilian industry.

To achieve the goal of this study, the Holt–Winters method, the seasonal autoregressive
integrated moving average model (SARIMA), the dynamic linear model, and TBATS
(Trignometric Box–Cox transform, ARMA errors, Trend, and Seasonal components) were
considered as part of the statistical approaches. For the artificial neural networks approach,
we consider the neural network autoregression (NNAR) and the multilayer perceptron
(MLP). It is noteworthy that the use of these classes of models within the same comparative
study investigating the consumption of electricity in the Brazilian industry was not found
in the literature, although, as noted, there are studies that apply prediction models to the
data under analysis. Therefore, the development of this work contributes to the literature
available in this area, opening space for further discussions and applications.

This study is structured as follows. Section 2 describes the methodology, Section 3
presents the main results and discussion. Finally, Section 4 gives the conclusion and
introduces problems for future research.

2. Methodology

The empirical strategy adopted in this work takes into account statistical and artificial
neural networks models to forecast the time series of monthly industrial electricity con-
sumption in the Brazilian energy system. The data were extracted from the Time-Series
Management System of the Central Bank of Brazil [27]. We split the dataset into the training
set (January 1979 to December 2018) for model fit and the test set (January 2019 to December
2020) to assess the predictive ability of the models under consideration. It is important to
note that our analysis seeks to measure the predictive capacity of models for short-term
predictions. Thus, the test set with 24 (5%) observations is reasonable for investigation.

The most suitable model was selected through the precision metric mean absolute
percentage error (MAPE). All statistical analysis and graphical representations were made
using R programming language [28].

2.1. Statistical Models

Statistical models have applications in several areas of knowledge and are considered
as established models in the forecasting literature. Here, the models that are considered as
part of statistical approach are the Holt–Winters method, the SARIMA model, the dynamic
linear model, and the TBATS algorithm.
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2.1.1. Holt–Winters Method

The Holt–Winters method was proposed with the contributions of [29,30] using expo-
nentially weighted moving averages to update those needed for seasonal adjustment of the
mean (trend) and seasonality. This method can be built in an additive or multiplicative way.
The additive method is an extension of Holt’s exponential smoothing that captures season-
ality and produces exponentially smoothed values for the level of the forecast, the trend
of the forecast, and the seasonal adjustment to the forecast, adding the seasonality factor
to the trended forecast. The multiplicative method multiplies the trended forecast by the
seasonality, producing the Holt–Winters’ multiplicative forecast. The seasonal adjustment
for the additive method subtracts a seasonality component from the level equation. For the
multiplicative method, there is a division of the series by its seasonality component. Table 1
describes the three smoothing equations (level, trend, and seasonality) and the forecast
equation to the Holt–Winters method.

Table 1. The smoothing and forecast equations of the Holt–Winters method.

Equations Additive Method Multiplicative Method

Level (`t) α(yt − st−m) + (1− α)(`t−1 + bt−1) α
yt

st−m
+ (1− α)(`t−1 + bt−1)

Trend (bt) β(`t − `t−1) + (1− β)bt−1 β(`t − `t−1) + (1− β)bt−1
Seasonal (st) γ(yt − `t−1 − bt−1) + (1− γ)st−m γ

yt
(`t−1+bt−1)

+ (1− γ)st−m

Forecast (ŷt+h|t) `t + hbt + st+h−m(k+1) (`t + hbt)st+h−m(k+1)

2.1.2. SARIMA

Following the contributions of [31], we consider as the second model used in this work
the SARIMA multiplicative model (seasonal autoregressive integrated moving average
model), considering level, trend, and seasonality components from simple and seasonal
operators (see Equation (1)).

φ(B)Φ(Bs)∇d∇D
s Yt = θ(B)Θ(Bs)αt, (1)

where φ(B) is the simple autoregressive operator, Φ(Bs) is the seasonal autoregressive
operator, ∇d is the simple differenciated operator, ∇D

s is the seasonal differenciated oper-
ator, θ(B) is the simple moving average operator, Θ(Bs) is the seasonal moving average
operator, and αt is a random noise.

2.1.3. Dynamic Linear Model

The dynamic linear model was the third model considered in this study. From a
state-space structure, the general form of the dynamic linear model can be written using
two main equations: the so-called observational equation (Equation (2)) and the system
evolution equation (Equation (3)) [32].

