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Abstract: Monitoring the variation of the loading blades is fundamental due to its importance in
the behavior of the wind turbine system. Blade performance can be affected by different loads that
alter energy conversion efficiency and cause potential safety hazards. An example of this is icing on
the blades. Therefore, the main objective of this work is to propose a proportional digital controller
capable of detecting load variations in wind turbine blades together with a fault detection method.
An experimental platform is then built to experimentally validate the main contribution of the article.
This platform employs an automotive throttle device as a blade system emulator of a wind turbine
pitch system. In addition, a statistical fault detection algorithm is established based on the point
change methodology. Experimental data support our approach.

Keywords: wind turbine; blade system; load variation; monitoring

1. Introduction

Wind turbines are a rapidly growing renewable energy option in today’s world [1].
However, these machines require maintenance approaches, for instance, to prevent mal-
functions during power production [1]. Therefore, monitoring the variation of the loading
blades in wind turbines is an important issue. This is because the dynamic of the blade
system is affected by different loads that alter the efficiency of energy conversion and
also, the possibility of causing potential safety hazards [2,3]. The deterioration or damage
of wind turbine blades not only causes problems in the efficiency of power generation,
but also induces vibrations, increasing safety risks and maintenance costs. A full review
on this topic can be found at [4]. An example of deterioration or damage to wind turbines
is the formation of ice on their blades [5]. A blade system is an electromagnetic device
located at the rotor of a wind turbine able to rotate longitudinally in both directions [1].
Figure 1 illustrates the main structure of a wind turbine. In the literature, there are many
contributions to detect faults in the pitch actuators of wind turbines [6]. In [7], the authors
provide a machine learning algorithm for the data imbalance problem in detecting icing
faults in wind turbine blades, also presenting numerical simulations. Obviously, the ma-
chine learning method is a methodology in the state of the art of artificial intelligence.
However, we seek to employ more standard techniques. Moreover, in [8], a pitch actuator
monitoring system is proposed by using interval observers. In [9], a pitch actuator fault
detection method is presented by using a digital disturbance observer. Image processing is
also used to monitor the performance of a pitch actuator system [10], including the use of
laser and acoustic technologies [11]. All of these reports focus solely on the pitch actuator
system, but the case of directly monitoring load variation on the pitch system seems like a
new approach.
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Figure 1. An overview of the main parts of a wind turbine, including its pitch system (the above
figures are with the Creative Commons Attribution 4.0 International License).

In the past, in robotic applications, a closed-loop system with the conventional propor-
tional controller in it was shown to exhibit a constant error that is dependent on external
forces [12]. Therefore, this controller is also sensitive to load variation. This simple fact
is used here to propose a methodology to detect load variation on wind turbine blades.
This is the main objective of this work. On the other hand, micro-controllers or embed-
ded systems have been used for many years in modern electronic devices. For instance,
the PIC18F252 micro-controller provides good performance as a digital signal processor.
This micro-controller is used here to program a digital proportional controller to the throttle
device as an emulator of a pitch-blade system. An automotive throttle device can emulate a
wind turbine blade system, capturing some severe non-linearities, such as backlash, friction,
and load variations, among others [13]. About the precision of the emulation of the real
object by the proposed emulation platform, and according to [14], the precise prediction of
the load variation dynamics of wind turbines with experiments is complex due to many
non-linear factors of the wind turbine pitch system mechanism. However, experimentation
is used for the validation of dynamic models used for the analysis of real wind turbines [14].
See Figures 2 and 3 for a diagram overview of the emulator. Both devices control a rotation
system: the wind turbine pitch actuator keeps the rotor blades at the required angle, while
the throttle system drives its angular position of the throttle plate to the desired reference
position. Moreover, both are affected by complex non-linearities [13]. By similarity with
the automotive throttle device, the returning springs may capture the load produced by the
wind turbine on the blade (see Figure 2). In particular, modifying the throttle’s electronic
system, a load variation in wind turbine can be modeled and seen as ice on the blade. It is
well known that the accumulation of ice on the surface of the blades changes its shape and
mass, causing an imbalance on the rotor that is rotated mainly by the lift force that comes
from the wind [15]. The same effect is produced when an external resistance is added to
the electronic circuit of the throttle valve. Hence, and from the experimental point of view,
a digital controller is realized to manipulate a throttle device, where a load variation of the
throttle plate is also experimentally implemented. Therefore, this experimental platform
will emulate a pitch actuator system with load variation on the blade. According to the
experimental data, the digital proportional control with our processing method can monitor
the load variation in the cited system. To design a low cost experimental wind turbine
emulator, the simplicity of the controller is a must.
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Figure 2. A schematic of an automotive throttle valve [13]. Compared to Figure 1, it can be seen that
both have a similar gearbox system. Here, the throttle return spring corresponds to the presence of
load on the blades of a wind turbine.

