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Abstract: The paper presents the reactive power compensation method that allows for reducing
the active power flow even in the presence of angular asymmetry between voltage vectors of the
utility grid. Reactive power compensation ensures the reduction of power transmission losses and
therefore brings significant economic benefits to electricity consumers. The concept of the alternating
current/direct current (AC/DC) converter for prosumer applications operating as a local reactive
power compensator has been proposed. The system is driven by a multi-resonant algorithm, allowing
for independent control of the reactive power in each phase. The proposed method was validated
experimentally by using a prototype of the converter, programmable AC source, and grid impedance
model. The method made it possible to cover the reactive power demand without unnecessary active
power generation and thus to improve the efficiency of the analyzed prototype. This solution can be
implemented particularly in radial grids and non-urban areas.

Keywords: four-wire converter control method; microgrid; angular asymmetry; reactive
power compensation

1. Introduction

One of the main challenges of today’s electrical power engineering is the symmetriza-
tion of grid voltages and minimization of reactive power flows in distribution networks.
There are many negative effects associated with asymmetry in power systems, such as
increased losses in electric motors, harmonics transferred to DC systems, or phase currents
inequality [1]. The research on four-wire converters and voltage asymmetry compensa-
tion methods in the distribution networks has already been carried out. The solution
presented in [2] describes the control method for inverters, which is characterized by resis-
tive behavior for grid disturbances. Voltage distortions are also inextricably linked with
the load unbalances. There are proposals of load compensation under distorted voltages
that are based on instantaneous symmetrical component theory with positive sequence
extraction [3] or differentially rotating reference frame systems [4]. Other approaches
are connected with neutral current compensation [5,6] and fuzzy neural networks [7].
However, the problem that has not been addressed in the research publications is the
correlation between the asymmetry of phase angles and the reactive power compensators
output power factor. It should be emphasized that non-linear and asymmetric loading of
distribution networks [8,9] causes significant voltage asymmetry but also the phase angle
shift. This problem is exacerbated in the systems where the short-circuit impedance is
high—we can definitely include microgrids among them [10,11]. For the aforementioned
reason, it is required to develop methods of controlling active and reactive power in the
microgrid asymmetry states, which will be immune to the angular asymmetry between
voltage vectors.
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The low voltage distribution system is characterized by the fact that a large number
of receivers with various characteristics are connected to it [12]. Most of the devices
connected to the grid are single-phase loads. An increasing number of them have power
systems which are based on electronic converters [13]. The use of this technology results
from the requirements regarding their dimensions, weight, and price. The major problem
arising from the use of such converters is the fact that they consume current in a non-
linear manner [14]. An additional problem is the reactive power demand. Due to the
presented factors, the parameters of the power grid deteriorate [15,16]. Phase-to-phase
asymmetry appears, the voltage total harmonic distortion (THD) in the grid increases,
and the increasing amount of reactive power reduces the grid capacity and causes voltage
drops. The parameter that also changes is the phase angle between the voltage vectors. The
measurements in the low voltage networks with a large number of consumers show that
the phase angles are not symmetrical. Figures 1 and 2 show the measurements made using
Kyoritsu KEW6310 (Kyoritsu, Tokyo, Japan), which is power quality analyzer.
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Subsequent measurements were made in the microgrid, where one of the phases
was heavily loaded. The angular error has been observed to become worse. The voltage
asymmetry between phase 2 and phase 3 is 11 V. The results are presented Figure 2.

The angular asymmetry between voltage vectors has a significant impact on the
operation of three-phase systems containing transformers, motors, and power converters.
This article discusses the problem of reactive power compensation in a microgrid by a
three-phase converter in the presence of angular errors. The microgrid system was selected
as the research object due to high impact of its parameter fluctuations on the stability and
efficiency of the entire system. A four-wire three-level AC/DC converter was used to solve
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the presented problem. This solution can be implemented particularly in radial grids and
non-urban areas as a device maintaining the parameters of the electrical grid.

2. Phase-Independent Reactive Power Compensation with the Use of Four-Wire
Hybrid Converter with Proportional-Resonant Regulators

The microgrids are characterized by the fact that their structure includes devices which
are working as the current sources. These are generators based on internal combustion
engines, electrochemical or mechanical energy storages, and renewable energy sources. All
these devices are connected with each other by converters that synchronize with the grid.
A typical structure of such a system is shown in Figure 3.
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(b) The flowchart of the multi-resonant algorithm. I*

q, I*
d—Reference current value in dq frame; Id,

Iq—feedback currents after Park transform; Vdq—voltage signals in dq frame; Ig_abc, Vg_abc—Three
phase instantaneous currents and voltages. Vinv_abc—three phase reference signals for PWM module.

