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Abstract: Marine growth is a known problem for oceanic infrastructure and has been shown to
negatively impact the reliability of bottom-fixed or floating offshore structures submitted to fatigue or
extreme loading. Among other effects, it has been shown to change drag forces by increasing member
diameters and modifying the roughness. Bio-colonization being highly random, the objective of
this paper is to show how one-site inspection data increases reliability by decreasing uncertainties.
This can be introduced in a reliability-based inspection framework for optimizing inspection and
maintenance (here, cleaning). The modeling and computation are illustrated through the reliability
analysis of a monopile in the European Atlantic area subjected to marine growth and according to
the plastic collapse limit state. Based on surveys of structures in the North Sea, long-term stochastic
modeling (space and time) of the marine growth thickness is first suggested. A Dynamic Bayesian
Network is then developed for reliability updating from the inspection data. Finally, several realistic
(10–20 measurements) inspection strategies are compared in terms of reliability improvement and the
accuracy of reliability assessment.

Keywords: bio-colonization; Dynamic Bayesian Network; reliability updating; underwater inspection;
offshore; monopile

1. Introduction

Several weeks after immersion, a non-protected offshore structure is covered first by a
bio-film and second by macro fouling [1]. Macro fouling acts on the dynamic loading by
increasing the mass of the structure, on the hydrodynamics regime by altering the relative
roughness [2], on the vibratory response by changing the geometry and mass [3], on drag
forces by increasing the diameter of structural members [4–6], and on drag coefficients
due to changes in roughness [5,7]. In the Gulf of Guinea, for instance, the thickness of
corals up to 25 cm have been reported [8]. This biological phenomenon is affected by
the nature (material) and shape of the colonized surface, the age of the structure and the
season of installation, the hydrodynamic conditions that affect the fixing and arrival of
larvae, the local bio-diversity and the extent of opportunities for colonization and compe-
tition [4], and long-term or short-term physio-chemical changes (death or development
of the fouling) [8,9]. Understanding this complexity remains challenging because it is
site-specific, and it requires on-site measurements of the marine growth with time and
the monitoring of environmental parameters. Ongoing projects such as SURFFEOL [10],
ABIOP [11], LEHERO-MG [2,12–15], and ABIOP+ [16] attempt to achieve this objective by
installing specific buoys [10,17]. Moreover, assessing the evolution of marine growth with
time requires accurate non-destructive testing tools in underwater conditions. Recently,
the development of specific image processing algorithms is promising [18–20], especially if
coupled with underwater drones to increase the safety of divers and reduce costs.
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Based on these studies and expanding industry knowledge, the probabilistic modeling
(stochastic processes in space and time) of macro fouling appears reachable. Updating
models with inspection data for uncertainty reduction is required. Risk-based inspec-
tion [21,22] offers a theoretical framework that links reliability, inspection, and risk. This
paper focuses on the random effect of marine growth on drag forces and coefficients. It
addresses potential significant increases in the screen effect and modifications to the flow
regime around oceanic structures.

First, the paper reviews the major effects of marine growth on offshore structures
and the key parameters that should be modeled for a structural reliability assessment.
Then, a long-term a priori model of growth with time is provided based on observations
of an existing database. A Dynamic Bayesian Network is then introduced for modeling
the structural reliability and updating marine growth parameters from inspection data. It
is built and calibrated from the reliability assessment of a monopile subjected to marine
growth. Finally, reliability updating is performed and several inspection strategies are
compared on a study case in the North Sea where measurements of marine growth come
from real field data.

