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Abstract: In the present study, the evaluation of potential improvement of the overall efficiency
of a common PV panel, valorizing the heat extracted by a heat exchanger that is integrated on
its back side, either into work using an endoreversible Carnot engine or into cold by using an
endoreversible tri-thermal machine consisting of a heat-driven refrigeration machine operating
between three temperature sources and sink (such as a liquid/gas absorption machine), was carried
out. A simplified thermodynamic analysis of the PV/thermal collector shows that there are two
optimal operating temperatures T̃h and T∗

h of the panels, which maximize either the thermal exergy or
the overall exergy of the PV panel, respectively. The cold produced by the endoreversible tri-thermal
machine during the operating conditions of the PV/thermal collector at T̃h is higher with a coefficient
of performance (COP) of 0.24 thanks to the higher heat recovery potential. In the case of using the
cold produced by a tri-thermal machine to actively cool of an additional PV panel in order to increase
its electrical performances, the operating conditions at the optimal temperature T∗

h provide a larger
and more stable gain: the gain is about 12.2% compared with the conventional PV panel when the
operating temperature of the second cooled panel varies from 15 to 35 ◦C.

Keywords: power and cold cogeneration; energy performance; exergy analysis; solar energy

1. Introduction

Photovoltaic (PV) technology is currently one of the most widely used technologies
for producing renewable electricity with 20.6% of the 6523 TWh renewable electricity gen-
eration worldwide in 2018 [1]. During the period 2009–2019, photovoltaic technology was
the fastest increasing renewable energy technology, with an average cumulative increase of
36% of grid-connected installation [1].

The conversion of solar radiation directly into electricity with the highest possible
efficiency is a research topic of great interest in the scientific community. The PV conversion
for a simple Si-based p-n junction is, however, limited by the theoretical Shokley–Queiser
limit: only a maximum of 31% of the non-concentrated solar radiation can be converted
into electricity [2]. As shown in Figure 1 and proposed by Li et al. [3], representing the
energy balance of PV conversion under 1.5 AM solar spectrum, about 67.6% of the incoming
radiative energy is converted into heat by crystalline Si PV panels, which correspond to
50.2% to the thermalization of excess energy of photons with energy above the Eg band
gap and 17.4% of the thermal absorption of photons below the bandgap. The produced
heat increases the temperature of the cells, which in turn reduces the ability of the PV
panel to generate electricity. In order to simplify the comparison of the performance of PV
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panels, electrical efficiencies are generally measured under standard test conditions (STC)
where the panel temperature is 25 ◦C. The widely used relationship between temperature
and efficiency of mono-crystalline silicon PV cells indicates that electricity production de-
creases by approximately 0.004–0.005 K−1, also defined as the temperature coefficient [4,5].
In addition to the degradation of PV panel performance with temperature, the life cycle
analysis of PV panels led by Nehme and al. [6] shows that the temperature is also one of the
most impacting parameters that affects the degradation rate of PV panel lifetime. Ogbomo
et al. investigated the impact of PV cell temperature on solder joint interconnection degra-
dation for a crystalline silicon PV module in a hot climate. The prediction model developed
by the authors forecasted that the PV module lifetime, due to the failure of specific parts
such as joints between the cells, is 18.5 years in London and 9 years in a warm climate,
respectively. The module lifetime in London is close to the 25-year warranty. The 9 years
predicted in the warm climate gives an indication of the high failure rate observed in hot
and harsh regions [7]. Reducing the operating temperature is thus a key solution to increase
the lifetime of PV panels and minimize their performance degradation.

Figure 1. Energy balance of the PV conversion by crystalline Si cell according to Li et al. [3].

To improve the electrical production of PV cells, two fundamental routes are investi-
gated in the literature. The first way focuses on the development of new, more efficient PV
material, seeking to reduce energy losses due to the spectral mismatch. For that, many asso-
ciations of different PV materials are notably studied and developed (e.g., tandem cells) to
valorize a higher part of the solar spectrum and to increase the solar conversion. The second
field of research is focused on the temperature control of solar cells. Research on cooling
technology of PV panels is currently receiving increased attention in order to improve the
performance of PV panels. Many cooling methods can be found in the literature and in
most cases the thermal energy is wasted [8–11]. However, regarding existing technologies
for the thermal management of PV panel, it seems that few of them are able to both collect
and valorize the thermal energy produced from PV. This paper focuses on heat recovery
and the way to valorize this heat. This seems to be a promising way to increase the overall
efficiency of PV panels. The thermal energy of the PV panel can be used to satisfy a need
in heat but also to drive thermodynamic processes in order to transform it into additional
electricity or cold.

The thermal energy generated by a photovoltaic panel can be used to be converted
directly into electricity. The use of a thermoelectric generator (TEG) module that converts
heat to electricity through the Seebeck effect was studied by Bjork et al. to evaluate
the maximum theoretical performance of coupling a non-concentrated PV panel and a
TEG. Considering the TEG material characteristics, its associated Carnot efficiency, and a
Shokley–Queisser limit of 33% for an idealized single p-n junction cell with a band gap
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value of 1.34 eV, while it is around 31% for c-Si based on a band gap of 1.12 eV, these
authors also showed that the theoretical electrical conversion efficiency can be increased
to 37.5% [12]. Another direct heat-to-electricity conversion has been studied by Fathabadi
et al.: the thermally regenerative electrochemical cycle (TREC), which is based on the
thermogalvanic effect and the temperature dependence of the electrode potential. This cycle
is realized by charging and discharging an electrochemical cell [13]. During the charging
(heating process), a difference between the voltages of the two charged electrodes is created,
allowing for the production of electrical energy during the discharge process of the TREC
cell. These authors compared the electricity production by TEG and TREC devices placed
behind PV modules. They found that the use of TREC devices compensates for about
85% of the PV power reduction compared to STC conditions due to temperature increase,
while only 23% is compensated when a TEG module is used [13].