Figure 3. An overview of the closed-loop pitch system with a controller. β and βre f are the pitch
angle and the pitch reference command, respectively.

Therefore, once the experimental data are obtained, a fault detection algorithm is
designed, based on the change point detection (CPD) methodology. [16]. The problem of
detecting points of change in the data has its origin in the quality control methodology,
where the main objective is to monitor the performance of an industrial manufacturing
process by detecting failures in it [17]. However, this problem is very general in nature,
and change detection techniques have been further applied to various branches of research:
climatology analysis [18,19], medical analysis [20], remote sensing [21], image analysis [22],
business [23], and so on. In addition, many types of algorithms have been developed to
solve this type of problem statement [24,25]. In our work, some of these techniques are
used in order to detect when a failure of the aforementioned system has occurred.

The main contributions of this work can be summarized as follows:

• Design of an experimental platform capable of reproducing the load variation in
a wind turbine blade system. The electronics accompanying the throttle valve are
modified to emulate the use of a real wind turbine with varying load on the blades.

• Implementation of a proportional digital micro-controller capable of detecting
load variations.

• Define an algorithm that allows the detection of failures by studying only a specific
statistical parameter, such as the statistical point change detection method.

The novelty of this paper is then the direct monitoring of the load variation, designing
a novel experimental platform and obtaining from it an statistical rule of decision to detect
a failure system.

This paper is organized as follows. Section 1 describes the problem formulation.
Section 2 presents the experimental part of this work, followed by its results on a faulty
scenario. The study of the experimental data, as well as the definition of a detection
algorithm is presented in Section 3. Some experimental tests of the fault detection method
are discussed in Section 4. Finally, Section 5 states the conclusions.
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2. Materials and Methods

This section presents the backgrounds of the experimental realization of a proportional
controller to the selected throttle device. Figure 4 displays a photo of the developed
experimental platform. This platform is composed of the throttle device, where the blade
system is reproduced; a resistor that performs the load variations; a trimmer for manually
inputting the reference signal; and the electronic circuit that connects all these devices with
the microcontroller, where a digital proportional control is programmed.

Figure 4. A photo of the realized experimental platform, composed by a throttle device, the reference
signal manually commanded, and the electronic circuit along with the micro-controller. The resistance
Rd allows to emulate load variations. See a video on experimentation at https://youtu.be/Bi6zsrT9
yyY (accessed date: 20 May 2021).

2.1. Load Blade Emulator

This subsection shows how to emulate a load variation using a resistor on the throttle
device electronics. That is, we present the mathematical model of load variation in the
throttle device to emulate the load variation on the blade body of a wind turbine. As stated
in the Introduction section, the automotive throttle device may emulate a pitch system of a
wind turbine. Due to the throttle system having a (permanent) DC motor to manipulate the
throttle plate, it can be used to simulate a load variation. Let us consider a representative
model of a DC as shown in Figure 5 [26]. Here, u(t) is the control input (V); ia, Ra, La,
and Kb are the armature current (A), the motor internal resistance (Ω), the motor armature
inductance (H), and the back electromotive force constant (Vs/rad), respectively. w(t), J,
and b are the motor speed (rad/s), the motor load (Kgm2), and the coefficient of viscous
friction (Nms/rad), respectively. In this scheme, we add a motor load variation emulator
via the resistance Rd (Ω). To add, there are two assumptions implicit in our approach:

Assumption 1. Because we are working on a closed loop system capable of generating data for
fault diagnosis, the closed-loop system is required to be stable in the sense of the bounded-input
bounded-output definition rather than in the asymptotically stability statement.

Assumption 2. The operation of the wind turbine is within the operating range.

https://youtu.be/Bi6zsrT9yyY
https://youtu.be/Bi6zsrT9yyY
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Therefore, the mathematical of the electromagnetically permanent DC motor is [26]

La
dia(t)

dt
= u(t)− (Ra + Rd)ia(t)− kbw(t), (1)

J
dw(t)

dt
= ktia(t)− bw(t), (2)

where kt is the torque constant (Nm/A).