2. Materials and Methods
2.1. Modeling of Marine Growth Thickness Stochastic Process

Most studies analyzing the hydrodynamic effects of biofouling deal with the behavior
of small bodies, usually cylinder components, compared with wavelength; that is the case
of offshore monopiles and the components (beams) of offshore jacket structures. Usually,
papers aim at modeling the changes in the Morison equation [23]. The present paper is
well within this field of modeling. Generally, biofouling has several effects on loading to
cylindrical structures and the flow regime. Increasing the diameter of the cylinder is the first
direct effect of biofouling on the structural characteristics. The drag and inertia loading on
the body are thus modified due to the increase in the projected area, displaced volume, and
changes to the hydrodynamic coefficients [4,24]. Furthermore, flow instability will increase
along with increases in effective diameter [25]. The second effect reduces the shedding
frequency, which directly affects the hydrodynamic loads [4]. Moreover, the growth of
biofouling on the structure will increase its structural weight [26]. From a maintenance point
of view, biofouling has some negative structural consequences. It obscures the structural
surface and needs to be removed prior to any visual inspection or non-destructive testing
and maintenance (welding) of the structure by divers or remotely operated vehicles [27].
As another impact, biofouling increases surface roughness. The relative roughness ratio
(e = k/D, where k is the average peak-to-valley and D is the structure equivalent diameter)
from hard biofouling on offshore tubular structures is greater than 10−3 and may exceed
10−2 [28]. These are significantly higher than those for normal cylinders, which changes
the Strouhal number (St) [29,30]. It is worth mentioning that many of the aforementioned
studies used surface roughness as an instrument to promote the early transition of the
boundary layer in order to simulate high-Reynolds flow phenomena at physically low
Reynolds numbers [31–35]. A smaller number of these studies were, in fact, addressing the
marine fouling effect.

Marine fouling could be categorized as hard, soft, and long flapping fouling, which
have dissimilar consequences. Generally, biofouling in the North Sea is classified into 7
categories: (i) mussels; (ii) kelps; (iii) algae (other than kelps); (iv) barnacles, tubeworms,
limpets, etc.; (v) rock borers; (vi) hydroids and bryozoans; and (vii) sponges, anemones, sea
squirts, and alcyonium [36]. The biofouling can reach a considerable thickness, with single
or multiple layers depending on the site location [8,9]. They grow rapidly in the beginning,
but growth tapers off after a few years [8,28].

Bio-colonization is a complex process depending on several environmental variables
and biological processes with many interactions between them and with the structural
surface [27,37]. The process is so complex it would be unrealistic to envisage a complete
model involving a multilayer of various marine organisms that have complex interactions
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for survival, growth, and reproduction. Therefore, this paper focuses on the growth of a
single dominant species on Atlantic coasts [38,39], the blue mussel Mytilus edulis, which
was observed to be in the top three most frequent species. So far, there is neither a long-
term model nor a database for the growth of mussels on offshore structures. So, this
paper proposes prior stochastic modeling of a mussel’s growth with available average and
variance values from a sparse, available database of the North Sea and Atlantic coasts. For
the modeling of the average thickness trend, a simplified growth model inspired by the
model of Bayne [40] and Bayne and Worrall [41] is considered (1). It is derived from more
general growth models [42,43] whose application fields have been shown to be various (see
the review of Vincenzi et al. [44]). It was shown to be consistent with the average value of a
mussel’s length S (cm) for the French Atlantic coast [45].

S = α
[
1− e−βt

]
(1)

where t is the time (in years). The aforementioned equation is used for the modeling of the
trend of the average mussel’s thickness value. In fact, it is shown [7,8] that the thickness
reaches an asymptotic value after about a decade due to several factors: competition,
diseases, chocks in environmental conditions, detachment due to storms, or self-weight.
A report of Veritec in the North Sea [46] is used in the present paper in view of obtaining
a set of experimental data. The measurements of marine growth were reported from the
inspection of 18 structures installed between 1970 and 1985. Each structure was inspected 2
or 3 times during this period. The earliest inspection was after 1 year and the latest after
15 years. In absence of a protocol, we know that there is heterogeneity in data collection: the
depth of the inspection is reported but not the component or even its orientation (vertical,
horizontal, . . . ). So, for characterizing the prior thickness, the nominal value is defined as
the maximum value obtained at a given age between 0 and −10 m depth among the set
of structures inspected at this time. Note that this does not mean that it is the maximum
value of the process at a given depth, only the maximum value measured in the area of
the structure investigated by the diver. In the following, for conservative considerations,
this nominal value is considered as the mean value for the model. Table 1 presents the
thickness measurements collected after 15 years of inspection. These values are in line
with the measurements published for the southern North Sea [47]. Only the maximum
measurements at each inspection time are retained for further analysis and it is observed
that the marine growth thickness stabilizes at around 40 mm after 10 years. Due to the
lack of prior information on a given site, some assumptions about the prior knowledge
regarding parameters in (2) (α and β) must be based on available data. In this study, the
initial growth velocity is assumed to be equal to 27.5 (mm/year) when the time t reaches 0,
according to data obtained from [9]. Hence, prior boundary conditions are established on
(2) as follows:

Thprior(10) = 40 (mm) (2)