Solar PV-Thermal panels (PVT), unlike conventional photovoltaic systems, are specif-
ically designed to produce both electricity and heat. Depending on the architecture of
these PVTs and the operating parameters, the electrical production and/or heat production
can be optimized according to the desired application, leading to a higher overall energy
efficiency than conventional photovoltaic panels [14,15]. The electrical output or thermal
output of a PVT panel can be improved at the expense of the other according to the intended
application and depends on the choice of parameters: PVT technology (glazed or unglazed),
the nature and mass flow rate of the heat transfer fluid, PV cell material impacting the
PV efficiency, packing factors, solar irradiation, wind speed, and ambient temperature.
Generally, the thermal energy generated by the PVT panel is used to satisfy a heating
demand such as the heating of a building by a working fluid (water or air). Chow et al.
compared the performance of glazed and unglazed water PVT panels experimentally and
numerically. The glazed water PVT reached a higher energy yield and outlet temperature
than the unglazed one because of its higher thermal energy efficiency. However, the exergy
yield is more important for the unglazed PVT than the glazed one because of the higher
electrical energy yield [14]. Many authors also studied a combined PVT-PCM system that is
actively cooled by a heat transfer fluid (water or nanofluid). Sarafraz et al. experimentally
investigated and carried out an efficiency comparison of a standalone PV, PV-PCM, water-
cooled PVT-PCM, and nanofluid-cooled PVT-PCM. The best performance is reached in the
nanofluid-cooled PVT-PCM system because of the thermal ability of the heat transfer fluid
to efficiently cool the PV panel, which in return increases the electricity production [16].

Currently, PVT-driven heat pump technology is gaining more and more popularity
in the research field for building applications [17–20]. Such a combination allows for a
tri-generation system that can produce electricity, heat, and cold at the same time. The PVT
collector unit can be used to feed the evaporator of the heat pump for heating purposes,
with an amplified effect. On the other hand, the heat pump can be also used to provide a
cooling effect for air-conditioning purposes. Zhou et al. [17] evaluated the potential and
the performance of such a tri-generation PVT-driven heat pump system operating under
natural weather conditions. The experimental study they carried out showed that the
electrical efficiency, the heating coefficient of performance (COP), and the cooling COP
achieved were 8.7%, 5.3, and 2.3, respectively.

To more precisely analyze the performance of these systems that can produce several
useful effects (electricity, heat, or cold), different performance criteria can be used:

• Energy-based criteria such as electrical efficiency that only takes into account the
electricity produced, thermal efficiency that only takes into account the heat produc-
tion, or the overall efficiency that considers the sum of the energies of all the useful
effects produced.

• Exergy-based criteria such as exergy efficiency that takes into account the exergy
associated to all the useful effects produced.

Nevertheless, an overall energy yield based upon two different forms of energy (heat
and electricity) is generally not very representative of the real potential of the global energy
because of the difference in the energy quality between electricity and thermal energy.
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In order to evaluate the potential of the overall energy yield of PVT panels, different ap-
proaches are used in the literature to assess and qualify the potential of energy with different
forms. The first one is based on the primary energy consumption to produce the different
forms of energy. In particular, the primary energy (PE) required to produce a given amount
of electrical energy is assumed to follow the ratio of about 2.63 kWhPE/kWhel [21,22],
which corresponds to the efficiency of a conventional power plant of 38%. The second
method is based on a thermodynamic analysis using the first and second laws, in which the
overall energy produced by the PVT panel is characterized throughout its exergy content.
The exergy content of energy is defined as the maximum work that can be obtained directly
from this energy (as for electricity), or by using a Carnot machine, ideally converting this
energy (thermal energy) into work [14,23,24].

To sum up, the literature shows that there are several possible ways to use and
valorize the thermal energy generated by PV collectors to increase the overall energy or
exergy efficiency. Many parameters influence the performance of PVT collectors in term
of electricity and/or thermal energy production. Such a system has to be properly chosen
according to the targeted utilization of the energies to be produced and the criteria to be
met. In this work, a theoretical study of a novel combination is carried out: a PV system is
coupled with a thermal collector. Such a coupled PV/thermal collector system (PV/TC)
can then be used to thermally feed a di-thermal or a tri-thermal machine for valorizing
the thermal energy. The basic idea of such an association is to improve, on the one hand,
the electrical performance of the PV panels by limiting their temperature rise, and on the
other hand, to valorize the heat collected on the PV panels into additional work by a di-
thermal machine or into cold by a tri-thermal machine, thus increasing the overall energetic
and exergetic yield. The cold produced can also be used to cover the cooling needs in
buildings or to allow for an active cooling of the PV panels, which furthers the production
of electricity. The recovery of the heat generated by the PV panel and its valorization to
produce a cooling effect by the tri-thermal machine, which allows the panels to operate at
a temperature lower than or at least close to the ambient temperature and improves the
electrical efficiency of the PV panels. These operating conditions are original in comparison
with the usual systems studied in literature. The objective of this study is to evaluate the
theoretical performances that could be achieved by such a novel combination.

2. Materials and Method: Thermodynamic Assessment Methodology

The methodology that is presented here for the thermodynamic evaluation of the
potential of valorization of the heat generated in a PV panel requires to define in first
step the different energy flows between the system and its environment. In a second step,
different types of coupling between the PV/TC collector and thermally driven processes
are presented according to different targeted applications: heat valorization into additional
work production that can be further converted into electricity, or converted into cold,
which can be used either for the thermal comfort of buildings or for the cooling of an
additional PV panel in order to increase overall electrical performances.