Yt = Ftθt + vt, vt ∼ Nm(0, Vt) (2)

θt = Gtθt−1 + wt, wt ∼ Np(0, Wt) (3)

By definition, θt is the state vector in time t, Ft is a known regression matrix of the
observational equation, and Gt is a known matrix of the evolution of the system evolution
equation. It is assumed that Vt is a vector of variance associated with the errors of the
observational equation and Wt is a matrix of covariance associated with the errors of the
equation of evolution of the system.

As mentioned, the matrices Ft and Gt are known matrices, being used to build the structure
of the model according to the components found in the series to be analyzed—level, trend,
and seasonality. However, in this study, we performed the estimation of the observational
variance matrices Vt and the covariance of the system Wt using the Monte Carlo Markov
Chain (MCMC) method, considered the Gibbs sampler algorithm.
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2.1.4. Trignometric Box–Cox Transform, ARMA Errors, Trend, and Seasonal
Components (TBATS)

Finally, the TBATS model was the fourth model considered as part of the statistical
approach. This method uses a combination of Fourier terms with an exponential smoothing
state-space model and Box–Cox transformation, being useful for adjusting the seasonality
change over time. Proposed by [33], the model can be written in its reduced form as

ϕp(L)η(L)y(ω)
t = θq(L)δ(L)ε f , (4)

where L is a lag operator, η(L) = det(I− F∗L), δ(L) = w∗ adj(I− F∗L)g∗L + det(I− F∗L),
ϕp(L), and θq(L) are polynomials with degrees p e q, w∗ = (1, φ, a), g∗ = (α, β, γ)′, with
the matrix F∗ defined by

F∗ =

 1 φ 0
0 φ 0
0′ 0′ A

. (5)

2.2. Artificial Neural Networks Approach

An artificial neural networks seeks to model the relationship between a set of input
signals and an output signal, which was inspired by the working mechanism of a biological
brain. In this study, we use autoregressive neural networks (NNAR) and multilayer
perceptron (MLP).

2.2.1. Autoregressive Neural Networks (NNAR)

The NNAR(p, P, k)m model takes into account a feedforward network with a single
hidden layer, p inputs, k nodes in the hidden layer, P seasonal lags, and m periods [34,35].
We consider the algorithm proposed by [36] that defines the number of nodes in the
hidden layer (k) as an average of the number of inputs and the number of outputs, that is,
(p + P + 1)/2. Thus, the model is capable of capturing the time-series components (level,
trend, and seasonality). In this NNAR model, the inputs into each hidden layer neuron are
combined linearly (Equation (6)) to give weight and produce output from artificial neural
networks and the activation function as the binary sigmoid, which is a nonlinear function
(Equation (7)).

zj = αj +
N

∑
i=1

wi,jxi, (6)

zj represents the jth hidden layer neuron, N represents the number of input layer neurons,
αj represents the intercept of the j-th hidden neuron, wi,j denotes the weights assigned to
the connection between the input and the hidden layer, xi are the observations (covariates
or neurons) of the input layer, and the activation function is given by

g(z) =
1

1 + e−z . (7)

2.2.2. Multilayer Perceptron (MLP)

Multilayer perceptron or feedforward deep network is a mathematical function map-
ping a sort of input values to output values. According to [37], the main objective of
a feedforward neural network is to approximate any function f ∗, defining a mapping
y = f (x; θ), and learn the value of the parameter θ = (wj, v1, . . . , vN) that makes the best
function approximation.

According to [38], the MLP is given by

ŷ = v0 +
N

∑
j=1

vjg(wT
j x

′
) (8)
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where x
′

is the input vector x, augmented with 1, i.e., x
′
= (1, xT)T , wj is the weight

vector for the jth hidden node, v0 is the output layer intercept, v1, . . . , vN are the weights
for the output node, ŷ is the network output, and g is the activation function and is used to
allow a possible nonlinearity at the hidden layer. We used the logistic activation function
(Equation (7)).

2.3. Mean Absolute Percentage Error (MAPE)

In this study, MAPE was used to assess the ability of models fitted and forecast the
time series. The MAPE was defined by

MAPE = 100× 1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (9)

where N is the number of fitted points, yi is the observed value, and ŷi is the forecast value
both for instant i.