∂Thprior

∂t
(0) = 27.5 (mm) (3)

By solving the boundary conditions, we obtain α = 40 and β = 0.6875.
The prior evolution of marine growth thickness is thus given in (3) and plotted in

Figure 1. Parameter β in (1) characterizes the evolution trend of a specific mussel and
environment. Therefore, in probabilistic modeling, β is considered a constant parameter.
Parameter α in (1) represents the magnitude of the thickness of the marine growth. This
should be adapted to each site. In this study, α is assumed to be normally distributed with
a Coefficient of Variation (COV) equal to 0.3 [4]. Based on these assumptions, the prior
mussel’s thickness curve Thprior is given in (4) and the evolution of statistics is plotted
in Figure 1.
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Table 1. Thickness measurements in the North Sea from [46].
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Figure 1. Mussel’s thickness evolution based on a database of the North Sea; the blue line represents
the mean value trend and the red dashed line represents the mean ± standard deviation.

For structures in other areas, a similar a priori distribution can be exploited from
prior thickness on fixed structures or metocean buoys such as Biocolmar® with the same
material [48].

2.2. Dynamic Bayesian Networks for Probability Updating

Stochastic loading computation is required for the time-dependent reliability assess-
ment of offshore structures. However, this is time-consuming, especially if changes in the
process are observed (inspection cleaning) and because wave loading is a nonlinear process
of the random input variables. In this paper, a metamodel is developed for uncertainty
propagation in view of reducing the computational costs when implementing several strate-
gies for maintenance. A Bayesian Network (BN) is an efficient approach to graphically
modeling the probabilistic dependency between random variables using a directed acyclic
graph (DAG). In the DAG, random variables are symbolized by nodes and are connected
by edges to illustrate their dependencies. A conditional Probability Density Function (PDF),
f(X|pa(X)) or Probability Mass Function (PMF), p(X|pa(X)) is assigned to each child node,
where pa(X) is the parent of X in the DAG. An edge may represent causal relationships
between the variables (nodes), but this is not a requirement. The graphical structure of a
BN encodes conditional independence assumptions among the random variables. Hence, a
BN is a compact model representing the joint PDF or PMF among random variables. In this



Energies 2022, 15, 414 5 of 15

study, only BNs with discrete random variables are considered. The joint PMF of the BN
with X1, X2, . . . XN is formed using the chain rule as:

P(X1, X2, . . . , XN) =
N

∏
i=1

P(Xi|pa(Xi)) (5)

where P(Xi|pa(Xi)) is the conditional PMF of variable X1 given its parent variables.
Figure 2 illustrates a simple BN that consists of three nodes representing three discrete

random variables, X1, X2, and X3, in which X2 and X3 are children of the parent node X1.
The joint PMF of the BN present in Figure 2 is expressed as a product of the PMFs of all
nodes in the BN:

P(X1, X2, X3) = P(X1)P(X2|X1)P(X3|X1) (6)

where P(Xi|Xj) denotes the conditional probability of Xi given Xj.
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BNs allow for the introduction of new information (evidence) from the observed nodes
(here, inspection data) to update the probabilities in the network. For example, if we have
some evidence o to introduce to node X2 (X2 = o), this information propagates through the
network, and the joint PMF of the two other nodes can be recalculated as:

P(X1, X2, X3|) =
P(X1, , X3)

P()
=

P(X1)P(|X1)P(X3|X1)

∑X1
P(X1)P(|X1)

(7)

A DBN is an extended form of a BN, which is often used to present random processes
and can be used for modeling a system’s performance over its lifetime. Figure 3 presents a
simple form of a DBN consisting of T slices. Slices in the DBN are connected by links from
nodes in slice (i − 1) to nodes in slice i. At each slice is a BN that represents the system
performance at that time. The state of the system at slice i depends only on its state in
slice (i − 1); hence, this DBN could be seen as a Markov Chain. Each slice i of the DBN
presented in Figure 3 consists of two nodes, Xi and Yi, in which their joint probability could
be computed as:

P(Xi, Yi) = ∑
Xi−1

P(Xi−1)P(Xi|Xi−1)P(Yi|Xi) (8)

where P(Xi−1) is the marginal probability distribution of node Xi−1 in slice (i− 1), P(Xi|Xi−1)
is a transition matrix presenting the conditional probability between the two adjacent slices
of node X, and P(Yi|Xi) defines the conditional probability of node Yi given Xi in slice i.
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2.3. DBN for Structural Reliability in the Presence of Marine Growth

This section presents how to construct the DBN for reliability modeling and updating
the marine growth process. The analysis is performed on a simple structure that is common
(81% of grid-connected foundations in Europe in 2019 [49]) in the offshore wind energy
industry: the monopile in steel. It is perfectly embedded in the soil and the water depth is
30 m, which is a typical figure for offshore wind turbines (average water depth of online
offshore wind farms in 2018 [49]).