2.1. Energy and Exergy Analysis of a PV/Thermal Collector System

In conventional PVT panels, a heat exchanger is usually integrated on the back
surface to absorb the heat produced by the PV panel and transfer it to a coolant fluid,
which is generally water or air. Such a thermal collector integration approach can be
easily implemented into an already installed PV panel without major modification, giving
rise to a PV/TC system. In this way, the extraction of heat from the PV panel will limit
the temperature increase of the panel and could ideally decrease its temperature close to
the ambient one, allowing, in this case, for a maximum recovery of the generated heat.
This reduction of the PV operating temperature allows us to considerably improve the
electrical production and to get closer to the performances obtained under standard test con-
ditions (STC @ 25 ◦C/1000 W/m2). However, for these operating conditions, the extracted
heat cannot be exploited due to its too low temperature level and exergy content. The latter
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must be produced at a higher temperature to be exploitable and valorized. At the same
time, due to the degradation of the electrical performance with increasing temperature,
the operating temperature should be optimized to reach optimal global performances.
Another point to consider is that as the operating temperature of the PV panel increases,
the amount of heat that can be extracted decreases and becomes zero for the stagnation
temperature (Tst) for which the panel is in thermal equilibrium with the ambient environ-
ment. The thermal behavior of the PV panel thus has to be carried out from an energetic
point of view to assess the amount of energy involved, as well as from an exergetic point of
view to evaluate the theoretical potential to exploit the extracted thermal energy.

2.1.1. Energetic Analysis of a PV/Thermal Collector System

The different types of energy flows that are involved in a PV/thermal collector (PV/TC)
system, according to the operating conditions applied to the panel in Figure 2, are considered.

Figure 2. Schematic representation of the flows exchanged between a PV/thermal collector panel and
its surrounding with the following:

.
Es is the absorbed solar incoming irradiation,

.
Qh is the useful

thermal energy,
.

WPV is the produced electrical power,
.

Qconv is the natural and forced convective heat
losses, and

.
Qrad are the radiative heat losses.

Assuming that the PV/TC panel temperature is homogeneous, and the back and lateral
and side surfaces of the panel are adiabatic, only the exchanges of the front surface with the
external environment are considered (convective with the ambient and radiative with the sky).
Applying the first law of the thermodynamics on PV/TC association, which is considered as
a single uniform control volume and in steady-state operation, gives the following:

.
Es −

.
Qconv −

.
Qrad −

.
WPV −

.
Qh = 0 (1)

where
.
Es is the absorbed solar incoming irradiation,

.
WPV is the electrical power production,

.
Qh is the thermal power production, and

.
Qconv,

.
Qrad are the convective and radiative heat

losses, respectively.
The total solar energy that is absorbed by the PV panel is as follows:

.
Es = (ατ)IG (2)

where α is the solar absorptance of PV layers, τ is the solar transmittance of the glazing,
and IG is the global incident irradiation.

The electricity energy produced by the cell is expressed by Equation (3) [25]:

.
WPV = (ατ)IGηPV = (ατ)IGηre f

[
1 − βre f (Tcell − TSTC)

]
(3)

In which ηPV is the electrical efficiency depending on the actual operating cell tempera-
ture and ηre f is the reference electrical efficiency of the PV module operating at the standard
test conditions (STC) TSTC = 25 ◦C under a global solar irradiation IG = 1000 W·m−2 [25].
The temperature coefficient βre f is based on the material properties, and Tcell is the oper-
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ating cell temperature. The values of ηre f and βre f used for this study are from standard
commercial PV panels.

To determine the heat exchange between the panel and the ambient air, a coefficient of
global convective (natural and forced) heat transfer is considered. Test et al. experimentally
evaluated the convective exchange coefficient of a plate placed in the natural environment
and the wind speed at a height of 1 m above the plate was recorded. They were able to
develop a linear correlation that is used here [26]:

.
Qconv = hconv(Tcell − Tamb) (4)

The convective heat coefficient transfers hconv depends on the wind velocity Vw as follows:

hconv= 2.56Vw+8.55

The rate of radiative heat exchange is given by the Stephan-Boltzman law [27]:

.
Qrad = σε

(
T4

cell − T4
sky

)
(5)

where ε is the emissivity of the PV panel and σ is the Stephan–Boltzmann constant. The tem-
perature of the sky Tsky depends on the ambient temperature Tamb and is expressed as
follows: Tsky = 0.0552T1.5

amb.
The energy analysis can be carried by considering the following performance criteria:

• Electrical efficiency:

ηPV =

.
WPV

.
Es

(6)

• Thermal efficiency:

ηth =

.
Qh
.
Es

(7)

• Overall efficiency:

ηgl = ηPV + ηth (8)

2.1.2. Exergetic Analysis of the PV/Thermal Collector System

The exergy analysis allows us to evaluate the quality of energy involved in a system
and to standardize the evaluation of the thermodynamic quality of systems in which
different forms of energy are involved. The exergy quantifies the maximum work that can
be ideally produced by an ideal reversible process, such as a Carnot engine, and can thus
be defined as the work content of the energy. The electrical energy is a high-quality energy
and is thus considered as pure exergy as it can be ideally fully converted into work using an
ideal electrical motor. The thermal exergy (characterizing the quality of the thermal energy)
depends on its temperature (Th) relative to the reference temperature (T0), for which the
exergy content of the thermal energy is zero (dead state). The thermal exergy corresponds
to the maximum amount of work that can be ideally produced by a Carnot cycle consuming
the heat

.
Qh at Th and releasing heat at T0:

Ex =
.

