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Abstract: Accurate short-term load forecasting can ensure the safe operation of the grid. Decomposing
load data into smooth components by decomposition algorithms is a common approach to address
data volatility. However, each component of the decomposition must be modeled separately for
prediction, which leads to overly complex models. To solve this problem, a VMD-WSLSTM load
prediction model based on Shapley values is proposed in this paper. First, the Shapley value is used
to select the optimal set of special features, and then the VMD decomposition method is used to
decompose the original load into several smooth components. Finally, WSLSTM is used to predict
each component. Unlike the traditional LSTM model, WSLSTM can simplify the prediction model and
extract common features among the components by sharing the parameters among the components.
In order to verify the effectiveness of the proposed model, several control groups were used for
experiments. The results show that the proposed method has higher prediction accuracy and training
speed compared with traditional prediction methods.

Keywords: short-term load forecasting; long short-term memory network; nonlinear feature selection;
weight sharing; electric load; Shapley value

1. Introduction

With the continuous progress of social science and technology, the application of
electric power is becoming increasingly extensive, and there are more and more factors
affecting the electric load, which leads to the non-smoothness and complexity of the electric
load. Accurate prediction of power load data is beneficial to the relevant departments for
policy making and power dispatching, and it is of great significance to the development
of power systems. Therefore, determining how to accurately forecast the power load is a
topic worthy of study.

Prediction by artificial intelligence algorithms is a current research hotspot in the field
of load prediction, and artificial intelligence algorithms are more suitable for nonlinear
data, such as random forests [1,2], artificial neural networks [3,4], and support vector
machines [5]. Among them, long short-term memory (LSTM) network is optimized on
the basis of RNN. LSTM has a unique gate structure design that effectively overcomes
the problem of gradient explosion or disappearance in RNN; it can effectively explore
the intrinsic relationship between temporal data and has better accuracy when processing
temporal data compared with other intelligent algorithms [6]. Currently, LSTM is studied
and applied in many fields, such as load prediction [7], action recognition [8], and speech
recognition [9].

However, with the continuous intensification of research, people have found that it
is difficult to obtain ideal results using only a single algorithm, and a single algorithm
generally has disadvantages such as slow calculation speed and large resource consump-
tion [10]. Based on this, combined prediction methods have been proposed, of which load
decomposition plus prediction is among the better ideas.

Energies 2022, 15, 487. https://doi.org/10.3390/en15020487 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15020487
https://doi.org/10.3390/en15020487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5499-9217
https://doi.org/10.3390/en15020487
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15020487?type=check_update&version=1


Energies 2022, 15, 487 2 of 18

Zhu et al. [11] used EMD-Fbprophet-LSTM to predict the daily electricity consump-
tion of enterprises to address the nonstationary nature of electricity consumption data.
Semero et al. [12] used empirical modal decomposition (EMD) to decompose the short-term
load in a microgrid to obtain better prediction results. Although EMD can reduce the
randomness and volatility of the data, it is recursive in nature, and modal confusion occurs
when intermittent signals are present in the original signal. Later, based on EMD, ensemble
empirical modal decomposition (EEMD) was established by adding white noise to the
original signal, and this modification can avoid the phenomenon of modal confusion in the
decomposition process. Tang et al. [13] combined ensemble empirical modal decomposition
(EEMD) with a deep belief network (DBN) and a bidirectional recurrent neural network
(BIRNN) to establish the EEMD-DBN-BIRNN electric load model.

Azam et al. [14] combined ensemble empirical modal decomposition (EEMD) with a
bidirectional long short-term memory network (BiLSTM) to obtain more accurate results for
forecasting the electricity load one day ahead. Although EEMD can solve the modal mixing
phenomenon in EMD, it adds white noise to the original signal, which can contaminate
the fluctuation trend of the original signal. Variable modal decomposition (VMD) can
choose the number of modal components after decomposition according to the actual
situation, and it adopts a nonrecursive processing strategy to decompose the original
signal by constructing and solving the constrained variational problem, which has the
advantages of better signal decomposition accuracy and anti-interference. At present,
VMD is widely used in power load forecasting [15–17], wind speed forecasting [18,19],
energy price forecasting [20], etc. Although the decomposition algorithm to decompose
the original load is helpful to reduce the non-smoothness of the data and thus improve the
accuracy of the model, it requires each component of the decomposition to be modeled
separately for prediction, which not only makes the model computationally intensive and
the training time longer but also makes the extraction of common features among each
component inadequate.