Only the wave loading is considered in this paper, as the wind loading is not affected
by marine growth; the upper part of the turbine (mast, turbine) is thus not modeled. In
view of accounting for the loading of all extreme waves, the total height of the monopile
above the soil level is 40 m (Figure 4, left). Moreover, this foundation is shown to be affected
by mussels [50,51]; the model presented in Section 2.1 will thus be used. Only one loading
case and limit state are considered for this study: the ultimate limit state in the presence of
a storm. First, a beam finite element model (BFEM) of a monopile foundation subjected
to marine growth colonization was developed (Figure 4, left). Five beams were selected
because this was shown to be accurate for representing the loading [52]. A flowchart
describing the algorithms for load computation according to Morison equations on the
BFEM is presented in Figure 5. The wave loading on the monopile is computed from the
well-known Morison equations because the diameter of the monopile is small compared
to the wave length [23]. Because the maximum wave load is obtained when the crest of
the wave reaches the monopile, only the drag force is considered. The marine growth data
is characterized by the growing thickness (Th), generated by employing Latin Hypercube
simulations in (1). According to the actual knowledge [8,53], a decreasing profile is modeled
by using a piecewise-constant model: from 0 to −5 m with the full thickness (4), from 5 to
−10 m with half this thickness, and from −10 to bottom without marine growth. Another
key parameter [2,7,15] is the roughness of the colonization surface (k): this is simulated by
using the yearly growth using the gamma process according to [9,54]. The marine growth is
assumed to be homogeneous around the pile. As a consequence, the wave is unidirectional
(Figure 4 left). The metocean data, represented by a couple of values of significant wave
height (H) and extreme wave period (T), are introduced to calculate the instantaneous flow
velocity according to the Airy theory at each node. These values come from the paper by
Ameryoun [9] and are derived from the study in [55]. Their joint PDF is plotted in Figure 4
on the right.

Knowing this kinematic field and marine growth, hydraulic parameters (Reynolds Re
and Keulegan–Carpenter KC numbers) are estimated following the procedure already pub-
lished in [5,52]. The hydrodynamic coefficients (drag coefficient CD and inertia coefficient
Cm), which are useful for modeling the fluid–structure interaction, can then be calculated
from these hydraulic parameters.

The output from BFEM is the maximum (at the sea bed) elasticity stress σ, which can
be used to define the limit state g(X) of the structure, as follows:

g(X) = σe − σ (9)
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where σe is the yield stress of the steel and X is the vector of random variables. Table 2
presents the random variables considered in this study: X = [H; T; α; β].
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monopile)  

30 

e (m) Thickness 0.025 
E (Pa) Young’s modulus  2.1 × 1011 
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ρ (kg/m3) Density 7800 
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Environment H and T See [9]  

Marine growth 

α  N(μ = 0.04; COV 
= 0.3) 

β  0.6875 
Layer 1 From 0 (m) to −5 (m) Th1 = Th 

Layer 2 
Layer 3 

From −5 (m) to −19 (m) 
From −10 (m) to bottom (m) 

Th2 = 0.5 × Th 

Th3 = 0 × Th 
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Figure 5. Proposed flowchart for loading computation in the presence of marine growth (adapted
from [9]).

Table 2. Input parameters and random variables.