Qh

(
1 − T0

Th

)
=

.
Qh.θh
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The Carnot factor θh = 1 − T0
Th

is introduced to estimate the exergy content of a given
amount of thermal energy available at a temperature Th. In that study, the reference
temperature T0 is equal to Tamb.

To evaluate the transformable equivalent work and estimate the exergy destroyed in
the PV/TC panel, and hence its thermodynamic quality, an exergy balance of the system
can also be expressed as:

.
Exs −

.
WPV −

.
Ex .

Qh
− (

.
Ex .

Qconv
+

.
Ex .

Qrad
)−

.
Exdes = 0 (9)

Several methods are proposed in the literature [28] to determine the solar exergy Exs of
the incoming irradiation. One of the most commonly used calculation methods is proposed
by Chow [14] considering a temperature Ts of the sun of 6000 K:

.
Exs =

.
Es

(
1 − Tamb

Ts

)
(10)

Additionally, the exergy of heat
.
Ex .

Qh
recovered at the operating temperature Tcell of

the panel is expressed as follows:

.
Ex .

Qh
=

.
Qh

(
1 − Tamb

Tcell

)
(11)

Since electrical energy can be ideally converted entirely into work, by definition,
the exergy of the electricity production is the electrical energy rate

.
WPV .

From these definitions, the electrical exergy efficiency, thermal exergy efficiency,
and overall exergy of a PV/TC system can be calculated from the following relations:

ηexPV =

.
WPV

.
Exs

(12)

ηexth =

.
Ex .

Qh
.
Exs

(13)

ηexgl =

.
WPV +

.
Ex .

Qh
.
Exs

= ηexPV + ηexth (14)

2.2. Thermally Driven Systems Coupled to the PV/Thermal Collector Panel for Heat Valorization

In this part, an analysis of different energy conversion systems coupled to a PV/TC
system for the valorization of the produced heat is carried out. Indeed, the heat can be
valorized in work by using a di-thermal engine cycle, or in cold by using a tri-thermal
machine. Such a coupling will allow us to reduce the PV panel operating temperature,
thus improving its electrical performances, and produce work or cold that will increase the
overall performances of the system. The output energies of each coupling are analyzed and
evaluated for each configuration to determine the optimal operating conditions according
to the desired application.

2.2.1. PV/Thermal Collector System Coupled to a Di-Thermal Endoreversible Carnot
Engine for Additional Work Production

The first combination consists in coupling the PV/TC system with a di-thermal ma-
chine exploiting the heat produced by the PV/TC, in order to produce a useful work that
can be later converted in additional electricity, as depicted in Figure 3.
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Figure 3. Coupling PV panel/thermal collector with an endoreversible Carnot engine cycle.

The considered di-thermal machine is an endoreversible Carnot engine [29]. This con-
ceptual machine enables a more realistic analysis in comparison to the Carnot machine one.
It takes into account the thermodynamic irreversibilities caused by the heat transferred
between the cycle and the heat sources and sinks. The cycle then operates in a reversible
way between internal temperatures (Th,i) and (T0,i), with no internal thermodynamic irre-
versibility. Therefore, the work

.
Wendo that can be produced by the consumption of a given

amount of thermal power
.

Qh at Th can be estimated by considering the thermal pinches
required for the heat exchange as:

.
Wendo =

.
Qh

(
1 − T0,i

Th,i

)
=

.
Qh

(
1 − Tamb + ∆T0

Th − ∆T1

)
(15)

With a work engine efficiency cycle defined as follows [29]:

ηendo =

.
Wendo

.
Qh

= 1 − Tamb + ∆T0

Th − ∆T1
(16)

The temperature differences ∆T that are required for heat exchange between the
external sources with the endoreversible Carnot engine are estimated under given realistic
heat exchange coefficients by the following equations.

.
Q0 = (US)0∆T0 (17)

.
Qh = (US)h∆T1 (18)

where (US)0 and (US)h are the global heat conductance between the endoreversible Carnot
engine with the ambient and the PV/TC, respectively.

2.2.2. PV/Thermal Collector System Coupled to a Tri-Thermal Machine for Cold Production

The second combination consists in coupling the PV/TC system with a tri-thermal ma-
chine in order to valorize the heat produced into cold as presented in Figure 4.
A tri-thermal system is a closed thermodynamic system that exchanges only thermal
energy with the external thermal sources/sinks. It operates between three different temper-
ature levels: a hot source temperature noted Th, a cold source temperature noted Tc, and a
heat sink temperature Tamb that generally corresponds to the ambient environment.

.
Qh and

.
Qc are the heat quantities exchanged between the system and the external thermal sources
at Th and Tc, respectively.
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Figure 4. Schematic view of the coupling of a PV/TC system with a tri-thermal machine operating
between three temperature levels for the production of usable cold in the building.

From a thermodynamic point of view, the tri-thermal system can be considered as the
result of the coupling of two di-thermal cycles: an engine cycle and a reverse refrigeration
cycle. Therefore, this tri-thermal system can be analyzed as an endoreversible machine
consisting in the coupling of two endoreversible di-thermal cycles: an endoreversible
engine cycle operating between Th and Tamb coupled to an endoreversible refrigeration
cycle operating between Tc and Tamb. The overall performance of the endoreversible tri-
thermal machine can thus be realistically characterized by considering the thermodynamic
irreversibilities due only to the external heat exchange as follows [30]:

COP3T
endo = ηendoCOP2T

endo (19)

With the endoreversible engine cycle efficiency ηendo defined by the Equation (16).
The produced work by the first cycle is internally consumed by the second reverse

cycle to produce cold (
.

Qc) at Tc, releasing heat (
.

