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Abstract: By conserving natural resources and reducing the consumption of fossil fuels, sustainable
energy development plays a crucial role in energy planning. Specifically, demand-side planning must
be researched and anticipated based on electricity consumption at the grounded level. Due to the
global warming crisis, atmospheric conditions are among the most influential components that have
altered electricity consumption patterns. In this study, 66 climate variables from the ERA5 reanalysis
and the observed power demand at four grid substations (GSs) in Cambodia were examined using
recurrent neural networks (RNNs). Using the cross-correlation function between power demand
and each climate variable, statistically significant climate variables were sorted out. In addition, a
wide range of feedback delays (FDs) was generated from the data on power demand and defined
using 95% confidence intervals. The combination of the improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) technique with a nonlinear autoregressive
neural network with exogenous inputs (NARX) and a nonlinear autoregressive neural network
(NAR) produced a hybrid electricity forecasting model. The data were decomposed into the intrinsic
mode functions (IMFs) and were then used as inputs in optimized NARX and NAR models. The
performance of the various benchmarked models was analyzed and compared using mainly statistical
indicators such as the normalized root mean square error (NMSE) and the coefficient of determination
(R2). The hybrid models perform exceptionally well in predicting electricity demand, and the
ICEEMDAN-NARX hybrid model with correlated climate variables performs the best among the
tested experiments as a useful prediction tool.

Keywords: electricity demand; empirical mode decomposition; neural network; climate variables;
Cambodia

1. Introduction

Demand-side energy management is significant for tackling resilient sustainability
under global warming. Decision-makers can use the future perspectives provided by elec-
tricity demand management to better coordinate renewable and clean energy in the power
system. For emergency conditions, producing electricity from fossil fuels may be favored
even though doing so may result in costly and environmentally damaging CO2 emissions
for the global power market as a whole. While many meteorological and socioeconomic
aspects (demographic, GDP, economic activity, habitation, family composition, average
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earnings, etc.) could influence electricity usage, well-prepared electrical demand planning
is vital for ensuring the reliability and sustainability of the energy supply [1,2].

Many studies on power demand prediction have been conducted with different meth-
ods. Among them, machine learning (ML) algorithms are popularly used to predict future
value in diverse fields, such as load forecasting [3–5]. groundwater level forecasting [6],
flood forecasting [7], wind speed forecasting [8–10], and solar radiation prediction [11,12].
A large variety of prediction techniques have been introduced to improve the precision
of calculations. Kazemzadeh et al. [13] stated that demand prediction techniques can be
classified into univariate and multivariate methods. In multivariate methods, external
variables such as socioeconomic parameters (population growth, prices, gross domestic
product (GDP), and schedule holidays) and atmospheric parameters (temperature, humid-
ity, and rainfall) are used to improve the predictions of electricity and energy demand.
Univariate methods are commonly used in time series procedures in which a historical
dataset is utilized to predict load demand [13].

In developed counties, economic growth potential could push energy demand to
receive more attention since the reliability and sustainability of energy development have
become crucial for all sectors. Some case studies presented various techniques to forecast
electricity or energy demand, demonstrating promising outcomes.

For example, in Australia, Ahmed et al. [14] developed a multiple linear regression
(MLR) model using climatic and socioeconomic variables as functions of the power demand
for predicting long-term future electricity demand. In addition, a sensitivity analysis of
the temperature rises in different seasons was conducted to demonstrate the cooling and
heating needs for electricity consumption up to 2100 s. As a result, it was determined that
a temperature rise alone could increase per capita electricity usage during the summer and
spring seasons. For a microgrid power management, Tayab et al. [15] presented a feed-
forward neural network (FFNN) featuring Harris hawk optimization (HHO) with three-
level best-basis stationary wavelet packet transform decomposition (SWPT) as a combined
short-term demand prediction models. To confirm the effectiveness and improvement of the
suggested model, it was compared to a particle swarm optimization-based artificial neural
network (PSO-ANN), a backpropagation-based neural network (BPNN), and a PSO-based
least-squares support vector machine (PSO-LSSVM). As a result, the proposed SWPT-HHO-
FNN was more effective than the other models tested in the study. Similarly, for short-term
electricity demand predication, AL-Musaylh et al. [16] compared the performance of
an artificial neural network (ANN) model to autoregressive integrated moving average
(ARIMA), multivariate adaptive regression spline (MARS), and MLR models for short-
term electricity demand forecasting. Moreover, input variables, such as historical demand,
ground-based climate, and satellite variables via ERA-interim in the European Centre for
Medium-Range Weather Forecasts (ECMWF), were simulated in each model with 6-h and
daily forecast horizons. According to the study’s findings, the ANN fared the best among
the compared ML methods.