The accuracy of load forecasting generally depends on two major aspects: the fore-
casting method and feature processing. The forecasting method is continuously optimized,
while feature processing is also studied in depth. Feature processing generally refers to the
analysis of various features affecting the load to identify the features that have a greater
impact on the load, after which the optimal set of features is selected, which reduces
interference by features that have a smaller impact on the load in the model. Previous
studies [13,21] used the Pearson correlation coefficient (PCC) to analyze the correlation
between power data and features, and several features with greater correlation with the
load were selected as the input feature set to realize dimensionality reduction and the
selection of data. Ge et al. [22] quantified the correlation between load and input features
using the maximum information criterion (MIC) and used FA to filter the features and
eliminate invalid features. The above methods mainly use a number of features with a high
correlation with the load data as input features; however, the feature-to-feature redundancy
is not taken into account. In order to solve the problem of redundancy, people started to
use the maximum correlation minimum redundancy [23,24] (mRMR) algorithm to select
the optimal feature set based on the principle of maximizing the correlation between the
feature set and the load data while minimizing the redundancy between the features and
using incremental search to select the features.

Most of the existing methods use only linear analysis methods to analyze features, but
there is a complex, nonlinear relationship between features and load data, so such methods
still have major limitations. The Shapley value [25] is a method in cooperative game theory
that distributes benefits fairly to each member of a team based on the contribution of the
members to the total benefit. Shapley values have been used in feature selection [26,27]. If
each power impact factor is abstracted as a team member and the result of load forecasting
is taken as the total benefit, the result of each feature for load impact forecasting can be
measured by the Shapley value, and since Shapley is interpretable and can reflect the
contribution of each feature, it is more able to reflect the nonlinear relationship between
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features and load compared to the traditional linear analysis method [26]. Based on the
above related research, this paper proposes a VMD-WSLSTM load prediction model based
on Shapley values. First, Shapley values are used for feature selection. Then, VMD is used
to decompose the load data into several smooth components, and finally, the WSLSTM
prediction model is constructed to predict the components. Table 1 shows the differences
between the conventional load forecasting methods and the forecasting methods proposed
in this paper. The innovation and contribution of this paper lie in the following aspects:

(1) Considering the complex nonlinear relationship between the electric load and the
features, we use the Shapley value for feature selection.

(2) Considering the non-smoothness of the electric load, we use VMD to decompose the
electric load and reduce the non-smoothness of the load.

(3) Considering that the traditional load forecasting model based on the combination of
decomposition and prediction will lead to too many model parameters and overly
complicated training, we introduce the idea of weight sharing to LSTM and construct
the WSLSTM model.

Table 1. Comparison between the proposed method and traditional methods.

Literature Related to Prediction Methods Literature Related to Feature Analysis

Methods Principles Authors Methods Principles Authors

EMD LSTM Fbprophet Each component is
modeled separately Zhu et al. [11] PCC Linear correlation Tang et al. [13]

EEMD BiLSTM Each component is
modeled separately Azam et al. [14] MIC Linear correlation Jung et al. [22]

EEMD DBN Each component is
modeled separately Tang et al. [13] mRMR Linear correlation Ge et al. [23]

VMD WSLSTM Intercomponent
coefficient sharing this paper Shapley Nonlinear contribution This paper

2. Materials and Methods

In this section, firstly, the feature selection method used in this paper is introduced,
and the specific process and formulas are described in Section 2.1. Secondly, the VMD
decomposition model is introduced, and the specific process and formulas are described in
Section 2.2. Finally, the main prediction model, the WSLSTM model, is introduced, and the
specific process and formulas are described in Section 2.3.