Figure 5. Electromagnetic representation of a (permanent) DC-motor system. The proportional
controller, u(t), defined by the micro-controller, is the motor input variable. The internal variables of
the throttle device (current ia, motor resistance Ra, inductance La, force constant Kbw(t), motor load J,
viscous friction b) define the mathematical model (1) and (2). Additionally, this scheme includes the
external resistance Rd, the emulator of the load variation on a wind turbine.

Usually, the electric transition dynamic in (1) is faster than in (2). Because of it, we can
obtain the equilibrium point in (1) and then replace it into (2), yielding

J(Ra + Rd)
dw(t)

dt
= kt[u(t)− kbw(t)]− bw(t)[Ra + Rd]. (3)

From the above equation, we can see that the resistance Rd emulates a load variation
on the motor load. In fact, this strategy to use a resistance in series to a DC motor to emulate
a dummy motor load was previously invoked, for instance, in [27]. Hence, given the system
operating at nominal load, J f = JRa, and the loaded case JI = J(Ra + Rd), we have

J f

JI
=

J(Ra + Rd)

JRa
= 1 +

Rd
Ra

, (4)

Therefore, Rd
Ra

is the percentage of load added to the nominal scenario. Finally, consider
the control law given as a proportional one:

u(t) = −Kp(β(t)− βre f ). (5)

The simplicity of the controller in (5) allows to introduce a load variation in terms
of an external resistance Rd, as the closed loop demonstrates. That is, using w(t) = dβ(t)

dt ,
the closed-loop system (3)–(5) yields

d2β(t)
dt2 +

ktkb + b(Ra + Rd)

J(Ra + Rb)

dβ(t)
dt

+
Kpkt

J(Ra + Rd)
β(t) =

Kpkt

J(Ra + Rd)
βre f (6)

From the above equation, it is clear that the transient response and the steady-state
solution of this closed-loop system will depend on the loading scenario. That is, resistance
Rd affects the closed-loop system (6) as a load variation modifies the wind turbine dynam-
ics. Moreover, our fault monitoring algorithm will detect these variations for diagnosis,
as presented in Section 4.
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2.2. Electronic Circuit Design

See Figure 6 for a detailed scheme of the electronic circuit design in conjunction with
the digital controller programmed into the PIC 18F252 micro-controller to manipulate our
throttle device. Moreover, Figure 7 shows the design process of this electronic realization.

Figure 6. Electronic circuit. The power transistors are MJE3055T and MJE2955T for Q1 and Q2,
respectively. The potentiometer (trimmer) P1 supplies the reference command which is manually
manipulated, and P2 comes from the throttle plate sensor. The permanent DC motor of the throttle
mechanism is shown too. The switch SW1 activates the master clear enable of the micro-controller
(the external reset to the digital device).

Figure 7. Blocks diagram of the electronic design. The Picoscope 2000 series is used to read data from
the computer. This device is widely used in data acquisition with high precision.

2.3. Micro-Controller Programming

The micro-controller in Figure 7 was programmed in C language. The micro-controller
read two signals: (1) the signal supplied by the throttle-plate angular position sensor, and (2)
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the other from the reference command information (both in the interval from 0 to 5 volts).
The throttle sensor is linear where a reading of about 0.79 volts corresponds to the closed-
plate position of the throttle device, and a reading of about 4.6 volts when this throttle
plate is fully open, as shown in Figure 8. Therefore, the reference command should be in
the same interval of voltage. The throttle sensor is implemented by using a potentiometer
(trimmer). This is done by the manufacturer. We also use a potentiometer to supply the
reference command manually. The electronics interface of these potentiometers data to the
micro-controller is via operational amplifiers. We use the buffer configuration (see Figure 6).
Therefore, the micro-controller is programmed to read these data approximately every 5 ms
of a time interval. On the other hand, it is well known that most modern micro-controller
units have built-in pulse width modulation blocks as a low-cost approach to convert digital
data to an analog signal by using an external RC circuit (see pin number 17 of the micro-
controller unit in Figure 6). Therefore, our micro-controller unit was also set to produce a
pulse width modulation signal related to the proportional controller command:

CCPR1L = (−(voltage0− voltage1) + 255), (7)

where CCPR1L is the produced control signal u(t) in the pulse width modulation for-
mat, and voltage0 and voltage1 are the signals from the throttle sensor and the reference
command, respectively. The 255 added value in (7) is because the reading inside the
micro-controller unit goes from 0 to 255 when an analog input signal goes from 0 volts to
5 volts, respectively. This offset value is then subtracted by the potentiometer (trimmer)
of 1.3 kilo-ohms shown in Figure 6. Finally, this control law is amplified by an factor of
about 10 units by the operational amplifier LM741CN given in Figure 6. Hence, the analog
version of the controller signal seen by the motor corresponds to (5) with proportional
parameter Kp set at 10:

u(t) = −10(β(t)− βre f ). (8)

Finally, the C-program stated in Appendix A details the configuration settings of
the micro-controller unit along with the proportional controller law. This program is
self-explanatory due to the C programming language and knowledge of micro-controller ar-
chitecture.