3. Results and Discussion

Figure 1a shows the behavior of electricity monthly consumption of the Brazilian
industry, and the within-year variability can be seen in the yearly box-plots of Figure 1b. A
greater variability can be observed in years associated with crisis, such as 2001, 2009, and
2020. In 2001, there was a crisis in the Brazilian electrical system, and in 2009, there were
the consequences of the world economic crisis that started in 2008 and occurred in Brazil in
2009. The year 2020 had the greatest variability due to the COVID-19 pandemic.
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Figure 1. Electricity consumption (a) in GWh and (b) box-plots for the Brazilian industry. Source:
Central Bank of Brazil.

For its part, Table A1 shows some descriptive statistics by year of the industrial
electricity consumption. It can be seen in the table that there are several levels of variability
in electricity consumption over the years.

Using the mean of squared errors between additive and multiplicative methods, the
Holt–Winters multiplicative method obtained a better result than the additive method.
Thus, it was decided to consider the multiplicative method for comparison with the other
proposed models, and there is a division of the series by its seasonality component.

Then, we applied a selection algorithm to the SARIMA model that considers the
candidate models through the principle of parsimony. Thus, the structure with the best result
for the Akaike Information Criterion metric was the SARIMA (1, 1, 1)× (1, 1, 1)12. We con-
sidered the dynamic linear model (DLM) that captures trend and seasonality components.
In this work, the dynamic regression matrix Ft and the evolution matrix Gt of the model are

Ft1×13 =
[
1 0 1 0 . . . 0

]
(10)
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Gt13×13 =



1 1 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 −1 −1 −1 . . . −1
0 0 0 1 0 . . . 0
0 0 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . 1


. (11)

For DLM, it was assumed that the observational variance Vt = σ2, and the covariance
matrix of the system Wt is a diagonal matrix introduced by Wt = diag(σ2

µ, σ2
β, σ2

γ, 0, 0). These
unknown variances were also estimated using Bayesian inference. Thus, to complete the
specification of the model, we assumed independent inverse gamma priors distributions
with means a, aθ1 , aθ2 , aθ3 and variances b, bθ1 , bθ2 , bθ3 , respectively, fixed in known values.
Therefore, by using the unobservable states as latent variables, a Gibbs sampler can be run
on the basis of the following full conditional densities:

σ2 ∼ IG
(

a2

b + n
2 , a

b +
1
2 SSy

)
,

σ2
µ ∼ IG

(
a2

θ1
bθ1

+ n
2 ,

aθ1
bθ1

+ 1
2 SSθ1

)
,

σ2
β ∼ IG

(
a2

θ2
bθ2

+ n
2 ,

aθ2
bθ2

+ 1
2 SSθ2

)
,

σ2
γ ∼ IG

(
a2

θ,3
bθ3

+ n
2 ,

aθ3
bθ3

+ 1
2 SSθ3

)
,

(12)

with SSy = ∑n
t=1(yt − Ftθt)

2 and SSθi = ∑T
t=1(θt,i − (Gtθt−1)i)

2, for i = 1, 2, 3. The full
conditional density of the states is a normal distribution, and it is covered in the used dlm
package [39].

Regarding the approach of artificial neural networks, the applied NNAR model has
the results as an average of 20 networks, each of which is a NNAR(2,2,1) with nine weights.
We also considered an MLP model with five nodes in the input layer, four nodes in the
first hidden layer, two nodes in the second hidden layer, and one node in the output layer
(Figure 2).

In that sense, Figure 3 presents the fitted results for all models considered. The models
are able to fit the observed data even in periods of economic crisis. It can be seen in this
figure that the models are able to capture the behavior of the time series of industrial
electricity consumption.

Indeed, Figure 4 shows the forecasting results for the models under consideration. It
can be seen in the figure that the models were unable to give an accurate forecast for the
months of April, May, and June of 2020. The electricity consumption in these months was
impacted by the COVID-19 pandemic. This period marked the beginning of the pandemic
in Brazil.

From this perspective, Table 2 shows the mean absolute percentage errors (MAPE) for
all models considering the training and testing data of the industrial electricity consumption
time series. The MLP model provided the best MAPE results for the training data (or model
fit) and test data (or forecasting). The fitted models to electricity consumption data provided
a percent mean square error of less than 2.5%.
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Input layer
(5)

Hidden layer 1
(4)

Output layerHidden layer 2
(2)

Figure 2. MLP network architecture.
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Figure 3. Model fit for the six considered models applied to the Brazilian industrial electricity consumption.