2.1. Feature Selection

In load forecasting studies, there are many factors that affect load fluctuations, and the
relationship between factors and the load is highly complex and nonlinear. The Shapley
value can effectively quantify the nonlinear relationship between features and the load [28].
The Shapley value is essentially a measure of marginal contribution. Based on this concept,
the contribution of each feature to the load can be expressed by the Shapley value, and the
average value of the marginal contribution of the jth feature of each n-dimensional sample
in different feature subsets is the Shapley value of the feature. Its calculation formula is
as follows.

φj = ∑
S

|s|!(n− |s| − 1)!
n!

(Fx(S ∪ {xj})− Fx(S)) (1)

where φj is the Shapley value of the jth feature in sample x, S is the subset of features not
included in xj, |s| is the number of features included in S, and Fx(S) is the prediction result
based on the set of S features.

From the formula, we know that to calculate the Shapley value of xj, we need to
calculate all combinations of features with and without xj, and when the number of features
is N, the combination of features to be considered is 2N . Obviously, when the number of
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features to be considered is large, it will lead to an exponential increase in computation.
Therefore, in this paper, the Shapley value of the features is estimated using the Monte
Carlo sampling method [29]. It is assumed that the input set of the model is D = {xi, yi}n

i=1,
and the samples to be computed are denoted by xi.

Step 1: Set the number of samples to M and reset the initial iterations to m = 1.
Step 2: Realign the features in xi to obtain a new alignment xi,m.

xi,m = {x(1)i , x(2)i , · · · , x(j)
i , · · · , x(n)i } (2)

where n is the number of features in xi,m, and x(j)
i is the jth feature in xi,m.

Step 3: Sort the features in the selected sample v according to the order of xi,m, yield-
ing vm.

vm = {v(1), v(2), · · · , v(j), · · · , v(n)} (3)

where n is the number of features in vm, and v(j) denotes the jth feature in vm.
Step 4: Construct two new samples from the aligned xi,m and vm.

x+j
m = {x(1)i , x(2)i , · · · , x(j−1)

i , x(j)
i , v(j+1), · · · , v(n−1), v(n)} (4)

x−j
m = {x(1)i , x(2)i , · · · , x(j−1)

i , v(j), v(j+1), · · · , v(n−1), v(n)} (5)

Step 5: Input the two newly generated samples xi,m and vm into the trained GWO-
LSTM prediction model to calculate the prediction results and further obtain the marginal
contribution of feature x(j)

i to the prediction results φ(j)
i,m

.

φ(j)
i,m

=
∧
F
(

x+j
m

)
−
∧
F
(

x−j
m

)
(6)

Step 6: Set m = m + 1 and loop through step (3) to step (8) until m > M when the
loop stops.

Step 7: Calculate the average value of the marginal contribution of feature x(j)
i obtained

in M cycles, which is the Shapley value of x(j)
i .

φ
(j)
i =

1
M

M

∑
m=1

φ
(j)
i,m (7)

For dataset D, the average absolute value of the Shapley value Kj of the feature in
dataset D can be considered the Shapley value of the feature for the total load prediction
result, which is calculated as:

Kj =
1
n

n

∑
i=1

∣∣∣φ(j)
i

∣∣∣ (8)

The Shapley value measures the importance of a feature for the load, and the larger
the Shapley value of a feature, the greater the impact on the load.

2.2. Variable Modal Decomposition

Variable modal decomposition [30] was proposed by Dragomiretskiy et al. on the
basis of empirical modal decomposition. It is a nonrecursive, adaptive method for decom-
posing nonsmooth signals and is able to choose the number of modes for decomposition
autonomously. The decomposed modal component (IMF) is a bandwidth-constrained
amplitude modulation function with good noise robustness.

