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Abstract: The development of noble-metal-free electrocatalysts is regarded as a key factor for realizing
industrial-scale hydrogen production powered by renewable energy sources. Inspired by nature,
which uses Fe- and Ni-containing enzymes for efficient hydrogen generation, Fe/Ni-containing
chalcogenides, such as oxides and sulfides, received increasing attention as promising electrocatalysts
to produce hydrogen. We herein present a novel synthetic procedure for mixed Fe/Ni (oxy)sulfide
materials by the controlled (partial) sulfidation of NiFe2O4 (NFO) nanoparticles in H2S-containing
atmospheres. The variation in H2S concentration and the temperature allows for a precise control
of stoichiometry and phase composition. The obtained sulfidized materials (NFS) catalyze the
hydrogen evolution reaction (HER) with increased activity in comparison to NFO, up to −10 and
−100 mA cm−2 at an overpotential of approx. 250 and 450 mV, respectively.

Keywords: hydrogen; oxysulfide; electrocatalysis; alkaline hydrogen evolution reaction

1. Introduction

The electrochemical hydrogen evolution reaction (HER) is a promising approach to
foster hydrogen usage for replacing fossil fuels as major energy carriers [1,2]. Currently,
electrocatalysts based on noble metals such as Pt are primarily used as cathode material
in electrolyzers due to their outstanding performance; however, the scarcity of common
noble metals impedes widespread application [3–5]. Therefore, scientists have focused on
earth-abundant transition metal chalcogenides such as oxides and sulfides as cost-effective
alternatives to Pt for the HER [6–8]. Transition metal oxides are characterized by their
compositional and structural flexibility, which offer a high diversity in the electronic and
crystal structure. Although transition metal oxides are regarded as catalytically inert for
the HER, defect engineering or the introduction of dopants enabled an improved HER
performance [9–11]. In contrast, transition metal sulfides can overcome the major draw-
backs of metal oxides such as poor electronic conductivity, unsuitable hydrogen adsorption
and limited catalytic-active sites [12–14]. To combine the properties of transition metal
oxides and sulfides, researchers have focused on the synthesis of distinct transition metal
oxysulfides, which contain oxygen and sulfur. Commonly, the synthesis of oxysulfides
can be achieved by multiple pathways, including the sulfidation of an oxygenated phase,
the oxidation of sulfides, the reduction of sulfates or by the co-insertion of oxygen and
sulfur [15]. In this respect, Nelson et al. synthesized CoOxSy hollow nanoparticles by
substituting oxide with sulfide species in CoO using ammonium sulfide in oleylamine at
100 ◦C [16]. The obtained electrocatalysts displayed sulfur-content-dependent HER activity,
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with the highest activity for CoOxS0.18. Another oxysulfide material was synthesized by
Sarma et al. by the anodic oxidation of WS2 sheets [17]. Here, distinct WOxSy materials
were obtained depending on the deposition potential, which has shown the highest HER
performance for the WOxSy material, which was deposited at 5 V.

In terms of hydrogen production, nature has established Fe- and Ni-containing en-
zymes (hydrogenases), which effectively perform the reversible conversion of hydrogen
to protons and electrons [18–20]. Inspired by the natural evolutionary choice of transi-
tion metals, numerous Fe/Ni-containing catalysts were synthesized, which showed high
catalytic activities for the HER [21–27]. Furthermore, Fe/Ni oxysulfide materials were syn-
thesized displaying promising activities towards the HER and oxygen evolution reaction
(OER) [28,29]. However, investigating the HER activity of Fe/Ni oxysulfides with different
sulfur to metal (S:M) ratios and material phases has not yet been realized.

In lieu, we herein present the synthesis of various NiFe (oxy)sulfide materials by the
sulfidation of NiFe2O4 with H2S. We demonstrate a controlled sulfidation towards a nickel
containing pyrite and pyrrhotite depending on the H2S gas composition as well as on
the temperature. Finally, we show the performance of the synthesized NiFe (oxy)sulfide
materials towards the HER in an alkaline medium.