Type Parameter (Unit) Description Value

Geometry and
material

D (m) Diameter 0.3

d (m) Water depth (utile length of the
monopile) 30

e (m) Thickness 0.025
E (Pa) Young’s modulus 2.1 × 1011

G (Pa) Shear modulus 8.0769 × 1010

ρ (kg/m3) Density 7800
σe (Pa) Yield stress 2 × 108

Environment H and T See [9]

Marine growth
α N(µ = 0.04; COV = 0.3)
β 0.6875

Layer 1 From 0 (m) to −5 (m) Th1 = Th
Layer 2
Layer 3

From −5 (m) to −19 (m)
From −10 (m) to bottom (m)

Th2 = 0.5 × Th
Th3 = 0 × Th
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For this limit state function, the probability of failure −Pf is determined by integrating
the joint density function f(X) of the random vector over the failure domain:

Pf = P[g(X) ≤ 0] =
∫

g(X)≤0

f (X)dX (10)

Table 2 gathers the input parameters and random variables used for numerical simula-
tions. Uncertainties are propagated throughout the BFEM by generating 30,000 samples
based on Latin Hypercube Simulations for each random variable. Data obtained from the
BFEM analysis are used to construct the DBN (Figure 6) by computing the Conditional
Probability Tables (CPTs) for all nodes in the network. The DBN configuration consists of T
slices in which a BN at each slice represents the structural performance at that time. There
are 4 nodes in each slice, representing 4 basic random variables: coefficient α, thickness
(th), maximum stress (σ), and the limit state (g). The CPTs P(thi|αi), P(σi|thi), and P(gi|σi)
define the relationships between parent and child nodes within a slice, and the transition
matrices P(αi|αi−1) and P(thi|αi, thi−1) describing the dependencies between two neighbor
slices are determined from the FEA data. Note that P(αi|αi−1) is a unit matrix since α is a
time-invariant parameter.

Energies 2022, 15, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 5. Proposed flowchart for loading computation in the presence of marine growth (adapted 
from [9]). 

Table 2 gathers the input parameters and random variables used for numerical sim-
ulations. Uncertainties are propagated throughout the BFEM by generating 30,000 sam-
ples based on Latin Hypercube Simulations for each random variable. Data obtained from 
the BFEM analysis are used to construct the DBN (Figure 6) by computing the Conditional 
Probability Tables (CPTs) for all nodes in the network. The DBN configuration consists of 
T slices in which a BN at each slice represents the structural performance at that time. 
There are 4 nodes in each slice, representing 4 basic random variables: coefficient α, thick-
ness (th), maximum stress (σ), and the limit state (g). The CPTs P(thi│αi), P(σi│thi), and 
P(gi│σi) define the relationships between parent and child nodes within a slice, and the 
transition matrices P(αi│αi−1) and P(thi│αi, thi−1) describing the dependencies between two 
neighbor slices are determined from the FEA data. Note that P(αi│αi−1) is a unit matrix 
since α is a time-invariant parameter. 

 
Figure 6. DBN modeling of the marine growth process and limit state assessment. 

In this study, we only consider the DBN with discrete nodes; therefore, all nodes are 
discretized into a number of finite states (Table 3). Each node is divided into a number of 
states in pre-defined boundaries, which could cover possible values. The discretization of 

Dei=θmg× Dc
θmg(Th)

k i ei=ki/Dei

Meteoceandata
Scatter diagram

(H(ω*| θ), T(ω*| θ))

Extreme Values
(H|θ) , (T|θ) 

Water Particle Velocity
(u((x, z),H,T)

CD=f (Kc, CDS, ki/Dei)

Maximum velocity at z:cste
um((x, z),H,T)

Marine growth data
Thi (S*), ki (S*) ω*: alea

S*: alea

um(i)× T(i)&  Kc(i)= De(i)

Hydraulic Parameters Re, Kc (H, T, De)

um(i)×De(i)
νRe(i)=

Morison’s Drag Force 

1th

1σ

1g

1α

2th

2σ

2g

2α

ith

iσ

ig

iα

Tth

Tσ

Tg

Tα.  .  .

.  .  .

.  .  .

.  .  .

Figure 6. DBN modeling of the marine growth process and limit state assessment.

In this study, we only consider the DBN with discrete nodes; therefore, all nodes are
discretized into a number of finite states (Table 3). Each node is divided into a number of
states in pre-defined boundaries, which could cover possible values. The discretization of
nodes in the DBN could introduce approximation errors [56]; however, this issue is beyond
the scope of this study.

Table 3. Discretization of nodes in the DBN.