The VMD first calculates the analyzed signal for each modal component uk(t) by
Hilbert transform to obtain the one-sided spectrum.(

δ(t) +
j

πt

)
uk(t) (9)
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The signal resolved in each mode and its corresponding center frequency index e−jwk are
mixed to shift the spectrum of each mode to the corresponding fundamental frequency band.[(

δ(t) +
j

πt

)
uk(t)

]
e−jwk (10)

The gradient-squared L-parameter is calculated by demodulating the Gaussian smooth-
ness of the signal and the gradient-squared criterion, from which the bandwidth of each
modal signal is estimated with the variational constraint model as:

min
{uk},{wk}

{
∑
k

∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jwkt

∥∥∥2

2

}
(11)

s.t.
k

∑
k=1

uk = f (12)

where ∂t is the Dirac function, {uk} is the decomposition of the modal components, {wk} is
the corresponding central frequency of each modal component, and ∗ is the convolution
operation.

Introducing the Lagrange multiplier operator λ(t) and the quadratic penalty factor α
turns it into an unconstrained variational model.

L({uk}, {wk, λ}) = α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jwkt

∥∥∥2

2

+
∥∥∥ f (t)−∑

k
uk(t)

∥∥∥2

2
+

[
λ(t), f (t)−∑

k
uk(t)

] (13)

In order to obtain the optimal value of Equation (11), VMD applies the multiplicative
operator alternation method to cyclically update each decomposition signal {uk} and its
corresponding center frequency {wk} with the cyclic update of Equations (14) and (15).

un+1
k (w) =

f (w)− ∑
i 6=k

ui(w) +
u(w)

2

1 + 2a(w− wk)
2 (14)

wn+1
k =

∫ ∞
0 ω|uk(ω)|2dω∫ ∞

0 |uk(ω)|2dω
(15)

when the loop iteration satisfies Equation (16), the loop terminates, and the final modal
component is obtained as follows.

∑
k

‖un+1
k − un

k ‖
2
2

‖un
k ‖

2
2

< ε, n < N (16)

2.3. WSLSTM

Long short-term memory networks [31] (LSTM) were first proposed in 1997. Com-
pared with RNN, the LSTM model introduces the concepts of memory cells and gates,
replaces the neurons in the traditional neural network with memory cells, and adds forget
gates, input gates, and output gates. The LSTM structure is able to store more long-term
information and remove the unimportant information, so it can process the temporal data
efficiently. Figure 1 shows the basic structure of LSTM.
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The calculation process is shown in Equations (17)–(22):

ft = σ
(

w f [ht−1, xt] + b f

)
(17)

it = σ(wi[ht−1, xt] + bi) (18)

gt = tanth(wc[ht−1, xt] + bc) (19)

Ct = ft × Ct−1 + it × gt (20)

ot = σ(wo[ht−1, xt] + bo) (21)

ht = ot × tanth(Ct) (22)

First, we calculate the state of the forget gate ft, which takes values from 0 to 1, and
ft determines the extent to which the last moment of the model’s memory state Ct−1 is
preserved. ht−1 is the output of the previous moment, xt is the new input information, and
w f is the weight matrix of the forget gate. After the model retains the relevant information
from the memory state of the previous moment through the forget gate, it then determines
the new information to be added through the input gate it.wi is the weight matrix of the
input gates. Ct is the updated memory cell state, and gt is the preparatory information
to be input into Ct. Finally, the output of the current moment ht is calculated through the
output gate ot, b is the bias matrix, and tanh is the activation function.

The weight-sharing mechanism [32,33] (WS) is a new idea that has emerged in recent
years and is involved in image recognition, language interaction, etc. WSLSTM applies
the idea of weight sharing, the essence of which lies in reducing parameters, simplifying
the model, and extracting common features by sharing part of the structure of multiple
independent LSTMs. The structure is similar to the stacked LSTM network structure,
with the difference that WSLSTM shares one layer of the network structure. Specifically,
after the original data are decomposed by the decomposition algorithm to obtain n modal
components, it enters the corresponding independent LSTM, which is responsible for
extracting the intrinsic features of each component. Then, it enters the LSTM layer with
shared weights, which is responsible for resolving the common features of the components.
Finally, it enters the independent LSTM layer, which is responsible for the final correction
of the data, and the final prediction results are obtained by reconstructing the prediction
results of each component after the correction. The existence of shared weights reduces
the parameters of the model and improves its training speed. Figure 2 shows the structure
of WSLSTM.
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The forward calculation of WSLSTM is similar to that of an ordinary multilayer LSTM,
and the neuron update at moment t of the nth layer LSTM network is formulated as follows:

i(n)t

f (n)t

o(n)t

g(n)t

 =


σ
σ
σ

tanh




W(n)
i,x W(n)

i,h

W(n)
f ,x W(n)

f ,h

W(n)
o,x W(n)

o,h

W(n)
g,x W(n)

g,h

 =

[
h(n−1)

t

h(n)t−1

]
(23)

WSLSTM backpropagation is similar to the ordinary neural network when updating
the weights. Error backpropagation is used to calculate the error between the model output
data and the original load data, and the loss is recorded as the sum of the errors of all
outputs. The minimum error method is used to adjust the weights.

2.4. The Framework of the Proposed Model

Figure 3 is the framework of the proposed method. Firstly, feature selection is per-
formed using Shapley values, then the load data are decomposed into several modal
components using VMD, and the component data are input to the WSLSTM model for
prediction. Finally, the predicted values of each component are superimposed to obtain the
final predicted values.
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3. Evaluation Indicators

In this study, the root-mean-square error (RMSE), mean absolute percentage error
(MAPE), and mean absolute error (MAE) were used to estimate the accuracy of the forecast
results. The specific formula is as follows:

MAE =
∑L

t=1 (yt −
∧
yt)2

L
(24)

MAPE =
∑L

t=1

∣∣∣(yt−
∧
yt)
∣∣∣

yt

L
× 100% (25)

MSE =
∑L

i=1 (yt −
∧
yt)

L
(26)

where
∧
yt is the prediction result of the model at time t, yt is the actual load data at time t,

and L is the total number of load data.
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4. Case Study

In this section, we first present the data used for the experiments. To verify the validity
of the proposed model, four datasets were used for testing, and multiple models were used
for comparative analysis.

4.1. Data Introduction

The data used in this study are from the 9th Electrical Mathematical Modeling Contest.
The full-year data of 2016 were selected as the experimental dataset with a one-hour data
collection interval and 8760 data points in total. The mean-fill method was used to fill in the
missing data in the dataset. To be able to better evaluate the model, the data were divided
into four datasets according to seasons. Throughout the year, electricity load is at the
highest level in summer due to the widespread use of cooling equipment and at a higher
level in winter due to the use of heating equipment. In the fall and spring, the electricity
load is in the middle level due to the moderate temperature. The specific information of
the dataset is shown in Table 2 (statistical information table of load data after filling).

Table 2. Statistical information table of load data after filling.

Seasons Sum Max Median Min Mean Std

Spring 2160 36,334 22,321 55,784 22,310 7788
Summer 2208 48,113 36,010 21,066 35,443 6704
Autumn 2184 46,546 30,558 14,699 30,399 7174
Winter 2208 51,127 32,638 16,245 32,788 8018

In this study, the experimental data were divided in the ratio of 9:1; the first 90% of
each dataset is the training set, and the last 10% is the test set. Combined with Figure 4,
it can be seen that the loads in the four seasons have roughly the same trend, with larger
fluctuations in spring and winter and smaller fluctuations in summer and autumn.

Energies 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 4. Hourly gas load. 

4.2. Feature Selection 

The initial feature set is shown in Table 3. In this study, we broadly considered 

weather features (temperature, rainfall, relative humidity, etc.), date features (month, 

number of days of the week, first day of the month, first hour of the day, and whether it 

is a weekday or not), and load features (hourly load values for the past 23 h). 

Table 3. Initial feature information table. 