Figure 8. Throttle sensor response.

We use a proportional controller not only for its simplicity, but more importantly
because it allows us to see how the external resistance in the acceleration system emulates
a load variation in the wind turbine system, as indicated in Section 2.1.
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3. Results

In this section, the experiments are carried out, and then the fault detection algorithm
based on the change of point detection methodology is established, taking into account
Assumptions 1 and 2 established above in the Introduction section.

3.1. Experimental Data

The micro-controller reads the data from the throttle sensor and the reference com-
mand. These readings are accomplished by the micro-controller’s data acquisition system.
Figures 9 and 10 show two experimental results with Rd = 0 ohms. These simulate a
normal pitch system operation (the no loading case). For future reference, we label them
as N1 and N2, respectively. On the other hand, Figures 11–13 show three experiment
outcomes but now with Rd = 0.5 ohms. These three ones represent the failure situations
(the loading case). We name them F1, F2 and F3 for faulty cases. Therefore, we have five
experiments realized randomly.

Figure 9. Case N1: Experimental results with Rd = 0 ohms, showing the throttle angle β and
reference signal βre f .

Figure 10. Case N2: Other experimental results with Rd = 0 ohms, showing the throttle angle β and
reference signal βre f .
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Figure 11. Case F1: Experimental results with Rd = 0.5 ohms, displaying the throttle angle β and
reference signal βre f .

Figure 12. Case F2: Other experimental results with Rd = 0.5 ohms, drawing the throttle angle β and
reference signal βre f .
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Figure 13. Case F3: Another experimental results with Rd = 0.5 ohms, marking the throttle angle β

and reference signal βre f .

It is important to note that fault detection in our system becomes difficult if we directly
analyze these experimental data. Therefore, a more detailed study should be carried out.

3.2. Experimental Correlation with a Real Wind Turbine

The main objective of this section is to experimentally validate our experimental
platform in comparison to a real wind turbine related to its pitch system. It is well known
that a wind turbine pitch system can be modeled by a linear and time-invariant second-
order system [8–10]. Therefore, the response time of a hydraulic pitch system for a wind
turbine is set as τs = ζwn ' 6.666 s [8–10]. Thus, the settling time can be inferred as five
times this value, which is approximately 33.33 s. Let us estimate our settling time in our
emulator system by using the experimental data previously described and displayed in
Figure 9. Let us begin by using a first-order linear system of a pith system [28]:

β̇(t) + aβ(t) = aβre f , (9)

where a is the system parameter related to its time constant value. Based on, and motivated
by, the previous equation, we propose the following parameter observer:

â(t) =
˙̂β(t)

proj(βre f − β(t))
, (10)

where

proj(·) =
{
· if | · |> θ∗

sign(·)θ∗ if | · |≤ θ∗
, (11)

and ˙̂β(t) is an estimation to β̇(t) obtained by using

G(s) =
s

τs + 1
=

yo(s)
β(s)

. (12)
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Then, y0(t) = ˙̂β(t). Finally, the next dynamic is used for the settling-time observer to
our system:

ż(t) =

{
α[â(t)− z(t)] if â(t)− z(t) > 0
−γz(t) if â(t)− z(t) ≤ 0

(13)

The above dynamic is considered a peak detector system [29] but by adding a for-
getting factor. By using the data in Figure 9, Figure 14 shows the obtained result of the
proposed observer giving z(t). Here, we can observe that the settling time observer is
changing in response to several non-linear effects of the emulated pitch-blade system as
expected from the real blade dynamic on the pith actuator on load variation, for instance,
due to the wind on the blade. Additionally, the average of the value is commensurable to
the previous one of 33.33 s.

Figure 14. Observer response z(t). Here, τ = 0.01, α = 10, γ = 0.1, and θ∗ = 1.

3.3. Statistical Diagnosis of Fault Detection

The obtained experimental data are analyzed to establish a discrimination criterion be-
tween the normal and the faulty scenarios. As mentioned in the introduction, our approach
uses the change point detection (CPD) methodology [16], where the main objective is to
monitor the performance of the blade system by detecting failures (load blade variation)
in it [17]. That is, to discuss the performance of the digital proportional controller (7) to
produce useful data to monitor load variation. We first present the statistical approach
used in this document. Once the detection algorithm is described, a detailed discussion
is presented.