The three-phase converter system for renewable energy sources presented in Figure 3
uses PLL (Phase-locked Loop) systems for synchronization with the grid [17–19]. These
systems can be divided into those with a system of decomposition into symmetrical compo-
nents and without this functionality. A common feature of these systems is the generation
of a sawtooth signal common to three phases, which maps the actual vector angle of the
grid voltage. Unfortunately, the PLL systems used in microgrid-connected three-phase
converters do not meet the proper synchronization requirements connected with the angu-
lar asymmetry between the individual phases. When this asymmetry is not detected, the
unwanted amounts of power will be drawn or delivered by the converters connected to
the microgrid system. It should be emphasized that the microgrids are loaded asymmetri-
cally. As a result, the value of active and reactive power is different in each of the phases.
Therefore, the developed reactive power compensator should provide phase-independent
reactive power compensation in the presence of angular asymmetry between voltage vec-
tors. This type of operation can be achieved by replacing the classical synchronization
and power calculation system based on the classical theory of instantaneous power with
a solution that takes into account the phase angles of individual phases. The system is
complemented by the use of a converter system that enables independent power control
for each of the phases, despite the presence of disturbances in the microgrid parameters.
The flowchart of the multi-resonant algorithm is presented in Figure 3a.

The proposed solution is a four-wire AC/DC converter (Figure 4). Its construction is
based on a three-level T-type topology [20–22]. The fourth branch acts as a neutral wire and
it enables phase-independent reactive power compensation. This solution is realized by a
serial connection of Cx1 and Cx2 capacitors. As a result, the DC bus voltage is split in two.
The application of increased capacity on the DC bus improves the operation of the system
in dynamic states. In this context, the use of supercapacitors may be considered [23,24]. LN
inductance is connected between neutral point and Q13–Q14 transistors. This connection



Energies 2022, 15, 497 4 of 13

allows for the active voltage stabilization on split DC bus. The inductive-capacitive-
inductive (LCL) filter is used at the output of the converter, tuned to eliminate interference
from the switching transistors.
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Due to the fact that each phase of the converter is controlled independently, the control
system was considered as single-phase for further analysis. Subsequently, the system was
expanded to three phases during simulation studies.

The main problem which is not mentioned by literature is the proper synchronization
with unbalanced phase angles and correct calculation of the converter output currents
value. The basic method uses a three-phase synchronous reference frame phase-locked
loop (SRF-PLL) [25,26]. The synchronization method generates a sawtooth signal θ, which
carries a phase angle value in the range from 0 to 2π.

The synchronization angle θ is used for the calculation of active and reactive current
values in the dq frame. This calculation is realized in two steps: The first one is to pass the
current signal through the Second-Order Generalized Integrator filter (SOGI), which shifts
the measured phase by 90 degrees [27,28]. The second one is the active and reactive current
components generation via the Park transform, which is based on the previously calculated
signal by the PLL and phase current signal. d

q
0

 =

√
2
3

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

×
[

α
β

]
(1)

The method presented in Figure 5a is simple and efficient but causes current calculation
errors if the voltage vectors of the weak utility grid are no longer shifted by 120 degrees.
Figure 6 presents the value of dq signals as a function of the synchronization angle. Table 1
presents the dq signal value as a function of the small phase error, which is typical for
weak utility grids under unbalanced loads. The solution that will overcome these errors
is presented in Figure 5b. Instead of a calculation of three 120 degree-shifted signals by a
single PLL, three separate PLLs are used to calculate the correct angle of the voltage in each
phase independently. In this case, the problem presented in Figure 6 no longer exists: the
calculated currents are the base of the active and reactive current control loop.

The control algorithm verifies the amount of reactive power on the basis of the current
and voltage measurements at the electrical terminals of a given facility. Reactive power
is calculated by the system presented in Figure 5b. The sawtooth synchronization signals
generated by the PLLs are converted into a sinewave signal. The sine signals are compared
with the current references calculated on the basis of the difference between the demanded
and measured reactive power. The next step is to calculate the errors that will be transferred
to the inputs of the proportional-resonant regulators by applying negative feedback from
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the converter’s current. Due to the presence of harmonics in the utility grid, the solution of
a multi-resonant regulator is proposed, which consists of multiple proportional-resonant
controllers connected in parallel. Next, the signals representing grid voltages are added
to the signals from the output of the proportional-resonant regulators and the signals
representing the capacitors currents from the LCL filter are subtracted in the same point.
The last of the aforementioned feedback loops plays a very important role in stabilizing the
converter’s island operation because it constitutes the “virtual damping resistance” of the
LCL filter. Finally, the signal, which is the result of the aforementioned control process, is
modulated in the pulse width modulation (PWM) module.
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Table 1. The changes of d and q components as a function of the phase angle.