Serial Number Feature Feature Description 

D1 Temperature °C 

D2 Rainfall mm 

D3 Relative humidity RH (%) 

D4 Type of month There are 12 months in a year (1~12) 

D5 Type of week There are 7 days in a week (1~7) 

D6 Type of day There are 31 days in a month (1~31) 

D7 Type of hour There are 24 h in a day (1~24) 

D8 Type of working day Working days (1); Rest days (0) 

Ti (T1~T7) 
Hourly load values for the last i 

hours 
MW 

The Shapley value of each season’s gas load characteristics was calculated, the abso-

lute value was taken, and normalization processing was performed. As shown in Figure 

5, the order of importance of the characteristics is approximately the same for each season, 

with the ‘type of hour’ contributing the most to the electrical load. Temperature contrib-

utes the most to the load in summer, followed by winter. 

Figure 4. Hourly gas load.



Energies 2022, 15, 487 10 of 18

4.2. Feature Selection

The initial feature set is shown in Table 3. In this study, we broadly considered weather
features (temperature, rainfall, relative humidity, etc.), date features (month, number of
days of the week, first day of the month, first hour of the day, and whether it is a weekday
or not), and load features (hourly load values for the past 23 h).

Table 3. Initial feature information table.

Serial Number Feature Feature Description

D1 Temperature ◦C
D2 Rainfall mm
D3 Relative humidity RH (%)
D4 Type of month There are 12 months in a year (1~12)
D5 Type of week There are 7 days in a week (1~7)
D6 Type of day There are 31 days in a month (1~31)
D7 Type of hour There are 24 h in a day (1~24)
D8 Type of working day Working days (1); Rest days (0)

Ti (T1~T7) Hourly load values for the last i hours MW

The Shapley value of each season’s gas load characteristics was calculated, the absolute
value was taken, and normalization processing was performed. As shown in Figure 5, the
order of importance of the characteristics is approximately the same for each season, with
the ‘type of hour’ contributing the most to the electrical load. Temperature contributes the
most to the load in summer, followed by winter.
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Features with normalized Shapley values greater than or equal to 0.1 were selected
separately for each training set. The final set of features selected for each season is shown
in Table 4.

Table 4. The final feature selection result of four datasets.

Season Feature

Spring D1, D2, D4, D5, D6, D7, D8, T1, T2, T3
Summer D1, D2, D5, D6, D7, D8, T1, T2, T3
Autumn D1, D2, D3, D4, D5, D6, D7, D8, T1, T2, T3, T4
Winter D1, D3, D4, D5, D6, D7, D8, T1, T2, T3, T4, T5

4.3. Variational Mode Decomposition

The VMD algorithm is able to decompose the original data into a number of smooth
components, the number of which needs to be set in advance. Too large a number of decom-
positions can cause modal mixing, while too small a number of decompositions can lead to
inadequate decomposition. In this study, the optimal number of decompositions was deter-
mined by calculating the central frequency of each modal component after decomposition.
The optimal number of decompositions K and the central frequency for each dataset are
shown in Table 5. When the number of decompositions of the four datasets is 6, 5, 5, and
6, respectively, the central frequencies of each decomposition mode are dissimilar, proving
that decomposition is more adequate at this point.

Table 5. Load decomposition component central frequency.

Season K
Central Frequency

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Spring 6 1.58 × 10−5 0.0835 0.0198 0.0437 0.0219 0.0348
Summer 5 1.86 × 10−5 0.0919 0.0312 0.0273 0.0423
Autumn 5 1.79 × 10−5 0.0792 0.0466 0.0326 0.0274
Winter 6 1.68 × 10−5 0.0761 0.0483 0.0289 0.0379 0.0118

4.4. Experimental Results and Discussion

The components obtained from the decomposition were fed into the WSLSTM model
for prediction, and the final results were obtained after superposition. From Figure 6, it can
be seen that the prediction results of the model have a good fit to the original load, and the
prediction results and the actual data generally match.

In order to further demonstrate the effectiveness and accuracy of the model proposed
in this paper, different control models were designed for comparative analysis using
training time, RMSE, MAE, and MAPE as indicators.