2. Materials and Methods
2.1. Chemicals

The sulfidizing gases H2S/N2 (50:50) and H2S/H2 (15:85) (Air Products, Hattingen,
Germany), as well as KOH (Fisher Scientific, Dreieich, Germany, >85%), were purchased
from commercial vendors and used without further purification.

2.2. Synthesis of Sulfidized NiFe2O4 (NFS) Materials

The synthesis of the starting material NiFe2O4 was realized according to protocols
recently published in the literature [30]. For subsequent sulfidation reactions, 100 mg of
NiFe2O4 was placed into a tubular furnace and purged for 10 min with H2S/N2 (50:50)
or H2S/N2 (15:85). Maintaining the gas flow, the furnace was heated to 100 ≤ T ≤ 300 ◦C
and the temperature was held for 1 h. The furnace was then allowed to cool down to room
temperature within approx. 20 min using pressurized air while applying a N2 gas flow.

2.3. Characterization
2.3.1. Physical Characterization

Characterization of the investigated materials was performed by powder X-ray diffrac-
tion (PXRD) using a HUBER powder X-ray diffractometer (HUBER, Rimsting, Germany)
equipped with a Mo-Kα source. The 2-Θ values were converted to values from a Cu-Kα,
according to Bragg’s law of diffraction.

The particle sizes of the synthesized electrocatalysts were determined using a SALD-
2300 laser diffraction particle size analyzer (Shimadzu, Duisburg, Germany) equipped
with a SALD-BC23 batch cell. The respective samples were prepared by dispersing approx.
10 mg of the catalyst material for 1 min in 1 mL isopropyl alcohol using an ultra-sonic bath.
Subsequently, a portion of the dispersion was added to the batch cell, which was filled
with isopropyl alcohol. The obtained particle sizes were calculated using the Fraunhofer
approximation and the volume was chosen based on the dimensions of the particle amount.

A Gemini2 Merlin HR-FESEM (ZEISS, Oberkochen, Germany) was used for scanning
electron microscopy (SEM), equipped with an OXFORD AZtecEnergy X-ray microanalysis
system for energy dispersive X-ray spectroscopy (EDX). Samples were dispersed in 1 mL
isopropyl alcohol and ultra-sonicated for 1 min. Afterwards, the samples were drop-casted
on a flat Si Wafer for analysis. The SEM images were recorded at an acceleration voltage of
5 kV while EDX mappings were performed from 0–20 kV.

X-ray photoelectron spectroscopy (XPS) measurements were performed with a poly-
chromatic Al-Kα X-ray source (anode operating at 14 kV and 13 mA) combined with an
ultra−High-vacuum (UHV, 10−9 mbar) setup and a hemispherical analyzer (type CLAM2,
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VG, Scientific, Thermo Fisher Scientific, Dreieich, Germany). A pass energy of 100 eV was
applied to record the spectra.

2.3.2. Electrochemical Characterization

The (oxy)sulfide electrocatalysts were investigated as drop-casted materials on a glassy
carbon (GC) rod electrode. For this purpose, 11.78 mg of the catalyst material was dispersed
in a mixture composed of 0.30 mL water, 0.15 mL isopropanol and 0.05 mL Nafion (5 % in
aliphatic alcohols) using an ultra-sonic bath for 30 min. Subsequently, 3 µL of the catalyst
ink was applied on a GC electrode (d = 3 mm, 1 mg cm−2 catalyst), which was dried at room
temperature for 30 min. Before drop-casting, the GC electrode was polished using Al2O3
pastes with grain sizes of 0.30 and 0.05 µm for 3 min, each followed by ultra-sonication in
Milli-Q water for 5 min.