Phase
Error [deg.] d q

1 0.999 0.017
3 0.998 0.052
5 0.996 0.087
10 0.985 0.173

The diagram and control method of the four-wire converter are shown in Figure 7.
This system includes multi-resonant control for single-phase voltage [29–31]. The basic
system parameters are presented in Table 2:
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Table 2. Hybrid AC/DC converter parameters.

Properties Value

Output power (kVA) 10
Switching frequency of AC/DC modules (kHz) 20
DC bus voltage of the AC/DC converter (V) 750
DC bus capacity (mF) 10
LCL filter cut-off frequency (kHz) 2.8
THDi (at load above 50%; %)
Efficiency

<1
94%

The following equations describe the open loop transfer function of the system:

Gi =

(
KpI_1H +

N

∑
n=1,3,5,7,9

KiI_nH2ωrcI_nHs
s2 + 2ωrcI_nHs + ω2

o_nH

)(
Gd

Kvdc_ f dbk

)
GLCL · Gnotch (2)

where Gi—transfer function of the system, KpI_1H—PI regulator gain, n—the harmonic
order, KiI_nH—individual resonant gain for the n-th harmonic, ωrcl_nH—cut-off frequency,
ω0—base frequency of the filter, Gd—power converter transfer function, Kvdc_fdbk—DC bus
voltage gain, GLCL—LCL filter transfer function, and Gnotch—notch filter transfer function.

GLCL =
1 + R f C f s

L1C f L2s3 + (L1 + L2)R f C f s2 + (L1 + L2)s
(3)

where Rf—damping resistance, Cf—LCL filter capacity, L1—the converter side inductor,
and L2—the grid side inductor.

Gnotch =
s2 + 2·kmin·d·ωn·s + ω2

n
s2 + 2·d·ωn·s + ω2

n
(4)

where Gnotch—notch filter transfer function, kmin—gain at the notch frequency (in absolute
units), d—damping ratio, and ωn—notch frequency (specified in rad/s).
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On the basis of the transfer function (2), the Bode plot of the control system in con-
junction with the LCL filter has been determined (Figure 8). Bode plot analysis shows
that constant and slow-varying signals are integrated. The system response to the signals
characterized by frequencies which are slightly below 50 Hz is purely proportional. Bode
plot peaks correspond to the fundamental frequency PR controller and its odd multiples.
The system also has a low-pass filter with an additional notch filter [32], which is tuned to
eliminate the peak at the resonance frequency of the LCL filter.
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3. Tests Results

For the simulation tests, a microgrid with single-phase loads and an AC/DC converter
operating in the reactive power compensator mode was modeled. The active power
reference was equal to zero in all simulation cases. In the first case, the oscillogram
(Figure 9a) showed the power delivered by the converter to the symmetrically loaded
microgrid. For synchronization purposes, the system with standard three phase-based PLL
was used (Figure 5a). The active power delivered by the converter was close to zero. In
the second case (Figure 9b), resistive, inductive, and capacitive loads were connected to
the individual phases of the microgrid, which resulted in voltage unbalance. As in the
previous case, a standard PLL was used for synchronization (Figure 5a). The converter’s
output power was close to zero in the first phase, approximately 150 W in the second phase,
and slightly over 200 W in the third phase. The third oscillogram (Figure 9c) showed the
case where the loads remained the same as in the second case but the synchronization
method was changed by introducing three individual PLLs (Figure 5b). As a result, the
active power flow generated by the converter in all three phases was close to zero. It can be
clearly stated that the synchronization system based on three individual PLLs has a good
level of performance in the state of voltage unbalance.

The test bench for determining the effectiveness of the reactive power compensation
in the individual phases of the microgrid was set up according to Figure 10. The research
was carried out with the use of the hybrid AC/DC converter in a three-phase four-wire
configuration (Figures 10 and 11), Chroma 6512 programmable three-phase AC source, and
three-phase reactive load. The research was divided into three main parts. The first two
show the correctness of the reactive power compensation at a variable reactive load; in this
state, the converter outputs only the reactive power. The third part presents the influence
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of the angular asymmetry between voltage vectors on the correctness of the output active
and reactive power. An example with the single synchronization system is presented, as
well as a proposed algorithm that makes the converter independent of angular errors.
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Figure 10. Test bench block diagram: three-phase AC/DC converter system for reactive power
compensation.