In Canada, Runge et al. [17] developed a nonlinear autoregressive (NAR) neural network
to forecast future values using the historical fan airflow supply rate with a 15-min interval
dataset as input. Then, the airflow rate output (6 h ahead) of the NAR was used to calculate
electricity consumption based on a physical model. Moreover, the comparisons were made
between support vector regression (SVR) and ensemble approaches and the improved NAR
architecture. The results of the study showed that automating the hyperparameter search
process for an outstanding NAR model was advantageous for mitigating difficulty and
achieving an optimized NAR model. Additionally, in terms of evaluation indices, the NAR
model could provide slightly better performance than the SVR model.

On the other hand, in the last decade, studies on future energy predictions with various
algorithms have been reported in Southeast Asian countries. Sulandari et al. [18] proposed a
hybrid approach consisting of a linear recurrent formula (LRF), singular spectrum analysis
(SSA), and an FFNN for hourly and half-hour electricity load forecasting in Indonesia.
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Concurrently, H.-Y. Lee et al. [19] used an ANN-based urban growth factor model for
energy consumption forecasting in Vietnam.

In China, Shen et al. [20] proposed the combination of the variational mode decom-
position (VMD) algorithm with a convolutional neural network (CNN) and a temporal
convolutional network (TCN). The original input time series signal was decomposed using
the VMD method to verify the impact of seasonal power load variation trends on the
forecasting precision. Then, each decomposed feature was injected into the CNN, and a
TCN was used to reshape the convolutional layer to improve forecasting accuracy. Sim-
ilarly, R. Li et al. [21] proposed an original hybrid forecasting mechanism that coupled
the adaptive Fourier decomposition (AFD) technique and an SVM for power demand
time series.

In India, Bedi and Toshniwal [22] developed long–short-term memory (LSTM) network-
based multi-input multioutput models that were built upon deep learning framework
models to predict long-term future electricity demand. Moving window-based active
learning was examined to increase forecasting accuracy.

Similarly, Kandananond [23] compared the ANN, ARIMA, and MLR methods based
on yearly historical data (socioeconomic and electricity consumption data) in Thailand.
Furthermore, Jaisumroum and Teeravaraprug [24] compared the performance of ANN and
MLR methods to predict yearly electricity consumption in Thailand. In a study in the Philip-
pines, Bantugon and Gallano [25] used a classical method (the Holt–Winters approach) and
neural networks for short-term (hourly) and long-term (annual) load prediction.

Cambodia is one of the developing countries located in Southeast Asia. Cambodia’s
economic growth of approximately 7% from 2010 to 2018 [26] has caused the country to
require massive electricity consumption to supply industrial and commercial activities.
The power development plan (PDP) of Cambodia was updated and studied mainly for
electricity forecasting and future plant generation up to 2030 [27]. Based on regression
techniques called the simple econometric simulation system (Simple E), it was discovered
that GDP is one of the primary elements influencing the future trend of electricity. After
the PDP was formed in 2015, the forecasted power lagged behind the actual power, which
led to an imbalance between the demand and supply of the energy sector in Cambodia.
Another challenge was determined regarding the dependence on large hydropower and
coal plants in the previous PDP [28]. According to the EAC [29], the highest proportion of
the energy mix was hydropower (46%), followed by coal (43%), diesel/heavy fuel oil (HFO)
(9%), biomass (1%), and solar energy (1%). These two primary power resources caused
some issues: (i) The vulnerability of the power system relied on the uncertainty of various
seasons. Moreover, surplus energy was produced during the rainy season, while a lack
of energy supply was encountered during the dry season. (ii) The inflexibility of the coal
plants induced excess generation during off-peak times (low-demand times). Additionally,
these problems could affect the electricity tariff faced by the country while the coal price
fluctuates due to the global market [28].