Q0) also at Tamb. This performance of
this refrigeration cycle can also be characterized through its endoreversible coefficient of
performance defined as:

COP2T
endo =

.
Qc

.
Wendo

=
1

T0,i
Tc,i

− 1
=

Tc − ∆T2

(Tamb + ∆T0)− (Tc − ∆T2)
(20)

where the temperature differences ∆T2 and ∆T0 that are required for heat exchange between
the external sources with the refrigeration cycle are estimated by using Equations (17) and
(18) in the same conditions, respectively.

By replacing Equations (16) and (20) in Equation (19), it gives the following [30]:

COP3T
endo =

.
Qc
.

Qh

=

(
Tc − ∆T2

Th − ∆T1

)(
(Th − ∆T1)− (Tamb + ∆T0)

(Tamb + ∆T0)− (Tc − ∆T2)

)
(21)

The cold produced by such a tri-thermal machine can be used in several ways. It can
be used for air conditioning of a building, or to meet a specific demand, such as the cooling
of electronic devices like inverters. The final energy outputs of such a system are thus
electricity and cold, which has to be optimized depending on the targeted application.

2.2.3. Active Cooling of an Additional PV Panel by an Endoreversible Tri-Thermal Machine

Another application of the cold produced by the tri-thermal machine is to provide an
active cooling of an additional PV panel area to improve the overall electrical production.
The impact of the active cooling PV panel by the endoreversible tri-thermal machine is
therefore investigated here. As shown in Figure 5, the first panel (hot source) is maintained
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at a first operating temperature Th, while the second panel is cooled and maintained at a
second operating temperature Tc (cold source) by the endoreversible tri-thermal machine.
As the amount of cold produced

.
Qc is fixed by these operating temperatures, then a given

surface S2 of the second PV panel can be maintained at that temperature Tc.

Figure 5. Cooling a second PV panel by an endoreversible tri-thermal machine coupled to a PV/TC system.

The working conditions of the second panel at this temperature allow for a better
electrical efficiency as it is maintained at a temperature lower than the ambient one or at
least at the ambient temperature. Thus, for this coupling configuration, the only energy
output of the system is the electrical work. The performance of both PV panels must be
optimized so as to reach the maximum global electrical performance. The thermal energy
at Th produced by a surface S1 of the first PV panel is used as the driving heat source of the
tri-thermal machine. The cold produced at temperature Tc maintains the second PV panel
surface S2 at this temperature. Thus, depending on the cold temperature Tc, the surface S2
is determined by the following set of relations characterizing the cooling performances of
the system coupling the two PV panels with the endoreversible machine:

COP3T
endo =

.
Qc
.

Qh

=
S2

[
Irr −

.
Qconv(Tc)−

.
Qrad(Tc)−

.
WPV2(Tc)

]
S1

[
Irr −

.
Qconv(Th)−

.
Qrad(Th)−

.
WPV1(Th)

] (22)

COP3T
endo =

.
Qc
.

Qh

=
(US)c∆T2

(US)h∆T1
(23)

where Equation (23) can be developed and written as Equation (21).
The electricity produced by these two panels of surface S1 and S2 is then compared to

the production of the same surface of purely PV panel (S1 + S2) under the same conditions,
but without being cooled or recovering heat (i.e., operating at stagnation temperature Tst).
The overall electrical gain is defined as:

GainPV1+PV2 =

( .
WPV1(Th)S1 +

.
WPV2(Tc)S2

)
−

.
WPV(Tst)(S1 + S2)

.
WPV(Tst)(S1 + S2)

(24)

This overall electrical gain can be compared to the electrical gain obtained for each PV
panel that can also be defined as:

GainPV1 =

.
WPV1(Th)−

.
WPV(Tst)

.
WPV(Tst)

and GainPV2 =

.
WPV2(Tc)−

.
WPV(Tst)

.
WPV(Tst)

(25)
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3. Results and Discussion

The results of the analyses described in this section are performed considering the
actual characteristics of the PV panels manufactured by SUNPOWER (SPR-Max2-360-COM)
and resumed in Table 1. The study is performed considering an ambient temperature of
40 ◦C, a wind speed of 1 m·s−1, and several solar irradiations from 400 to 1000 W·m−2.
A simulation tool was developed in the Python environment to solve the equations of the
thermodynamic model presented in the previous section.

Table 1. Main parameters considered for the performance evaluation of PV/TC.

Item Value

Electrical efficiency at STC conditions ηre f (%) 20.4
Temperature coefficient βre f (K−1) 0.0035
Effectiveness absorptivity (ατ) (-) 0.95
Emissivity of glass ε (-) 0.9

3.1. Energy and Exergy Analysis of a PV/TC Panel Alone

Figure 6 shows the evolution of electrical and thermal powers generated by 1 m2 of
the chosen PV panel, as function of the operating temperature of the PV panel for different
solar irradiations from 400 to 1000 W·m−2. The PV panel temperature evolves from a
maximum (or stagnation) temperature Tst varying from 81 ◦C to 40 ◦C. For this equilibrium
temperature at a given solar irradiation, the electrical production is the lowest and no heat
recovery is possible: all the generated heat is lost to the ambient environment. When heat
is extracted from the PV panel, the temperature of the panel decreases, which increases the
electrical energy produced and the thermal energy that can be recovered. This evolution is
quasi-linear (even if the radiation losses evolution is not linear with the sky) for the global
energy of the system. As expected, the best performances are achieved when the panel
operating temperature is equal to the ambient one.

Figure 6. Variation of thermal (
.

Qh in blue, red and black dashed lines) and electrical power (
.

WPV in
blue, red and black solid lines) of the PV/TC and losses (

.
Qconv and

.
Qrad in yellow dotted line) with

its operating temperature for different solar irradiations.