Electrochemical measurements were performed in a three-electrode setup, employ-
ing the catalyst-modified GC working electrode (WE), a Pt mesh counter electrode (CE)
and a Hg/HgO (1 M KOH) reference electrode (RE) in 1 M KOH. The WE and CE were
separated by utilizing an H-type electrolysis cell with both half-cells being separated
by an anion exchange separator (Zirfon®, AGFA, Mortsel, The Netherlands). Electro-
chemical measurements were conducted using a GAMRY Reference 600 or Reference
600 + (C3-Analysentechnik, Haar, Germany) and the measured potentials were con-
verted to the reversible hydrogen electrode (RHE) reference according to the equation:
ERHE = Emeasured + ERef. + 0.059 pH.

For the HER experiments, the material was first electrochemically conditioned through
cyclic voltammetry (CV) between 0 and −0.3 V vs. RHE at 100 mV s−1 until a stable
voltammogram was obtained. The investigation of the electrochemical surface area (ECSA)
was realized through CV measurements between −0.16 and −0.24 V vs. RHE at scan rates
of 40, 80, 120, 160 and 200 mV s−1, respectively. Changes in the electrochemical activity
were monitored via linear sweep voltammetry (LSV) between 0 and −0.45 V vs. RHE at a
scan rate of 1 mV s−1. Electrochemical impedance spectroscopy (EIS) measurements were
conducted at −0.4 V vs. RHE from 100 kHz to 0.10 Hz taking 7 points per decade at an
amplitude of 7 mV rms. Stability tests were performed using chronopotentiometry at −10
or −100 mA cm−2 for at least one hour.

3. Results and Discussion
3.1. Synthesis and Physical Characterization

The synthesis of NiFe-(oxy)sulfides (NFS) was performed by utilizing NiFe2O4 (NFO)
as the starting compound. The NFO precursor was treated with different H2S gas composi-
tions (H2S/N2, (50:50) and H2S/H2 (15:85)) at different temperatures (100 ≤ T ≤ 300 ◦C)
to control the sulfur to metal (S:M) ratio in the materials [31]. For clarity, the synthesized
materials are referred to as NFST−N2 and NFST−H2, where T represents the temperature
in ◦C and N2 and H2 the diluting gases.

The obtained materials were analyzed by powder X-ray diffraction (PXRD) and show
distinct phase formations depending on the applied temperature and H2S gas composition
(Figure 1). Treatment of NiFe2O4 in either the H2S/N2 or H2S/H2 gas mixture results in
no visible change in the powder pattern compared to NFO when heated below 200 ◦C,
indicating a conservation of the NFO phase. Starting at 200 ◦C, phase transformations occur,
which become more prominent at higher temperatures. Using a H2S/N2 atmosphere, phase
transformations towards nickelian pyrite (Ni0.35Fe0.65S2) were observed, while the usage
of H2S/H2 resulted in phase transformations towards nickelian pyrrhotite (Ni0.35Fe0.65S).
Notably, the crystallinity of the synthesized materials increases with temperature and no
further phase transformation occurred after heating the samples for longer than 1 h.
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Figure 1. Powder X-ray diffractograms of NFS materials synthesized at temperatures between 100
and 300 ◦C using (a) H2S/N2 and (b) H2S/H2 reaction atmospheres [32–34].

To further clarify the composition of the obtained NFS materials, X-ray photoelectron
spectroscopy (XPS) measurements were performed (Figure S1 in Supplementary Materials).
The XPS spectra show characteristic peaks of the two p3/2 orbitals of Ni and Fe at approx.
858 and 710 eV, respectively. Furthermore, all materials show a peak in the O 1s spectrum
at approx. 532 eV, which can be ascribed to either metal–oxygen bonds, low-coordinated
oxygen ions at the surface or adsorbed water [29]. Interestingly, the XPS analysis reveals
the presence of sulfur in each NFS sample, which indicates a sulfidation of NFO below
200 ◦C.