The first variant involved loading the first phase with 3.7 kvar capacitive reactive
power and the other two phases with 5 kW active power per phase. The second variant
involved loading the first phase with 3.7 kvar capacitive reactive power, the second phase
with 2 kvar inductive reactive power, and the third phase with 5 kW of the active power.
All tests were conducted at the same voltage level: 230 V.
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In the first laboratory test, the flow of reactive power was caused entirely by the
capacitive load in the first phase (Figure 12a). The second and third phase load was resistive,
therefore all the power delivered by the programmable AC source Chroma 6512 in these
phases was active. Reactive power compensation reduced the reactive current flow from the
programmable AC source to zero (Figure 12b). During compensation, the programmable
AC source provided only the active power consumed by the resistive loads on two phases.
The fulfilment of this condition allows for reducing the flow of reactive power at the output
of the converter in an idle state to zero (Figure 12c). The reactive current flow, forced by the
converter (Figure 12d), fully covers the demand of the loads, thus the programmable AC
source does not have to transfer any reactive power to the load.
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Figure 12. Programmable AC source currents (measured at PCC point): (a) AC source loaded
without AC/DC converter connection, (b) connected AC/DC converter operating in reactive power
compensation mode, and (c) reactive power compensation in the idle state of the AC source. (d) The
coverage of reactive current demand by the AC/DC converter.
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In the second test, due to the capacitive load in the first phase and inductive load in
the second phase, the flow of reactive power in these phases was detected (Figure 13a). The
third phase load was resistive, therefore all the power given off by the programmable AC
source in this phase was active. Reactive power compensation reduced the reactive currents
flow from the programmable AC source to almost zero. The fulfilment of this condition
allows for reducing the flow of reactive power at the output of the converter in an idle
state to zero (Figure 13c). The reactive current flow, forced by the converter (Figure 13d),
fully covers the demand of the loads, thus the programmable AC source does not have to
transfer any reactive power to the load.
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Figure 13. Programmable AC source currents (measured at PCC point): (a) AC source loaded
without AC/DC converter connected, (b) connected AC/DC converter operating in reactive power
compensation mode, and (c) reactive power compensation in the idle state of the AC current source.
(d) The reactive current flow forced by the converter AC/DC.

Figure 14 presents the comparison between two considered synchronization methods
from the grid perspective. It is worth noticing that in Figure 14a, the active power is non-
zero in individual phases. The converter generated 74.8 W in the second phase and 28.6 W
in the third phase. This is due to the use of the standard three phase-based synchronization
method. This test is an empirical confirmation of the simulation that included the operation
of the converter with the above-mentioned synchronization algorithm (Figure 9b). In the
simulation, the active power delivered by the inverter was greater than in the test result
because a deeper angular asymmetry was modeled. This is an undesirable situation because
the active current can discharge AC/DC converter capacitors and then drain the power from
prosumer energy storage. On the other hand, when the improved compensation algorithm
was applied (Figure 5b), the active current from the output of the power converter is almost
zero; this is preferred situation because the active and reactive current is measured without
the error caused by phase angle unbalance (Figure 14b). Simulation studies also showed
high effectiveness of the improved synchronization method in reducing undesirable active
power flow. Despite the small error of angles between voltage vectors, the active current is
almost negligible and discharging of the capacitive DC-link or prosumer energy storage
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does not occur. The use of the proposed compensation method reduced the error of active
power output by 97.97%.
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4. Summary

The article presented the problem of reactive power compensation in the local micro-
grids. The analysis of the available solutions showed that the commonly used devices are
characterized by low operation dynamics and are not able to fully compensate the generated
reactive power for the individual phases of the system. Additionally, the currently available
solutions are designed for three-phase symmetrical operation. The paper presented a
solution based on a three-phase, four-wire AC/DC power converter with a separate neutral
wire and reactive power compensation algorithm which is immune to unbalanced grid
conditions. The applied control algorithm is based on the digital implementation of the
multi-resonant algorithm, two-variant PLL module, and power analysis subsystem. Based
on laboratory tests results, it has been proven that a better solution is to use a system with
three individual PLLs and Park transforms in the case when the microgrid is in the angular
asymmetry state. The difference between using the standard approach (Figure 5a) and
the proposed approach (Figure 5b) was presented. The final conclusion shows that the
utilization of the three-level, four-wire converter with independent control of individual
phases has a high potential for reactive current compensation in the case of microgrids,
but the correct algorithm for proper synchronization must be applied. Laboratory tests
presented in Figure 14a,b showed that the proposed algorithm operates properly with a
weak microgrid and it is able to reduce active power on the output of the reactive power
compensator from 103.5 W to 2.1 W, which can prevent the discharge of the DC link of
converter and prosumer energy storages.
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