Nodes Prior Distribution Number of States Boundaries

α N(µ = 0.04; COV = 0.3) 10 [0; 0.4]
th - 40 [0; 0.4]
σ - 40 [0; 3] × 108

g - Binary -

3. Results

This section is devoted to performing a reliability assessment of a monopile foundation
subjected to marine growth from inspection data, i.e., the measurement of marine growth
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thickness (th). Numerical measurements are generated from Monte Carlo simulations
by assuming that observations are simulated from Equation (4), where αobs follows a
normal PDF with mean µobs

α = 0.027 and a Coefficient of Variation COVobs
α = 0.2. Note

that the mean value and CoV of the observations are selected to be lower than the a
priori conservative one. Section 3.1 analyses the effect of the formulation of a limit state,
condition-based or performance-based. The Section 3.2 investigates the importance of the
number of measurements during an inspection for reliability updating. Then, the following
section analyses the effects of combining measurement data from two inspection dates
for updating.

3.1. Comparison between Two Limit States

We now assess the reliability by considering two formulations of the ultimate limit
state. Considering the limit state based on structural performance, i.e., defined from
elasticity stress (9), the prior probability of failure after 25 years, estimated from the DBN,
is 1 × 10−3 (Figure 7). Note that reassessment from a structural reliability assessment
could be time-consuming and that the stakeholder could be interested in basing their
decision-making on a second formulation of the limit state g’ relying on the condition state
(marine growth thickness). This condition-based limit state writes (11):

g′(X) = thth − th (11)
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The thickness threshold thth should be defined assuming that an acceptable probability
of failure Pfa after 25 years is the probability reached by the previous formulation of the
limit state: Pfa = 1 × 10−3, so the threshold is then thth = 0.078 (m). Based on this value, the
prior probability of failure defined from this second limit state is computed and reported
in Figure 7.

The results in Figure 7 show that, given a similar probability of failure at 25 years, the
evolution of Pf computed from the two limit states presents significant discrepancies. At a
given time, the prediction of Pf from elasticity stress is higher than the one computed from
the thickness measurement. The reliability assessment of structures subjected to marine
growth from only thickness measurements is, thus, not sufficiently conservative and a full
structural reliability assessment is mandatory. In the following, only limit state (9) is used.
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3.2. Reliability Updating from One Inspection Time

Let us focus now on the effect of the number of measurements (evidence) on reliability
updating. It is assumed that the first inspection time is performed after the bio-colonization
is assumed to be mature, here, five years. This strategy is justified by the fact that an
inspection should be carried out neither too early (in the first two years) nor too late in
view of capturing the key information about trends and planning preventive maintenance.
The assessment considers a typical maintenance ship (mean velocity of 10 knots, https:
//atlantique-scaphandre.fr/pdf/miniplon.pdf, accessed on 29 December 2021) and a field
30 km from the coast (mean value of bottom-fixed offshore wind-turbines [49]), and 10 h of
work, including 3 h of traveling, 2 h of deployment and retrieval, and a 5 h dive. Due to the
diving time restrictions, it is assumed that a single diver is carrying out the measurements at
a given time. That means that about 20 measurements can be performed (four components
per hour). This figure corresponds to the actual practice of the stakeholders [8,46]. First,
the reliability updating from 20 measurements is analyzed; these are used as evidence
for the DBN update. The updating being affected by the statistical distribution of these
20 measurements, 1000 inspection data are simulated. Figure 8 (left) presents the prior
probability of failure and the mean and 95% and 5% quantiles for the updated probability
of failure Pf with limit state g (9).
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Figure 8. Updated probability of failure with: (left) 20 inspection data at 5 years and (right) 5
inspection data after 5 years.

The extent of observed marine growth is smaller on average than that which was a
priori in (4). Thus, the mean of Pf is smaller with a difference of 1 × 10−4, i.e., 10% of Pfa. It
is interesting to underline that the difference between 5% and 95% quantiles and the mean
trend Pf (Pf-mean in Figure 8) is not significant and reaches 1× 10−4, i.e., 12% of Pf. Twenty
measurements appear to give a good update with good accuracy on Pf.

Bayesian updating is influenced by the amount of available evidence. Let us now
analyze the effect of the number of measurements. In Figure 8, right, Pf is updated when
only five measurements are taken at 5 years. It is clear that when fewer measurements are
available, the gap between 5% and 95% of the posterior of Pf increases, reaching 17 × 10−5,
i.e., 20% compared to Pf, and even the interest of the updating is questionable: the 5%
fractile is 7.6 × 10−4. By varying the number of measurements for updating between 3 and
100, Figure 9 presents different quantiles of the posterior of Pf at 5 years with a convergence
trend when the number of measurements increases. Table 4 presents the relative errors
computed with 5% and 95% with respect to the mean value of Pf. In real practice, the
structure owners require the minimization of the number of measurements in order to
reduce inspection costs. For offshore structures, due to the high cost of transportation,
labor, and hired vessels, 20 measurements appear to be a good compromise with an error
in the assessment of Pf of less than 6%, which could be an acceptable error level (Table 4).

https://atlantique-scaphandre.fr/pdf/miniplon.pdf
https://atlantique-scaphandre.fr/pdf/miniplon.pdf
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Table 4. Errors of 5% and 95% fractiles of Pf with different numbers of simulated inspection data.