Finally, Table 3 gives the MAPE for each forecast horizon yielded by all models under
consideration. In this step, the fitted models were used to obtain the forecast up to h steps
ahead (h = 1, 2, 3, . . . , 24), and then, the MAPE was calculated for each forecast horizon.
The bold entries identify the model that performs best for the corresponding level and
forecast horizon, based on the smallest value of MAPE. The last row presents the average
MAPE considering all forecast horizons. It can be seen in the table that the Holt–Winters
model presented better results for MAPE up to the horizon of eight steps ahead, with the
exception of the horizon of three steps ahead, in which the TBATS model resulted in a
better result. However, from the horizon of nine steps ahead, the MLP model presented the
best results for the MAPE. The MLP model presented the best average MAPE among all
the models considered.

To complement Table 3, Figure 5 shows the behavior of MAPE for the forecast horizon
of all six models considered in this study. It can be seen in this figure that all models showed
a significant increase in the MAPE values after the forecast horizon of 16 steps ahead. This
increase can be associated to the beginning of the COVID-19 pandemic in Brazil. Another
relevant feature of this figure was the decrease of the MAPE after July 2020 for all models.
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Figure 4. Model forecasting for the six considered models applied to the Brazilian industrial
electricity consumption.

Table 2. Mean absolute percentage error for the six models under consideration for model fit and
model forecasting considering the training and testing data, respectively.

Model Fitted Forecast

Holt–Winters 2.51 4.09
SARIMA 1.88 6.17
TBATS 1.99 3.77
DLM 1.87 4.09

NNAR 2.40 4.77
MLP 1.48 3.41
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Figure 5. Mean absolute percentage error, considering the six models, for h = 1, ..., 24 steps-ahead
out-of-sample forecasts applied to the electricity consumption of the Brazilian industry.
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Table 3. Mean absolute percentage error, considering the six models, for h = 1, ..., 24 steps-ahead
out-of-sample forecasts applied to the electricity consumption of the Brazilian industry.

Step HW SARIMA TBATS DLM NNAR MLP

1 0.27 0.86 0.50 2.28 3.29 0.96
2 0.34 1.56 0.95 2.67 3.46 1.96
3 1.00 1.97 0.95 2.62 2.96 1.82
4 0.84 3.08 1.71 3.06 3.25 2.49
5 1.11 2.77 1.46 2.53 2.81 2.17
6 1.43 2.86 1.76 2.65 2.91 2.03
7 1.53 2.96 1.79 2.45 2.79 1.82
8 1.56 3.22 1.92 2.29 2.65 1.75
9 2.03 3.65 2.29 2.36 2.85 1.81

10 1.93 3.62 2.13 2.18 2.66 1.73
11 2.06 3.80 2.20 2.13 2.69 1.63
12 2.44 4.12 2.37 2.33 3.10 1.62
13 2.54 4.04 2.29 2.24 3.42 1.53
14 2.43 4.06 2.15 2.24 3.54 1.45
15 2.37 4.10 2.04 2.18 3.48 1.41
16 3.13 5.29 2.97 3.15 4.44 2.44
17 3.86 6.21 3.73 3.93 5.25 3.24
18 4.52 6.86 4.28 4.48 5.83 3.55
19 4.57 6.91 4.21 4.38 5.76 3.38
20 4.40 6.83 4.00 4.22 5.47 3.31
21 4.28 6.69 3.85 4.15 5.25 3.26
22 4.28 6.43 3.89 4.21 5.18 3.39
23 4.15 6.34 3.77 4.12 4.98 3.39
24 4.00 6.17 3.78 4.09 4.77 3.42

Average 2.54 4.35 2.54 3.04 3.87 2.32

4. Conclusions

The exercise of forecasting the industry’s electricity consumption is essential for energy
planning in a given country or region. In this way, this study applied time-series forecasting
models (statistical approaches and artificial neural network approaches) to the industrial
electricity consumption in the Brazilian system.

The results of the study indicate the following: (i) the models considered have a
satisfactory ability to adjust to the data; (ii) the models managed to capture the complex
structure of the data involving the crises (peaks in the series) in the years 2001 and 2009; and
(iii) the MLP model presented the best predictive capacity for the group of proposed models,
among which the Holt–Winters method was the overall best for short-term forecasting.
In addition, the results found are useful as instruments to support decision making by
economic agents and legislators of the Brazilian energy system.