To have data series independent of the reference measures, first, the relative error is
calculated for each series, that is,

ε =

∣∣∣∣∣ β− βre f

βre f

∣∣∣∣∣. (14)

Therefore, for each case under study, we obtain the relative error εc (14), where c is
named for each experiment. Thus, we have the following data series: εN1, εN2, εF1, εF2 and
εF3, whose graphic representations are shown in Figures 15–19. Then, when comparing
them, it is difficult to appreciate a load variation in the emulator experiment.
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Figure 15. Case N1: Relative error εN1 (14), for the nominal experiment with Rd = 0 ohms.

Figure 16. Case N2: Relative error εN2 (14), for the nominal experiment with Rd = 0 ohms.

Figure 17. Case F1: Relative error εF1 (14), for the faulty experiment with Rd = 0.5 ohms.
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Figure 18. Case F2: Relative error εF2 (14), for the faulty experiment with Rd = 0.5 ohms.

Figure 19. Case F3: Relative error εF3 (14), for the faulty experiment with Rd = 0.5 ohms.

So, a first statistical analysis of the previous series is carried out and presented in
Table 1 and Figures 20 and 21, where dot plots and boxplots of tracking relative errors are
pictured. Table 1 presents, for each experiment, its dimension N, arithmetic mean (mean),
standard deviation (std), minimum value (min), maximum value (max), and the three
quartiles (Q1, Q2, and Q3) [30]. Therefore, the experimental data series are classified into
five groups of equal size.
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Figure 20. Dot plots of the five series of relative errors, where the discrimination between nominal and
faulty cases can be appreciated. Therefore, this suggests that the change point detection method [16]
can be used to discriminate faults.

Figure 21. Boxplots of the five relative error series.

Table 1. Statistical summary of the series under study.

Variable N Mean Std Min Q1 Q2 Q3 Max

εN1 10,526 0.13622 0.04262 0.02076 0.10456 0.13308 0.16068 0.32907
εN2 10,505 0.15813 0.04636 0.04998 0.12179 0.14896 0.18132 0.31979
εF1 10,568 0.17363 0.09997 0.02631 0.11780 0.15973 0.19675 0.74766
εF2 10,344 0.18553 0.08385 0.03956 0.13128 0.17252 0.21989 0.59667
εF3 10,596 0.17294 0.06197 0.02245 0.12830 0.16826 0.20616 0.43353

From Figure 20, it is observed that all the experimental data present positive asym-
metry, but higher for the faulty cases. From Table 1 and Figure 21, it can also be seen that
the arithmetic means, standard deviations, and Q2 and Q3 quartiles are always higher
in failure cases. Therefore, there is a large statistical difference between the nominal and
failed operating cases. Consequently, it should be possible to discriminate when the system
goes into failure using the change point detection (CPD) methodology, as expected [16].
In this work, we avoid using indices on the quality of fault detection, such as accuracy,
sensitivity, precision, area under the ROC curve (AUC), etc., by using the change point
detection (CPD) method. However, a detailed study of the accuracy of our method is
presented in Appendix A. This method uses the minimization of the residual information
of the error, which is equivalent to maximizing the logarithmic likelihood. So, this method
has a sensitivity value greater than 0.75 [31], which is good performance for our intention.
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Let us consider the case where a change occurs during data capture. That is, there is a
change in the same data series when the system goes from a normal case to a faulty one,
for example. To begin with, given a series x1, x2, . . . , xN , the CPD technique divides the
series into two regions, x1, x2, . . . , xk−1 and xk, xk+1, . . . , xN so that the sum of the residual
error (square) of each region is minimized from its local statistical parameter (arithmetic
mean, standard deviation, etc.) [16]. Hence, we must find the value of k that minimizes the
CPD index [16]:

J(k) =
k−1

∑
i=1

∆(xi; χ([x1, · · · , xk−1])) +
N

∑
i=k

∆(xi; χ([xk, · · · , xN ])), (15)

where you are given the empirical estimate of the section of the local statistical parameter χ
and the measure of the deviation ∆ with respect to the chosen statistical parameter [16].