Firstly, in order to verify the effectiveness of the feature selection method proposed
in this paper, three models were used for controlled experiments: the first model takes all
features as input (FF), the second model uses the Pearson correlation coefficient method
to select those with high correlation as the optimal feature set (PF), and the third model
uses the Shapley value for model feature selection (SF). For more rigorous experiments, all
three models used the VMD-WSLSTM model as the prediction model. The experimental
prediction results are shown in Figure 7 and Table 6. In terms of time, the training time is
the shortest for the FF model because it does not have to perform feature selection. In terms
of accuracy, in the four training sets, the SF model shows different degrees of decrease in
RMSE, MAE, and MAPE compared with the PF and FF models, demonstrating that feature
selection using Shapley values has better prediction accuracy compared with traditional
feature selection using correlation.
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Table 6. Prediction results of different decomposition methods (the best results of each model are bolded).

Model Time (s) RMSE MAE MAPE

Spring
FF 489.32 887.13 683.67 4.17
PF 532.47 820.56 627.39 3.62
SF 602.75 762.83 597.55 3.10

Summer
FF 493.54 750.43 634.57 2.58
PF 529.39 712.56 604.12 2.14
SF 606.19 677.48 572.53 1.71

Autumn
FF 418.18 830.55 704.31 2.89
PF 524.27 800.35 680.24 2.47
SF 607.38 784.89 638.08 2.29

Winter
FF 498.28 512.42 430.78 2.76
PF 520.14 480.14 414.65 1.78
SF 604.29 460.59 398.17 1.49

Secondly, in order to verify the effectiveness of the VMD decomposition algorithm, three
models were used for controlled experiments. The three models are SLSTM (stacked LSTM
with three layers), EMD-WSLSTM, and VMD-WSLSTM. For more rigorous experiments, all
three models used the same features for input, and the prediction results are shown in Table 7
and Figure 8. In terms of time, SLSTM has the shortest training time because it does not need
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to decompose the load into several components and only needs to build a separate model.
The training speed of EMD-WSLSTM is slightly slower than that of VMD-WSLSTM. In terms
of accuracy, the prediction results of both EMD-WSLSTM and VMD-WSLSTM are better than
those of SLSTM, which proves that decomposing the load through decomposition improves
the results. The prediction results of VMD-WSLSTM are better than those of EMD-WSLSTM,
which proves that VMD is better than EMD in load decomposition.
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Finally, in order to verify the effectiveness of the WSLSTM model proposed in this
paper, three models were used for controlled experiments. The three prediction models are
VMD-LSTM, VMD-GRU, and VMD-WSLSTM. For more rigorous experiments, the same
features were used as input for all three models, and the prediction results are shown in
Table 8 and Figure 9. In terms of time, the training speed of VMD-LSTM is slightly slower
than that of VMD-GRU because the structure of LSTM is more complicated than that of
GRU. The training speed of VMD-WSLSTM is improved compared with that of VMD-LSTM
and VMD-GRU, which proves that the model can be effectively simplified, and the training
efficiency of the model can be improved by establishing a weight-sharing mechanism
among the components. In terms of accuracy, the prediction results of VMD-WSLSTM are
better than those of VMD-LSTM, which proves that extracting common features among
components through the weight-sharing mechanism can not only improve the training
speed of the model but also enhance its prediction accuracy.
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Table 7. Prediction results of different decomposition methods (the best results of each model are bolded).

Model Time (s) RMSE MAE MAPE

Spring
SLSTM (SL) 124.32 984.31 712.32 5.19

EMD-WSLSTM (EW) 688.32 873.23 630.32 3.78
VMD-WSLSTM (VW) 602.75 762.83 597.55 3.10

Summer
SLSTM (SL) 134.59 794.31 742.12 3.89

EMD-WSLSTM (EW) 574.21 738.43 689.12 2.47
VMD-WSLSTM (VW) 606.19 677.48 572.53 1.71

Autumn
SLSTM (SL) 127.56 957.31 740.43 3.16

EMD-WSLSTM (EW) 694.31 829.31 680.54 2.45
VMD-WSLSTM (VW) 607.38 784.89 638.08 2.29

Winter
SLSTM (SL) 139.34 590.32 580.32 2.54

EMD-WSLSTM (EW) 694.23 520.41 490.32 1.67
VMD-WSLSTM (VW) 604.29 460.59 398.17 1.49
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Table 8. Forecast results of different forecasting methods (the best results of each model are bolded).