Studies on the electricity and energy fields in Cambodia are limited. Among them,
Lyheang and Limmeechokchai [30] used the long-range alternative energy planning (LEAP)
model based on regression analysis using a linear equation with GDP to investigate the
energy mix and CO2 mitigation from 2015 to 2050. Moreover, various scenarios were
developed for the future injection of renewable energy and emission savings for future gen-
eration planning. San et al. [31] used a quantitative model to examine the impacts of rural
household energy consumption on the economy and environment. The authors showed
that economic and environmental costs for residents would be lower when biogas was
introduced to replace nonconventional energy sources (fuelwood, plant waste, kerosene,
and liquefied petroleum gas (LPG)). Hak et al. [32] designed qualitative and quantitative
models using the Extended Snapshot (ExSS) tool for sustainable energy policy development
in Cambodia and proposed five strategies for producing environmentally friendly plans for
development towards 2050 that could reduce CO2 emissions by approximately 55% and
57% by 2030 and 2050, respectively. Promsen et al. [33] studied wind energy potential using
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Wind Atlas Analysis and Application Program (WAsP) software to estimate the installed
capacity of wind energy potential in southern Cambodia. All energy-related reviews in
Cambodia focused on energy policy, emission mitigation, renewable energy, and economic
and environmental impact assessments for household energy consumption.

The literature review reveals that ML techniques have received increasing attention
among the forecasting approaches utilized for both developing and developed countries.
Among the ML techniques, ANNs can perform better than the support vector classification
(SVC), MARS, MLR, and ARIMA models [16,17]. In addition, Altan et al. [9] presented
that ML techniques combined with decomposition methods have achieved outstanding
performance on wind speed forecasting compared with other techniques.

Therefore, based on the literature review and the energy plan in Cambodia, this study
aims (1) to develop and design a new optimized recurrent neural network (RNN) and
decomposition method hybrid model for future electricity demand prediction by using
prediction algorithms for comparison, namely (i) a stand-alone NAR model using data
in the past, (ii) a stand-alone NARX model with power demand and climate variables in
the past, and (iii) hybrid models with the combination of decomposition techniques with
NARX and NAR models; and (2) to identify the correlated climate variables with electricity
demand and consider them in the prediction to improve the outcomes.

The goal of this study is to investigate medium- and long-term electricity forecasting
models over a daily horizon dataset. Most previous studies have not concentrated on FDs,
which could be defined by an autocorrelation function. Given a significant number of FDs
for various datasets, as described in Section 3, this technique could replace the trial-and-
error method. In addition, Section 3 presents the optimization of the NAR and NARX
models, decomposition method, and hybrid models. Section 4 presents the compared
results of the testing models. Finally, the discussion and conclusion are demonstrated in
Sections 5 and 6, respectively.

2. Materials
2.1. Study Area

The electricity supply covered fifteen provinces, such as Phnom Penh, Siem Reap,
Preah Sihanouk, Kampong Cham, Battambang, Banteay Meanchey, Stung Treng, Rat-
tanakkiry, Takeo, Kampot, Svay Rieng, Prey Veng, Mondulkiri, Kratie, and Kampong
Speu, in 2013; however, only eight provinces had grid substations (GSs) for hourly power
demand recording [34]. The power utility company in Cambodia, known as Electricité du
Cambodia (EDC), is a state-owned company that has been authorized to generate, distribute,
and transmit electricity throughout the country [35]. All GSs receive power from the na-
tional grid (NG) and supply energy to approximately 2,950,000 end users in each province
throughout the country [36]. The GSs for which power demand records were available
from 2013 to 2018 in four areas in Phnom Penh were selected, as shown in Table 1. The
GS1, GS2, GS3, and west Phnom Penh (WPP) sites are located in Phnom Penh, the capital
city, covering at least 60% of the total power load demand; this location is known as a load
center in Cambodia, as shown in Figure 1.

Table 1. Power demand information of the substations considered in this study and the nearest grid
point information of ECMWF-ERA5 reanalysis with spatial and temporal resolutions.

Substation Name
Power Demand ERA5 Reanalysis

Latitude Longitude Peak Mean Latitude Longitude Temporal Resolution Horizontal Resolution

GS1 11.58989 104.91545 158.20 81.93 11.60 104.90

Hourly 0.1◦ × 0.1◦
Native resolution is 9 km

GS2 11.52899 104.92944 167.10 91.13 11.60 104.90
GS3 11.55495 104.88438 145.20 76.25 11.60 104.90
WPP 11.39941 104.77168 199.00 51.94 11.40 104.80
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Figure 1. Map of the study areas in Cambodia with the locations of grid substations (GSs) and the
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2.2. Data
2.2.1. Electricity Demand

A total of 52,584 datasets representing five years of electricity demand were collected,
beginning on 1 January 2013 and ending on 31 December 2018. At each substation, the
electricity data were tracked accurately by the supervisory control and data acquisition
(SCADA) system. Hourly demand data (in MW) were recorded at each substation in
the targeted provinces. The time series data required for the model were daily demand
data; therefore, 1-h interval data were converted to a 24-h interval using the electricity
consumption number at 10:00 a.m. (the highest demand of a day in the country) for a total
of 2191 data points, as shown in Figure 2.