For future research, we can apply other univariate models, such as Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM) [40,41], and bootstrap-based models,
and develop a hierarchical time-series forecast strategy to compare with the classical
structure applied in this study. Finally, another avenue for future work would be to study
the multivariate models (such as vector autoregressive, Bayesian vector autoregressive,
artificial neural networks models with multiple features in the input layer) and compare
with the univariate approach.
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Appendix A

Table A1. Summary of statistical description.

Year Mean Variance St. Dev. Amplitude Min. Max.

1979 4616.83 70,024.88 264.62 725.00 4215.00 4940.00
1980 5123.83 65,639.24 256.20 699.00 4806.00 5505.00
1981 5095.83 11,991.61 109.51 329.00 4906.00 5235.00
1982 5324.08 74,528.27 273.00 809.00 4836.00 5645.00
1983 5669.92 142,872.81 377.99 1076.00 4994.00 6070.00
1984 6704.58 254,915.17 504.89 1578.00 5834.00 7412.00
1985 7570.00 100,401.82 316.86 890.00 7084.00 7974.00
1986 8094.83 286,936.52 535.66 1529.00 7190.00 8719.00
1987 8116.92 67,643.36 260.08 797.00 7749.00 8546.00
1988 8377.25 45,443.66 213.18 695.00 8073.00 8768.00
1989 8583.08 246,853.36 496.84 1705.00 7595.00 9300.00
1990 8322.58 262,576.99 512.42 1949.00 7145.00 9094.00
1991 8550.08 391,295.36 625.54 1814.00 7466.00 9280.00
1992 8610.58 93,964.45 306.54 1139.00 7953.00 9092.00
1993 8915.08 145,204.81 381.06 1083.00 8290.00 9373.00
1994 8921.92 136,503.90 369.46 1082.00 8368.00 9450.00
1995 9305.50 44,580.09 211.14 577.00 9070.00 9647.00
1996 9709.67 217,869.70 466.77 1637.00 8753.00 10,390.00
1997 10,143.08 185,066.81 430.19 1272.00 9455.00 10,727.00
1998 10,164.83 152,053.79 389.94 1178.00 9545.00 10,723.00
1999 10,324.33 300,464.79 548.15 1607.00 9257.00 10,864.00
2000 10,940.00 163,874.18 404.81 1398.00 10,024.00 11,422.00
2001 10,211.50 609,427.18 780.66 2160.00 9178.00 11,338.00
2002 10,635.67 247,841.33 497.84 1609.00 9431.00 11,040.00
2003 10,852.67 114,157.70 337.87 1186.00 10,345.00 11,531.00
2004 12,846.83 291,560.70 539.96 1585.00 11,829.00 13,414.00
2005 13,217.33 133,968.42 366.02 1105.00 12,496.00 13,601.00
2006 13,598.42 149,381.17 386.50 1313.00 12,851.00 14,164.00
2007 14,530.67 222,010.42 471.18 1433.00 13,592.00 15,025.00
2008 14,652.83 404,200.70 635.77 1995.00 13,417.00 15,412.00
2009 13,483.17 710,177.42 842.72 2628.00 11,924.00 14,552.00
2010 14,956.58 380,298.81 616.68 2031.00 13,425.00 15,456.00
2011 15,298.00 187,278.18 432.76 1386.00 14,467.00 15,853.00
2012 15,285.42 112,891.36 335.99 1061.00 14,567.00 15,628.00
2013 15,390.25 197,482.39 444.39 1516.00 14,370.00 15,886.00
2014 14,925.42 68,056.63 260.88 723.00 14,537.00 15,260.00
2015 14,071.50 127,615.73 357.23 1238.00 13,327.00 14,565.00
2016 13,687.75 174,712.57 417.99 1598.00 12,538.00 14,136.00
2017 13,903.92 138,837.36 372.61 1211.00 13,105.00 14,316.00
2018 14,121.92 119,368.63 345.50 1014.00 13,525.00 14,539.00
2019 13,858.17 71,473.42 267.35 864.00 13,442.00 14,306.00
2020 13,802.42 1,019,275.90 1009.59 2936.00 12,173.00 15,109.00
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