Regarding the thermal energy generated from the PV/TC, if no heat is recovered
when operating under a solar irradiation of 1000 W·m−2, the panel will reach the thermal
equilibrium with a maximal achievable temperature corresponding to an electrical produc-
tion of 156 W·m−2 and 0 W·m−2 of thermal energy. The low temperature of the PV/TC
panel allows us to reduce energy losses to reach, at ambient temperature, a maximum
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electricity production of 188 W·m−2, a maximum thermal energy production of 738 W·m−2,
and the convective heat losses to the environment that are null. The working temperature
of the PV panel has a great importance; it has an impact on the utility of the recovered heat,
as it can be seen in the exergy analysis that is carried out hereafter.

Figure 7 shows the evolution of the thermal, electrical, and overall exergy of the
PV/TC panel operating under the same operating conditions as defined previously in
the energy analysis. Contrarily to the linear evolution of the different forms of energy,
only the electrical exergy evolves in a linear way with the cooling of the panel due to
its definition as equivalent to the electrical energy. The thermal exergy increases from
0 W·m2 when the PV/TC is at the stagnation temperature Tst to reach a maximum value of
25 W·m−2 for a solar radiation of 1000 W·m−2 and then decreases with the decrease of the
PV panel temperature to again reach a null value when the PV panel operates at ambient
temperature. As it can be noticed in Figure 7, for each solar irradiation, two optimum
operating temperatures T∗

h and T̃h can be defined as follows: the first one corresponds to
the temperature that maximizes the overall exergy content, and the second one corresponds
to the temperature that maximizes the thermal exergy content. The maximum exergy
content of the thermal energy for solar radiation of 1000 W·m−2 is obtained when the PV
panel operates at 62 ◦C, which corresponds from Figure 6 to a heat production of around
380 W·m−2 and an electrical production of 170 W·m−2. Despite the high amount of heat
recovered at the ambient temperature, the thermal exergy is null because the dead state
(thermal equilibrium with the environment) is reached, as we can see in Equation (11).
Regarding the evolution of the global exergy of the PV/TC, it increases as the PV panels
cool. After the temperature of 62 ◦C for which the thermal exergy is maximum, the overall
exergy continues to increase even though the thermal exergy degrades because the electrical
exergy increases and compensates for this degradation. The overall exergy then reaches a
maximum of 200 W·m−2 for a PV operating temperature of 54 ◦C and slightly decreases
to equal the electrical exergy obtained by the PV panel when operating at an ambient
temperature. It can be noticed that the thermal exergy is much lower than the electrical
exergy because of the low operating temperature of the collector.

Figure 7. Variations of the PV/TC system of the thermal (blue, red and black dashed lines), electrical
(purple solid lines), and overall exergies (blue, red and black solid lines) with its operating temperature
for different solar irradiations. Optimal operating temperatures T∗

h and T̃h are represented by dots.

The exergy amounts produced by the PV/TC panels depend on the incoming solar
irradiation. When the solar irradiation decreases, the stagnation temperature also decreases
as well as the optimal temperatures that maximize the thermal and overall produced exergy.
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These optimal temperatures decrease almost linearly with decreasing solar irradiation as
presented in Figure 8. The stagnation temperature varies between 81 ◦C and 46 ◦C with
the variation of solar irradiation from 1000 W·m−2 to 200 W·m−2. These values are similar
to those obtained in the study carried out by Jakhrani et al. [31], who proposed several
experimentally validated correlations for the evaluation of the stagnation temperature of a
PV panel for various solar irradiations. Although the operating ambient conditions are not
exactly identical, it can be noticed that the results presented in this work are close to those
obtained by Jakhrani et al.

Figure 8. Variation of the equilibrium temperature Tst, and the optimal temperatures T∗
h and T̃h with

solar irradiation.

3.2. Performance Analysis of the Coupling of a PV/TC Panel with an Endoreversible Carnot Engine

Figure 9 presents the work that can be produced by an endoreversible engine cycle
driven by a PV/thermal collector delivering heat at Th. The temperature differences ∆T0
and ∆T1 are calculated using Equations (17) and (18) taking the values of global heat
conductance as (US)0 = 300 W·K−1 and (US)h = 50 W·K−1. These values are taken for a
realistic heat exchange coefficient where (US)0 is considered larger than (US)h, and therefore
∆T0 is smaller than ∆T1. One can see in Figure 9 that the produced work increases from
zero to a maximum value and decreases after up to zero when the PV panel temperature
decreases, while the temperature difference required for the heat exchange ∆T1 between
the PV panel and the engine cycle increases linearly. For a solar irradiation of 1000 W·m−2,
an optimum operating ∆T1 for the heat exchange of about 5.5 ◦C enables to produce a
maximum work of 16.5 W·m−2, corresponding to an optimum operating temperature
of T̃h = 68 ◦C for the PV panel. Note that the endoreversible engine cycle considered in
this study is a simplified model of any engine. A similar approach has been considered
by Fudholi et al., who experimentally studied the coupling between a PVT panels and a
TEG module, which is a thermoelectric di-thermal generator [22]. For a solar irradiation
of 1000 W·m−2, the additional electricity production by the TEG module is about 12 W,
which is of the same order of magnitude as the production of the endoreversible di-thermal
engine considered here.
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Figure 9. Variation of the work produced by the PV/TC system coupled to an endoreversible engine
with its operating temperature and for different solar irradiations (black, red and blue solid curves).
Variation of the corresponding heat exchange temperature difference ∆Th required between the
PV panel and the endoreversible engine cycle (black, red and blue dashed straight lines).