2.2.2. ERA5 Climate Reanalysis

The ERA5 climate reanalysis dataset from ECMWF was utilized for historical hourly
climate data in Cambodia. ERA5 provides hourly climate variables such as atmospheric, land,
and oceanic variables. The horizontal resolution of ERA5 is 0.1◦ × 0.1◦ with a 9 km spatial
resolution. In this study, the latitudes and longitudes of the downloaded locations were derived
from the coordinates of the selected GSs (Figure 1). The 66 climate variables presented in
Table A1 were retrieved for five years from 1 January 2013 to 31 December 2018 for a total of
52,584 data points from ERA5 at each location. The time series data required for the model were
daily demand data; therefore, 1-h interval data were also converted to 24-h intervals by taking
the climate values at 10:00 a.m. for a total of 2191 data points.
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Figure 2. (a) The original hourly power demand dataset at the GS1 site and (b) the converted daily
power demand dataset from the hourly demand.

3. Methodology

Empirical mode decomposition and its variations are used to decompose the input
daily power demand into IMFs, and then, each IMF is predicted by RNN models. By
combining all predicted IMFs in the end, the power demand is predicted. This is the data
decomposition-RNN hybrid model of this study. The data preprocessing and decomposi-
tion techniques and RNN models are presented in the following.

3.1. Data Preprocessing
3.1.1. Imputation of Missing Values

The target data (electricity demand data) were checked, and the missing values in the
power demand were imputed by a one-dimensional linear interpolation method since the
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missing data consisted of short intervals before they were input into decomposition and
the neural network models.

X = {X1, X2, · · · , Xn} is the time series electricity demand dataset and Y periodic
variable having missing values at any time. It was assumed that in the periodic variable Y,
there were missing data yA at tA on the interval [tstart, tend] [37]. The missing data yA are
described in Equation (1).

yA = yA′ − ∆A (1)

where yA′ presents an application of trend interpolation to a single dimension, and ∆A
presents the system disturbance caused by various variables X = {X1, X2, · · · , Xn} on
the periodic variable Y. The estimated calculation of yA′ was performed using the linear
interpolation between data at tstart and tend, respectively, as expressed in Equation (2).

yA′ = ystart +
yend − ystart

tend − tstart
(tA − tstart) (2)

3.1.2. Normalization of the Input Data

Normalization for the input (ERA5 climate variables) and target dataset (the power
demand) before feeding them into the simulation model could improve the overall error of
the neural network training process [38]. All input and target values were normalized to
the range of −1 and 1 as described in Equation (3) [39].

y =
(ymax − ymin)(x− xmin)

Xmax − Xmin
+ ymin (3)

where y is the normalized value of X, ymax is 1, ymin is −1, x is the actual parameter value
(independent variable) of interest, Xmin is the minimum parameter value of interest, and
Xmax is the maximum parameter value of interest.

3.2. Decomposition Techniques

The treated power demand is decomposed by empirical mode decomposition (EMD)
and features after the missing data are imputed, as shown in the following [40].

3.2.1. Empirical Mode Decomposition (EMD)

EMD is an adaptive approach that breaks down a signal x(t) into a series of IMFs that
serve as the foundation for the signal’s representation. This is how the algorithm can be
explained [41]:

Step 1. Set the IMF index k = 0 and find all extrema of the 0th residue r0 = x.
Step 2. Interpolate between the minima (maxima) of rk to obtain the lower (upper)

envelope emin (emax).
Step 3. Compute the mean envelope m = (emin + emax)/2.
Step 4. Compute the IMF candidate dk+1 = rk − m.
Step 5. Is dk+1 an IMF?
Yes. Save dk+1, compute the residue rk+1 = x−∑k

i=1 di, iterate k = k + 1, and treat rk as
input data in step 2.

No. Treat dk+1 as input data in step 2.
Step 6. Continue until the final residue rk satisfies some predefined stopping criterion.
The refinement process (steps 2 to 5) is needed to extract every mode with a certain

number of iterations and is named the sifting process. EMD is adaptive and suitable for
nonstationary and nonlinear data analysis. However, in the most complex case, where the
processes are nonlinear, and the noises share the same time scale as the signal, EMD still
fails to separate them (mode mixing).

3.2.2. Ensemble Empirical Mode Decomposition (EEMD)

By averaging the respective IMFs generated from an ensemble of the original signal
x plus several realizations of finite-variance white noise, EEMD characterizes the “true”
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modes (denoted as IMF = d in what follows). The approach of EEMD could be highlight
as follows [42]:

Step 1. Generate x(i) = x + βw(i), where w(i) (i = 1, . . . ,I) presents various realizations
of white noise with zero mean and unit variance, and I is the value of realizations in the
ensemble and the magnitude of added noise β > 0.