Model Time (s) RMSE MAE MAPE

Spring
VMD-LSTM (VL) 823.21 870.34 623.32 3.48
VMD-GRU (VG) 780.32 843.23 613.21 3.29

VMD-WSLSTM (VW) 602.75 762.83 597.55 3.10

Summer
VMD-LSTM (VL) 815.32 742.31 643.21 2.49
VMD-GRU (VG) 787.21 703.21 603.32 2.14

VMD-WSLSTM (VW) 606.19 677.48 572.53 1.71

Autumn
VMD-LSTM (VL) 812.23 814.32 658.32 2.89
VMD-GRU (VG) 756.12 804.32 647.32 2.41

VMD-WSLSTM (VW) 607.38 784.89 638.08 2.29

Winter
VMD-LSTM (VL) 831.32 482.31 450.31 2.12
VMD-GRU (VG) 779.23 470.12 432.12 1.67

VMD-WSLSTM (VW) 604.29 460.59 398.17 1.49
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To be able to further demonstrate the effectiveness of the proposed model, the model
was compared with the existing GA-SVR, WD-LSSVM, CNN-LSTM, and VMD-LSSVM.
The average values of the evaluation metrics are shown in Table 9 and Figure 10. The RMSE
of the prediction results of the proposed model is reduced by 218.47, 174.99, 155.52, and
124.13 compared with GA-SVR, WD-LSSVM, CNN-LSTM, and VMD-LSSVM, respectively.
MAPE is reduced by 1.91%, 1.5%, 0.78%, and 0.61%, respectively. MAE is reduced by 161.54,
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142.73, 86.84, and 42.05, respectively. This proves that the model proposed in this paper has
better prediction accuracy than the traditional prediction model.

Table 9. Prediction results of different prediction models.

Models RMSE MAE MAPE

GA-SVR 823.62 713.12 4.06
WD-LSSVM 780.14 694.31 3.65
CNN-LSTM 760.67 638.42 2.93

VMD-LSSVM 729.28 593.63 2.76
VMD-WSLSTM 605.15 551.58 2.15
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5. Conclusions

Accurate load forecasting can ensure the healthy operation of the power grid. In this
paper, in order to improve the accuracy of the power load forecasting model, firstly, starting
from the feature analysis, the Shapley value analysis method, which is different from the
traditional feature analysis, is used to thoroughly explore the relationship between features
and the load. Secondly, the idea of weight sharing is used to solve the problems of slow
training and insufficient extraction of common features among components in the traditional
model based on the combination of decomposition plus prediction. Controlled experiments
using four datasets and multiple control groups led to the following conclusions:

(1) Compared with the traditional method of feature selection using correlation, the
Shapley value method proposed in this paper is more able to measure the importance
of features to the load. The prediction accuracy of the model using Shapley values for
feature selection is also improved compared with the traditional method.

(2) The decomposition of the original load data using the decomposition algorithm can
effectively reduce the complexity of the data, and the separate prediction of the
decomposed components also helps to improve the prediction accuracy of the model.
Compared with the EMD algorithm, the accuracy of the model decomposed by using
the VMD algorithm is generally higher.

(3) The training speed of the WSLSTM prediction model built by using the weight-sharing
mechanism is significantly faster than the traditional LSTM model and GRU model. In
addition, the WSLSTM model also has higher prediction accuracy than the traditional
LSTM model and GRU model because it can extract common features among the
components.

(4) The model in this paper has better prediction accuracy compared with traditional
models such as GA-SVR, WD-LSSVM, CNN-LSTM, and VMD-LSSVM.
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Therefore, feature selection using Shapley values and the prediction model using the
weight-sharing mechanism proposed in this paper can improve the accuracy and speed of
the prediction model. However, the model also has some shortcomings. For example, feature
selection can take a lot of time when there are more features to be considered. Secondly, the
Shapley threshold value when performing feature selection also needs further exploration.
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