Previously, it was observed that, in our experiments, the arithmetic mean and the
standard deviation are good statistical values capable of differentiating between normal
and faulty stages. In these cases, we have the following:

• If the mean is used to detect changes in the series, then the CPD index (15) is defined
as (where var denotes the variance):

n

∑
i=m

∆(xi; χ([xm, · · · , xn])) =
n

∑
i=m

(xi −mean([xm · · · xn]))
2

= (n−m + 1)var([xm · · · xn]),

• If the standard deviation σ is employed to detect changes in the series, then the CPD
index (15) is now defined in terms of σ, where var denotes the variance (var = σ2):

n

∑
i=m

∆(xi; χ([xm, · · · , xn])) = (n−m + 1) log
n

∑
i=m

σ2([xm · · · xn])

= (n−m + 1) log

(
1

n−m + 1

n

∑
i=m

(xi −mean([xm, · · · , xn])
2

)
= (n + m− 1) log var([xm, · · · , xn]).

3.4. A Fault Detection Algorithm

From the previous statements, the following algorithm is proposed for fault detection,
described in three steps:

1. Obtain the experimental data series (within the series, the system can change status,
as previously described).

2. Minimize the index J(k) (15), using the arithmetic mean and the standard deviation,
to detect the point of change:

(a) Choose a point and divide the signal into two sections.
(b) Compute an empirical estimate of the desired statistical property (χ) for each

section.
(c) At each point within a section, measure how much the property deviates from

the empirical estimate. Add the deviations for all points.
(d) Add the deviations section to section to find the total residual error.
(e) Vary the location of the division point until the total residual error attains a

minimum.

3. The presence of a point of change detects a system fault and when it has happened.

In our case, to solve the second step, we use the MATLAB function “findchangepts” to
find a point of change in an experimental data series [30,31].
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Additionally, when only the trajectory error is studied, it is observed that the presence
of faults can be detected (see Table 1). However a more precise technique must be used,
and these errors infer that discrimination can be made. So, the main property of our load
variation detection method lies in this discrimination: it allows to identify a point of change
in a sample data, minimizing the index error.

4. Discussion

In this section we present first the good behavior of our method. Then, the accuracy of
the fault detection algorithm is discussed, and finally compared to a deterministic one [29].

4.1. Validation: Experimental Study

In order to verify the detection of the system change point from normal to failure
invoking our previous algorithm, we construct (concatenation of previous experimental
data) the following three data series:

εN1 + εF1, εN1 + εF2, εN1 + εF3.

In addition, the arithmetic mean and standard deviation statistics are used (local statis-
tical parameter χ in (15)). To test our detection algorithm, based on CPD theory, the point of
change must be detected and coincide with the change from normal to faulty case according
to the data concatenation above. The results obtained are shown in Figures 22–25.

For instance, Figure 22 shows 22,000 experimental data, where we know when a
fault has occurred (register 10 527), and we want to test the performance of the algorithm
presented in Section 3.3. Hence, by using the MATLAB function “findchangepts” [30], we
solve step 2 of the algorithm, and find out the change of point at sample 10,527. So, we can
detect the exact moment that a fault has occurred.

Figure 22. Detection of point of change in series εN1 + εF1 considering the arithmetic mean as a local
statistical parameter. The real change is in register 10,527 and the CPD is in register 10,527 (green
vertical line), obtaining an exact detection. The same result is obtained considering the standard
deviation as a local statistical parameter.

Figures 23 and 24 also show the presence of load variation for εN1 + εF2 case. To see
how the arithmetic mean and standard deviation works as CPD statistic parameter (15),
the detection case εN1 + εF2 is studied in both cases. Figure 23 shows that the fault detection
is achieved exactly. However, when standard deviation is considered (see Figure 24), a delay
on the detection appears. This is due to the accuracy of the used method.
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Figure 23. Detection of point of change in series εN1 + εF2 considering the arithmetic mean as a local
statistical parameter. The real change is in register 10,527 and the CPD is in register 10,527 (green
vertical line).

Figure 24. Detection of point of change in series εN1 + εF2 considering the standard deviation as a
local statistical parameter. The real change is in register 10,527 (green vertical line) and the CPD is in
register 10,829 (red vertical line).

Case εN1 + εF3 is displayed in Figure 25, where again the arithmetic mean is considered,
to be compared with the other two cases. In this case, again, a delay detection appears (the
same result is obtained for the standard deviation).
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Figure 25. Detection of point of change in series εN1 + εF3 considering the mean as a local statistical
parameter. The real change is in register 10,527 (green vertical line) and the CPD is in register
10,933 (red vertical line). The same result is obtained considering the standard deviation as a local
statistical parameter.

In all cases, the test supports our approach: the real change of the experimental data
series and the detection point of change are almost the same. So, the fault is detected and
our algorithm shows good behavior.