In order to quantify the S:M ratios, the synthesized materials were subjected to energy
dispersive spectroscopy (EDX) (Table 1). While no phase changes in the powder patterns
are observable, sulfur was detected in the NFS100−N2 and NFS100−H2 materials with S:M
ratios of 1.09 ± 0.09 and 0.79 ± 0.26, respectively. For NFS−N2, the S:M ratio undergoes
a slight increase until 250 ◦C (S:M ratio = 1.49 ± 0.06) and a much steeper increase up to
300 ◦C with a S:M ratio of 1.98 ± 0.26. For the NFS−H2 materials, the S:M ratio increases
until reaching a S:M ratio of 1.20 ± 0.08 for NFS200−H2, which subsequently decreases to a
S:M ratio of 1.15 ± 0.06 for NFS300−H2. According to the EDX analysis, the sum formulas of
the nickelian pyrite and pyrrhotite were calculated to Ni0.30Fe0.71S1.99 and Ni0.30Fe0.64S1.06,
at that point reaching complete sulfidation. Thus, the obtainable phases (NFO, nickelian
pyrite or pyrrhotite) as well as the degree of sulfidation can be controlled by the variation
of S-source gas composition and temperature.

Table 1. Energy-dispersive X-ray emission (EDX) analysis of the investigated electrocatalysts display-
ing the obtained Fe:Ni and the S:M ratio.

Material Fe:Ni Ratio S:M Ratio Sum Formula

NFO 2.46 ± 0.10 0 Ni0.30Fe0.74Ox
NFS100−N2 1.93 ± 0.96 1.09 ± 0.09 Ni0.3Fe0.52S0.87Ox
NFS150−N2 2.47 ± 0.30 1.29 ± 0.22 Ni0.3Fe0.74S1.29Ox
NFS200−N2 2.18 ± 0.41 1.34 ± 0.10 Ni0.3Fe0.64S1.26Ox
NFS250−N2 2.50 ± 0.33 1.49 ± 0.06 Ni0.3Fe0.74S1.54Ox
NFS300−N2 2.33 ± 0.31 1.98 ± 0.26 Ni0.3Fe0.71S1.99
NFS100−H2 2.43 ± 0.49 0.79 ± 0.26 Ni0.3Fe0.71S0.80Ox
NFS150−H2 2.58 ± 0.45 1.09 ± 0.34 Ni0.3Fe0.76S1.14Ox
NFS200−H2 2.41 ± 0.33 1.20 ± 0.08 Ni0.3Fe0.71S1.21Ox
NFS250−H2 2.35 ± 0.37 1.11 ± 0.15 Ni0.3Fe0.70S1.04Ox
NFS300−H2 2.18 ± 0.31 1.15 ± 0.06 Ni0.3Fe0.64S1.07



Energies 2022, 15, 543 5 of 9

Scanning electron microscopy (SEM) characterization of the obtained materials reveals
comparable particle morphologies and sizes for all tested samples (Figures S2 and S3). In
general, spherical shaped particles with sizes in the nanometer range are present, which
form larger agglomerates with a rough surface morphology. A more detailed picture of
the size distribution of the obtained NFS materials is given by laser diffraction analysis
(Figure S4). In general, all materials display a broad particle size distribution. For example,
the NFO precursor shows a significant number of particles in the nanometer range as well
as in the micrometer range (up to 100 µm). In comparison, the particle size distribution of
the NFS materials shows a shift towards larger particles of up to 400 µm, indicating agglom-
eration. However, a correlation of the particle sizes with the applied temperature cannot be
observed and for obtaining smaller particle sizes post-synthetic milling is suggested.

3.2. Electrochemical Hydrogen Evolution Reaction

To further investigate the dependence of the alkaline HER activity on the S:M ratio
of the synthesized NFS compounds and to observe trends arising from this alteration,
electrodes were prepared via drop-casting and served as working electrodes in a three-
electrode setup employing an H-type electrolysis cell.