By considering the electricity and work production, the corresponding exergy effi-
ciency of the global system is assessed and represented in Figure 10. For the electrical
exergy efficiency, the evolution is similar to the electrical power evolution (Figure 6) as
electrical energy is considered as full exergy: it starts at 15.5% for the maximum operating
temperature of the PV panel of 81 ◦C (stagnation temperature under a solar irradiation
of 1000 W·m−2) and increases slightly as the PV panel is cooled down. The thermal ex-
ergy efficiency follows the same evolution as the work produced by the endoreversible
engine: it starts at 0 for the PV panel’s stagnation temperature, reaches a maximum value
of 1.67% at T̃h, and decreases to zero as the PV panel’s temperature decreases. As a result,
the global exergy efficiency increases when the PV panel’s temperature decreases, thanks
firstly to the improvement of the electricity production and secondly to the valorization of
the increasing amount of heat recovered from the PV panel by the endoreversible engine.
This endoreversible cycle exploits this recovered heat produced to convert it into additional
work: it reaches a maximum overall efficiency of about 18.7% for an optimal operating
temperature of T∗

h = 62 ◦C under 1000 W·m−2 of solar irradiation. However, when the
temperature of the PV panel decreases below this optimal operating temperature T∗

h , even
if the electrical production increases slightly, the overall exergy efficiency decreases because
of a significant decreasing of the work produced by the endoreversible engine.

Figure 10. Variation of the PV/TC system coupled to an endoreversible engine of the work engine
efficiency (blue, red and black dashed lines), electrical efficiency (purple solid lines), and overall
efficiency (blue, red and black solid lines) as a function of the operating temperature of the PV panel.
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Finally, by exploiting the thermal energy recovered from the PV panel to produce
additional work through an endoreversible Carnot machine, it should be possible to achieve
higher overall performances by further converting the produced work into additional
electricity. The overall electrical performance obtained by such coupling should be close and
higher than to those obtained by a conventional PV panel operating at ambient temperature,
whatever the solar irradiation. The electricity produced by this PV panel operating at
STC conditions (ambient conditions at 25 ◦C under 1000 W·m−2) is about 188 W·m−2,
while the overall exergy achieved by this PV panel operating at T̃h = 62 ◦C coupled to the
endoreversible engine is about 186 W·m−2.

3.3. Performance Analysis of the Coupling of a PV/TC Panel with a Tri-Thermal Endoreversible
Machine for Cold Production

For each amount of thermal energy recovered from the PV panel at a temperature Th,
a resulting amount of cold is produced, which also depends on the desired cold temperature
Tc. It can be seen from Equation (21) that the lower the temperature reached in the cold
production, the less is the quantity of produced cold. Figure 11 represents the evolution
of the produced cold by such a tri-thermal machine as a function of the desired cold
temperature when coupled to 1 m2 of panel delivering heat

.
Qh at the previously defined

optimal operating PV panel temperatures, T̃h and T∗
h .

Figure 11. Cold produced at different temperature Tc by an endoreversible tri-thermal machine
coupled to the PV/TC system working at T̃h (blue, red and black dashed lines) and at T∗

h (blue, red
and black solid lines).

The produced cold corresponds to that delivered in the optimum operating conditions
of a hot PV panel that maximizes either its overall exergy (T∗

h ) or just its thermal exergy
(T̃h), as seen previously in Figure 10. For 288 W·m−2 of thermal energy delivered by the
PV panel at T̃h = 68 ◦C (Figure 6), 143 W·m−2 of cold at 20 ◦C can be produced under a
solar irradiation of 1000 W·m−2, while only 128 W·m−2 of cold can be produced at 20 ◦C
when the PV panel operates at the optimum temperature T∗

h = 62 ◦C, which maximizes
the overall exergy production of the panel with 380 W·m−2 of recovered thermal energy.
As seen previously in the coupled PV/TC system to a di-thermal endoreversible Carnot
engine in Section 2.2.1, the amount of cold produced by the tri-thermal machine obtained
at the temperature T̃h corresponding to the maximum thermal exergy production by the
PV panel is more important than the cold produced at T∗

h . Moreover, for a cold production
at 20 ◦C, the coefficient of performance of the endoreversible tri-thermal machine is about
0.24 when operated with heat provided at T̃h = 68 ◦C, while it is 0.21 when operated at
T∗

h = 62 ◦C. The cooling performances of these tri-thermal endoreversible machines that
are considered in this study are closed and similar to those obtained by the silica gel/water
adsorption cycle operating in the same temperature range [32].
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3.4. Electrical Performance Enhancement Provided by an Active Cooling of Additional PV Panel by
the Endoreversible Tri-Thermal Machine

The evolution of these electrical gains is represented in the Figure 12 as a function of
the cooled PV temperature, as well for different solar irradiations.

Figure 12. (a) Variation for different solar irradiations of the electrical gains of both panels PV1

(blue, red and black dashed lines) and PV2 (blue, red and black doted lines) with the cooled PV2

temperature Tc when PV1 panel operates at its optimal temperature Th
*. (b) Overall electricity

production gain (blue, red and black solid lines).

Figure 12 shows that the gain of the first PV1 panel working at the optimal global
exergy temperature T∗

h is not impacted by the operating temperature of the second PV2
panel Tc. Its gain is constant as its operating temperature is kept fixed and depends only
on the solar irradiation: the gain is about 9.84% for a solar irradiation of 1000 W·m−2 and
an ambient temperature of 40 ◦C. For the second panel that is actively cooled below the
ambient temperature, it can be noticed that the lower the temperature is, the more important
the gain is with a linear evolution that can reach 40% of gain for these operating conditions.

The overall electricity production gain increases slightly when the operating tem-
perature Tc of the cooled panel is close to the ambient temperature, because in such a
temperature range, the amount of cold produced by the tri-thermal machine increases from
80 W·m−2 to 430 W·m−2 and allows us to maintain a larger surface S2 at Tc. The electrical
production of the second panel becomes more substantial and makes the overall gain
increase to reach 12.81% when the second PV panel is at temperature Tc = 30 ◦C.