Errors Relative to Mean Pf

No of Measurement 3 5 10 15 20 30 50 70 100

5% quantiles 16% 14% 9% 7% 6% 5% 4% 3% 2%
95% quantiles 14% 12% 7% 6% 6% 4% 4% 3% 2%

3.3. Reliability Updating from Two Inspection Dates

This section studies the effect of combining measurements from two inspection dates
for reliability assessment. The objective of such an analysis is to study the efficiency of
different inspection campaigns.

The same budget is defined for each strategy in terms of the number of measurements:
20 total measurements, which could be conducted either 5 or 10 years after the structure’s
installation (for example, 10 at 5 years and 10 at 10 years equals 20 total inspection data).
Three inspection schedules are considered, as shown in Table 5. Figure 10 presents the
updating of Pf for each of these schedules. Note that the hidden value of Pf, which is
calculated from the assumed value of α (µobs

α = 0.027 and COVobs
α = 0.2), is also plotted

in Figure 10. The Pf updated in three cases is lower than its prior one because of the
lower mean assumption of α_obs. However, there are significant differences between the
updated values of Pf and their hidden values. This trend could be explained by the fact that
the thickness measurements for the prior model were not categorized in horizontal and
vertical components. This limitation leads to important differences between the updated
and hidden values of Pf. By using evidence from the measurements from two inspection
dates (case 2), the mean of the updated probability of failure is lower than those in the case
of using measurements from only one inspection time (case 1 and case 3) (Figure 10). This
behavior highlights the importance of having more inspection dates during the service life
of structures to obtain better predictions.

Table 5. Analysis cases with 2 possible inspection dates and a total of 20 inspection data during the
service lifetime.

Case
Number of Measurements

5 Years 10 Years

1 20 0
2 10 10
3 0 20
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4. Discussion

Marine growth is experiencing a renewed interest in the reliability assessment of
existing offshore wind turbines or the optimization of the maintenance of these turbines.
This phenomenon being stochastic, this paper has proposed a long-term evolution of
thicknesses based on the literature and some available data for the bio-colonization of
mussels which is one of the dominant species in the North Sea and on the European
Atlantic Coasts. Until now, the link between the long-term modeling of the marine growth,
its effect on the structural reliability, and the updating from inspections have not been
investigated. This paper offers a complete framework and illustrates its interest with
three studies: the effects of the limit state formulation, updating with one inspection, and
updating with two inspections with a limited budget along the service lifetime.

If the conclusions are site-specific, the paper provides an efficient framework for
updating marine growth evolution with time that can be used at other sites. This approach
can thus be transferred to other sites once the extreme values of marine growth are known.
This highlights the need for on-site observatories and the share of knowledge through open
science and open databases.

5. Conclusions

The paper focuses on an efficient structural reliability updating based on a Dynamic
Bayesian Network to update the probability of failure with evidence (measurements) of
marine growth. This network is built and calibrated on the basis of a structural finite ele-
ment model of a monopile where the loading integrates, through the Morison equation, the
marine growth effect on both the diameter and the change in hydrodynamical coefficients.

A real study case is then analyzed, using real data from the North Sea. Two limit
states, one based on a performance criterion and assessed through full structural reliability
and the second based on a condition assessment, are first compared. It was shown that
the condition assessment is not sufficiently conservative and cannot be considered as a
criterion for decision making (cleaning).

Then, several strategies for the inspection of marine growth thicknesses are compared
with single or double inspection times. It was shown that, given a fixed budget for inspec-
tion, two inspection dates at 5 and 10 years can sufficiently improve reliability updating.

The key input required for using this framework is a long-term model of marine
growth thickness. This paper provides, on the basis of some preliminary data and biological
knowledge, a long-term stochastic model of thickness increase with time.

Future studies should integrate a cleaning strategy with more or less efficient clean-
ing methods.
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