For a first analysis, the electrochemical activity was determined by linear sweep
voltammetry (LSV) at a scan rate of 1 mV s−1 (Figure 2a,d). The investigated electrocatalytic
materials display distinct overpotentials vs. RHE at a current density of −10 mA cm−2

depending on the catalyst composition. For instance, the usage of the NFO precursor as an
HER catalyst resulted in almost no catalytic activity. In contrast, all sulfidized materials
show a lower overpotential compared to NFO. Using the NFS−N2 electrocatalysts, the
lowest overpotential at −10 mA cm−2 was observed for NFS100−N2 at 266 ± 12 mV. The
overpotential increases for catalysts synthesized at higher temperatures up to 394 ± 24 mV
for NFS250−N2. Surprisingly, the NFS300−N2 electrocatalyst displays an increased catalytic
activity in contrast to NFS250−N2 with an overpotential of 346 ± 4 mV. In comparison,
the highest HER activity for the NFS−H2 electrocatalysts was observed for NFS250−H2
with an overpotential of 302 ± 9 mV, which increases to 408 ± 30 mV for NFS150−H2.
Notably, the lowest overpotentials are observed for NFS−N2 electrocatalysts synthesized at
temperatures around 100 ◦C and for NFS−H2 electrocatalysts synthesized around 250 ◦C,
which show a S:M ratio of approx. 1:1. However, since most of the NFS−H2 electrocatalysts
display similar S:M ratios, the presence of the nickelian pyrrhotite phase seems to play a
major role for increased HER activity.

To test this theory, we normalized the LSV curves by the electrochemical surface area
(ECSA) to exclude particle size effects from the electrochemical activity. For this purpose, the
ECSA was determined by measuring the double layer capacitance (CDL) of the materials us-
ing cyclic voltammetry (Figure 2b,e). The NFS−N2 electrocatalysts display similar CDL val-
ues, with NFS150−N2 having the highest CDL of 51 ± 6 mF cm−2, followed by NFS250−N2
(49 ± 2 mF cm−2), NFS200−N2 (45 ± 5 mF cm−2) and NFS100−N2 (44 ± 3 mF cm−2). Inter-
estingly, the NFS300−N2 electrocatalyst displays a CDL of 11 ± 1 mF cm−2, which is several
times lower than the other NFS−N2 electrocatalysts. The NFS−H2 electrocatalysts dis-
play the highest CDL for NFS100−H2 (44 ± 3 mF cm−2) and NFS150−H2 (51 ± 6 mF cm−2),
which decreases with increasing temperature during the synthesis down to 12 ± 2 mF cm−2

for NFS300−H2. The calculation of the ECSA was performed by dividing the obtained CDL
values by a specific capacitance CS of 0.04 mF cm−2 [35]. The overpotentials from the LSV
curves normalized to the ECSA were obtained at a current density of 0.02 mA cm−2

ECSA
(Figure 2c,f). Here, the ECSA normalization for the NFS−N2 electrocatalysts results
in clearly separated overpotentials for NFS100−N2 (329 ± 13 mV) and the NFS150−N2
(353 ± 21 mV) electrocatalysts, which have shown similar low non−Normalized overpo-
tentials. A similar trend can be observed for NFS250−H2 and NFS300−H2 catalyzing the
HER with overpotentials of 300 ± 9 mV and 272 ± 9 mV, respectively. Notably, NFS100−N2
catalyzes the HER at the lowest non−Normalized overpotential, while NFS300−H2 displays
the lowest normalized overpotential. Thus, consideration of particle size effects on the
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electrocatalytic activity is important to determine intrinsic material properties. In addition,
we performed electrochemical impedance spectroscopy (EIS) measurements, which reveal
similar trends compared to the non−Normalized LSV data (Figure S5). Here, NFS150−N2
and NFS300−H2 show the smallest Nyquist arcs of approx. 25 Ω, which increases to approx.
110 and 160 Ω for NFS250−N2 and NFS150−H2, respectively.
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To test the stability of the NFS electrocatalysts, we performed chronopotentiometry
experiments for 1 h at a current density of −10 mA cm−2 (Figure 3a,b). A stable per-
formance with a minor activation or deactivation behavior can be observed depending
on the investigated electrocatalyst. For example, the NFO precursor catalyst shows the
highest potential required to catalyze the HER and shows an activation behavior over
the duration of the experiment. However, the overall activity after 1 h is inferior to the
synthesized NFS materials. In comparison, most of the NFS−N2 electrocatalysts, except for
NFS250−N2, show a slight deactivation within 1 h. The deactivation behavior can also be
observed for NFS100−H2 and NFS200−H2; however, a deactivation behavior from a particle
detachment from the electrode cannot be generally excluded. Interestingly, NFS250−H2 and
NFS300−H2, which catalyze the HER with the lowest potential, show a stable performance.
We therefore subjected the NFS300−H2 electrocatalyst to an elongated electrolysis at −10
and −100 mA cm−2 for 10 h, respectively (Figure 3c). Here, the HER was also catalyzed
with a stable performance by NFS300−H2.
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It can be concluded that NiFe (oxy)sulfide materials catalyze the electrochemical HER
with efficiencies depending on the S:M ratio and the materials phase. The NFS100−N2 and
NFSH2,300