The main advantage of our method, among the existing ones [6,7], is its simplicity and
efficiency. After the designer obtains N samples, the data are processed, for example, by an
easy-to-use MATLAB function, and a failure is observed, with minimized detection error.
In addition, this method can be used to perform a test run of the wind turbine, for example,
when we suspect ice accumulation on the blades. One drawback to be aware of is that
real-time online fault detection cannot be performed in our approach. Additionally, due to
the accuracy of the CPD method, in some cases, a delay data detection is appreciated (see
Figure 25), but detection is almost always assured.

4.2. Accuracy Study of Fault Detection Algorithm

The objective of this section is to study the accuracy of the change point detection
(CPD) method used in this work. From the experimental data obtained in Section 3.1, 6000
new series are randomly simulated: 2000 series corresponding to εN1 + εF1, 2000 series
corresponding to εN1 + εF2 and 2000 series corresponding to εN1 + εF3. In all these series,
the real point of change corresponds to the index 1001. The detection method of the point
of change is applied to all of them, and the results are discussed below.

Figure 26 shows the point of change detected for each series, considering the arithmetic
mean as the local statistical parameter in (15). To facilitate its interpretation, a histogram
is shown (see Figure 27). It can be observed that the detected change point is found for
the most part in the indices slightly higher than the real index of value 1001. Confidence
intervals are calculated for the mean value of this index, obtaining an interval of (1006.81;
1007.58) for a 95% confidence and (1006.69; 1007.70) for a 99% confidence. That is, the failure
is detected almost everywhere, with about 7 samples of delay. Considering the total among
the experiments, we consider that our method presents good accuracy for detection.
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Figure 26. Plot of the points of change detected considering the arithmetic mean as the local statistical
parameter used, corresponding to the 6000 simulated series. For most of them, the change point
occurs close to 1001, as expected.

Figure 27. Histogram of the change point detected for the 6000 simulated series, considering the
arithmetic mean as the local statistical parameter used. The real change occurs at sample 1001, where
the data are accumulated.

We consider now the standard deviation as the local statistical parameter used in (15).
Figure 28 shows the point of change detected for each series, in this case. Again, to facilitate
its interpretation, a histogram is shown (Figure 29) in which it can also be observed that
the point of change detected is mostly in the indices slightly higher than the real index
equal to 1001. The confidence intervals are calculated for the value mean of this real index
obtaining an interval of (1006.35; 1010.78) for a confidence of 95% and (1005.65; 1011.47) for
a confidence of 99%. These values obtained slightly higher than 1001 show the goodness of
the shift point detection method used in this work.
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Figure 28. Plot of the points of change detected considering the standard deviation as the local
statistical parameter used, corresponding to the 6000 simulated series.

Figure 29. Histogram of the change point detected for the 6000 simulated series considering the
standard deviation as the local statistical parameter used, showing a good accuracy of the CPD
method.

The first step in evaluating the performance of the change point method is to generate
a confusion matrix that summarizes the actual and detected classes. There are four possibil-
ities:

• True positive (TP): there is a change point, and the algorithm detects it.
• True negative (TN): there is no change point, and the algorithm does not detect

anything.
• False negative (FN): there is a change point, and the algorithm does not detect it.
• False positive (FP): there is no change point, but the algorithm detects change.
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To construct the confusion matrix, the 6000 simulated series with a real change point
is considered, to which another 2000 series is added in which there is no change point.
The results obtained are shown in the Tables 2 and 3.

Table 2. Confusion matrix obtained for the 6000 simulated series considering the arithmetic mean as
the local statistical parameter used in the CPD algorithm.

Change Point Detected Non-Change Point Detected

True change point VP = 4848 TP = 556

True non-change point TN = 1280 VN = 1316

Table 3. Confusion matrix obtained from the 6000 simulated series and by considering the standard
deviation as the local statistical parameter used in our the CPD algorithm.

Change Point Detected Non-Change Point Detected

True change point VP = 4994 TP = 466

True non-change point TN = 1070 VN = 1470

From the results shown in the Tables 2 and 3, the following can be calculated:

• Accuracy, calculated as the ratio of correctly classified data points to total data points.
This measure provides a high-level idea about the algorithm’s performance:

Accuracy =
TP + TN

TP + FP + FN + TN
.

• Sensitivity, also referred to as recall or the true positive rate (TP Rate). This refers to
the portion of a class of interest (change points) that was recognized correctly:

Sensitivity =
TP

TP + FN
.

• Precision. This is calculated as the ratio of true positive data points (change points) to
total points classified as change points:

Precision =
TP

TP + FP
.