3.5. Comparison with Conventional Cooling System by Heat Dissipation

Figure 13 shows a comparison of the performances of this active cooling of PV
panels performed by a tri-thermal machine with a simple heat dissipation system of
PV panels to ambient temperature, such as a water-cooled heat exchanger or a phase
change material placed on the back side of the PV panel. Such a heat dissipation system
conventionally enables the PV panels to operate generally from 15 to 25 ◦C above the
ambient temperature.
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Figure 13. Electrical gains obtained with an ideal active cooling with a tri-thermal machine working
at T̃h (blue, red and black dashed lines) and at T∗

h (blue, red and black solid lines), and comparison
with a heat dissipation system (blue, red and black doted lines).

When operating with an endoreversible tri-thermal refrigeration machine, the overall
electrical performance is a bit higher than the one obtained by a heat dissipation device,
such as a heat exchanger on the back side of the PV panel. Heat dissipation systems keep
PV panels at least at Tamb + 15 ◦C, with water forced convection or phase change materials.
To make a fair comparison between the tri-thermal active cooling with the heat dissipation
systems, a reference case in terms of operating conditions is considered at this temperature
of Tamb + 15 ◦C, where the two systems meet the same performance. One can notice that the
tri-thermal machine allows for more flexibility in terms of gains achieved in comparison
with the heat dissipation system. For these operating conditions, for the same surface of
panel, the electrical gain achieved by the heat dissipation system keeping the PV panel at a
temperature (Tamb + 15 ◦C) is equal to or lower than the gain obtained when the tri-thermal
machine operates at T∗

h , whatever the temperature Tc of the cold produced. Unlike the heat
dissipation system, to ensure this gain, the operating parameters of the panels temperature
must be set at Th = Tamb + 12/15 ◦C or lower. Finally, it can be noticed in Figure 13 that the
gains obtained in the T∗

h operating conditions are higher than the gains obtained in the T̃h

operating conditions. This is because, even though the amount of cooling is higher at T̃h
operating conditions and maintains a larger S2 area of PV2 at Tc, operating conditions at T∗

h
have a higher gain than T̃h for the same S1 area.

4. Conclusions

The objective of this study was to investigate the potential operating conditions to
improve the overall efficiency of a PV panel induced by the recovery of the thermal energy
produced by the latter and its possible valorization into work or cold.

A thermodynamic analysis of the coupling of PV panels with an endoreversible Carnot
engine was presented and showed that there are two optimal panel operating temperatures
T̃h and T∗

h , respectively, which allow us to maximize the thermal exergy produced by the
PV panel, and thus its potential to be valorized into work (or electricity) or to maximize the
overall thermal and electrical exergy of the PV panel.

The analysis of the valorization of the recovered heat into cold by an endoreversible
tri-thermal machine showed that the amount of cold produced is higher if the PV panel
operates at temperature T̃h than at T∗

h . This difference is related to the higher thermal
exergy content available at T̃h than T∗

h . As a result, the coefficient of performance of
this endoreversible tri-thermal machine is 0.24 when using PV heat at T̃h and 0.21 for T∗

h
operating conditions.
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In the case of an active cooling of an additional PV panel surface, the electrical gains
obtained for these two optimum temperatures of operation increase jointly when the
produced cold temperature is close to the ambient temperature. However, operation at
the optimum temperature T∗

h ensures a more stable gain when the operating temperature
of the second cooled panel varies, with a slightly larger gain for the low temperatures of
the cooled panel of about 12.8% in comparison with the working conditions at T̃h of about
11.1% at Tc = 30 ◦C and 1000 W·m−2.

By comparing the performances of the active cooling system with conventional heat
dissipative systems identified as state of the art, it is found that the endoreversible tri-
thermal machine enables us to reach similar performances when the cooled PV temperature
Tc is at 20 ◦C, as dissipative systems enable the PV panel to work at Tamb + 15 ◦C. Accord-
ingly, this active cooling solution can be considered as technically competitive with the
heat dissipative systems based on forced water convection or heat pipe.

Coupling such a tri-thermal machine with PV panels could be relevant to prevent the
deterioration of the PV panel over time, thanks to a lower average operating temperature.
The conclusions of this theoretical study must be confirmed by a transient behavior analysis
of the PV/Thermal collector panel and an experimental approach.
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Nomenclature

C Heat capacity of the collector (J·kg 1·K−1)
COP Coefficient of performance
Ėx Exergy per unit area of collector (W·m−2)
h Convective heat transfer coefficient (W·m−2 K−1)
IG Global incident irradiation (W·m−2)
m Mass (kg)
PCM Phase change material
PV Photovoltaic panel
PVT Photovoltaic-thermal panel
.

Q Thermal power per unit area of collector (W·m−2)
S Area (m2)
STC Standard test conditions
T Temperature (K)
TEG Thermoelectric generator module
TREC Thermally regenerative electrochemical cycle
V Wind velocity (m·s−1)
Ẇ Electrical power per unit area of collector (W·m−2)
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Greek symbol
α Absorptivity
β Temperature coefficient of PV module efficiency (K−1)
ε Emissivity
η Efficiency
σ Stefan–Boltzmann constant (W·m−2·K−4)
τ Transitivity
Indices
amb Ambient
c Carnot, Cold.
conv Convective
des Destroyed
PV Photovoltaic panel
endo Endoreversible
ex Exergie
h Heat
G Global incident
gl Overall
rad Radiative
ref Reference
s Solar
sky Sky
st Stagnation
t Time
th Thermal
w Wind
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