◦C show high overall activities; however, since the NFS−N2 materials mostly
tend to deactivate during catalysis, the usage of the fully sulfidized NFS300−H2 material
should be prioritized, which displayed stability for 10 h at −100 mA cm−2.

4. Conclusions

A series of bimetallic NiFe (oxy)sulfide materials was synthesized by heating the
transition metal oxide NFO in H2S-containing atmospheres. Depending on the choice of the
H2S gas composition and the applied reaction temperature, a control of the sulfur incorpo-
ration into NFO and the materials phase was achieved. For example, a sulfidation of NFO
was observed at low temperatures of 100 ◦C and full conversion into the nickelian pyrite
(Ni0.30Fe0.71S1.99) and pyrrhotite (Ni0.30Fe0.64S1.06) sulfide materials were realized at 300 ◦C.
SEM analysis and the particle size analysis by the laser diffraction technique revealed a
broad particle size distribution caused by the particle sintering of the NFS materials.

Furthermore, we assessed the electrochemical HER performance of the NFS materials
in 1 M KOH. The electrochemical performance varied with the sulfur content and the
materials phase. Materials with a S:M ratio of approx. 1 and/or a nickelian pyrrhotite
phase catalyzed the HER with the lowest overpotentials of 266 ± 12 mV and 302 ± 9 mV vs.
RHE at −10 mA cm−2 for NFS100−N2 and NFS250−H2, respectively. Additionally, a nor-
malization of the geometric current density by the ECSA was performed, which revealed
the lowest overpotential of 272 ± 9 mV vs. RHE at a current density of 0.02 mA cm−2

ECSA
catalyzed by NFS300−H2. Here, NFS100−N2 and NFS300−H2 showed the lowest over-
potential for the non−Normalized and the ECSA−Normalized LSV data, respectively.
Therefore, particle size effects should be included in the consideration of the HER activity.
Finally, preliminary stability measurements have revealed a rather deactivating behavior of
NFS−N2 materials, while the NFS300−H2 was able to catalyze the HER at current densities
of −10 and −100 mA cm−2 with stable potentials for 10 h.

These results represent another step towards designing transition metal chalcogenide
catalyst materials for the electrochemical HER and point the way towards the most efficient
stoichiometric formulations of NiFe (oxy)sulfide-based catalysts.
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.3390/en15020543/s1, Figure S1: XPS data of the synthesized NFS materials. Figure S2: Deconvo-
luted XPS spectra of NFS300−H2. Figure S3: Deconvoluted XPS spectra of NFS100−N2. Figure S4:
SEM images of the synthesized NFS−N2 materials. Figure S5: SEM images of the synthesized
NFS−H2 materials. Figure S6: Representative SEM images at NFS100−H2 and NFS100−N2 at distinct
magnifications. Figure S7: Particle size analysis by laser diffraction. Figure S8: Representative CV
measurements for determination of CDL. Figure S9: EIS spectra of the NFS materials. Figure S10:
Tafel analysis of NFS materials.
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