Table 4 shows the results obtained for this statistical parameters considering the
arithmetic mean and the standard deviation as local parameters. It can be seen that the
results show good performance, and the method can be used to discern a load variation on
wind turbine. All measures are greater than 0.77.

Table 4. Performance metrics employed to evaluate CPD algorithm, considering the arithmetic mean
and the standard deviation as local parameters.

Arithmetic Mean Standard Deviation

Accuracy 0.7705 0.8080

Sensitivity 0.7911 0.8235

Precision 0.8971 0.9146
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It should be noted that the proposed detection method has the worst precision among
other existing methods. For example, Ref. [7] used a machine learning strategy to detect
faulty behaviors, with a precision 10% which is better than our algorithm. However, the
main advantage of our detection algorithm is its simplicity of implementation. This fact
is an important objective when facing real experimentation, because the implementation
becomes cheaper and able to produce an experimental platform for control and technology
development.

4.3. Deterministic Diagnosis of Fault Detection

The main intention of this section is to offer a comparative method of a fault detection
method to our approach. Because there are many methods today, we choose to use a
common one from an engineering point of view in the deterministic systems set, especially
the one described in Section 3.2. That is, we want to determine whether this system is
capable of detecting load variations on the blade that will be reflected in the estimation of
the time constant of the pitch system response. Therefore, and using the data described
in Figures 22, 23 and 25, and using the same parametric estimation method described in
Section 3.2, Figures 30–32 show the result of the related experiment. They show the peak
detector variable z(t) (13). Then, by using the healthy reference picture stated in Figure 14,
and if we use the threshold method, the peak values are detected (marked in black circles
in the cited Figures) indicating a fault [29]. It can be observed that due to the behavior of
the experiment, the failures cannot be well observed. Therefore, the adaptive method can
hardly detect a fault, but our approach does.

Figure 30. Parametric estimation case 1: εN1 + εF1 serie.
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Figure 31. Parametric estimation case 2: εN1 + εF2 serie.

Figure 32. Parametric estimation case 3: εN1 + εF3 serie.

5. Conclusions and Future Work

This article proposes an efficient digital proportional controller and a faulty detection
scheme to monitor load variations on an experimental platform. This platform emulates
load variations on the blades of a wind turbine. In addition, a new experimental setup
was created to simulate load variation on the blade of a wind turbine by using a throttle
device and its electrical model. Note that the wind turbine under consideration was a
large three-bladed horizontal axis wind turbine with its blades positioned upwind from
the tower. Then, baed on a series of experimental data, there is a growing need to be able
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to detect changes in the distribution properties of those data over time and look for these
changes efficiently. Obviously, these changes occur, for example, due to a possible failure of
the system that produces them. In many current shift point detection problems, researchers
focus their efforts on the conjecture that the number of shift points is expected to increase as
the series increases in number of data. In our approach, only the first change point is needed
to detect the instant of system failure. Consequently, the appropriate statistical methodology
of the change point detection (CPD) method was applied to the series of experimental data
provided by the experimental platform. The experimental results support our approach to
detecting load variation in the blades of a wind turbine. Moreover, a static point of change
in the experimental data was used to detect this load variation, where a large statistical
difference was detected. Its novelty is based on the direct study of data, obtaining an
efficient fault detection algorithm. Consequently, a discrimination rule is established, using
the shift point methodology.

Finally, as future work, a more complex wind turbine (WT) can be considered, for ex-
ample, the floating offshore one, with different load dynamics from that considered in the
present work [32]. In this case, the controller must be improved to cope with these new
dynamics. However, we consider that the proposed fault detection algorithm can also be
useful in this case too.
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Appendix A. C-Program and Micro-Controller Settings

In order to facilitate the reproduction of the experiment, we present in Figures A1 and A2
the program used to perform the experiments. First, the internal specifications are defined.
Then the two voltage reading channels CH0 and CH1 are assigned, allowing the micro-
controller (7) to be defined. Note that its analog version corresponds to (8). Finally, a time
delay is considered to avoid data read overlapping.
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Internal	specifications	

Define	proportional	
controller	(7)	

	
	
	

CH0:	input	
CH1:	output	
Define	funtion	delay	and	main	
program	
	

Figure A1. Main part of the C-program, where the proportional controller (8) is defined (to be
continued on the next figure).

	
Figure A2. Here, the input and output variables are defined, along with the time-delay mandatory to
avoid overlapping readings by the micro-controller unit (symbol /*text*/ is used to add a comment).
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