Step 2. Decompose each x(i) (i = 1, . . . ,I) entirely by EMD, acquiring the modes d(i)k ,
where k = 1, . . . , K presents the mode index.

Step 3. Define dk as the kth mode of x, acquired by averaging the corresponding modes
dk =

1
I ∑I

i=1 d(i)k .

The extraction of every d(i)k needs a various value of sifting iterations. In EEMD, every
x(i) can be decomposed independently of other realizations, and for every realization, a
residue r(i)k = r(i)k−1 − d(i)k is acquired at each stage, without any connections between the
various realizations. Due to this situation, some EEMD downsides may occur, including
(i) an incomplete decomposition and (ii) the possibility that different realizations of signals
plus noise may produce varying amounts of modes, especially at low frequencies.

3.2.3. Complete EEMD with Adaptive Noise (CEEMDAN)

To address these limitations, a new ensemble approach known as CEEMDAN was
developed [43,44]. The overall concept includes the following: x(i) is produced from x, and
the initial mode d̃1 = d1 is calculated precisely as in EEMD. Then, a unique first residue is
acquired independent of the noise realization:

r1 = x− d̃1 (4)

After that, the first EMD mode is calculated from an ensemble of r1 values plus various
realizations of a particular noise. The second mode d̃2 is defined as the average of these
modes. The next residue is r2 = r1 − d̃2. This technique is repeated until a termination
requirement is met.

The following algorithm describes the CEEMDAN technique. Let Ek(·) be the operator
that generates the kth mode obtained by EMD, and let w(i) be a realization of white noise
with zero average and unit variance. Then, the following method is employed:

Step 1. For every i = 1, . . . , I, decompose each x(i) = x + β0w(i) by EMD until receiving
its initial mode and calculate

d̃1 =
1
I ∑I

i=1 d(i)1 = d1 (5)

Step 2. In the initial phase (k = 1), calculate the initial residue as in Equation (4):
r1 = x− d̃1.

Step 3. Acquire the first mode of r1 + β1E1

(
w(i)

)
, i = 1, . . . , I by EMD and determine

the second CEEMDAN mode as:

d̃2 =
1
I ∑I

i=1 E1

(
r1 + β1E1(w(i))

)
(6)

Step 4. For k = 2, . . . , K, compute the kth residue:

rk = r(k−1) − d̃k (7)

Step 5. Acquire the first mode of rk + βkEk

(
w(i)

)
, i = 1, . . . , I by EMD until the

(k + 1)th CEEMDAN mode is defined as:

d̃(k+1) =
1
I ∑I

i=1 E1

(
rk + βkEk(w(i))

)
(8)

Step 6. Proceed to step 4 for the following k.
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Iterating through steps 4 to 6 is done until the obtained residue can no longer be decom-
posed by EMD due to meeting the IMF criteria or having fewer than three local extrema.

Notice that by building the CEEMDAN mode, the final residue meets the follow-
ing conditions:

rk = x−∑K
k=1 d̃k (9)

where K presents the total number of modes. Therefore, the signal of interest x could be
written as

x = ∑K
k=1 d̃k + rk (10)

providing a precise reconstruction of the original data by guaranteeing the completeness
property of the suggested decomposition. The ultimate number of modes is determined
only by the data and the stopping conditions. The coefficient βk = εkstd(rk) allows
for the selection of the signal-to-noise ratio (SNR) at each stage, where ε is the noise
standard deviation.

There are, however, CEEMDAN features that need additional development: (i) there
is some residual noise in its modes; and (ii) the signal attaches “later” than in EEMD due to
the presence of “spurious” modes in the initial stages of decomposition.

Let us recall the operator Ek(·), and let M(·) be the operator that produces the local
mean of the signal to which it is applied. It can be noticed that E1(x) = x−M(x). Let w(i) be a
realization of white Gaussian noise, x(i) = x + w(i), and 〈·〉 be the action of mean throughout
the realizations. For the first EEMD and original CEEMDAN modes, we have:

d̃1 = 〈E1

(
x(i)
)
〉 = 〈x(i) −M

(
x(i)
)
〉 = 〈x(i)〉 − 〈M

(
x(i)
)
〉 (11)

By anticipating only the local mean and subtracting it from the raw signal, we have:

d̃1 = x− 〈M(xi)〉 (12)

In this manner, the quantity of noise present in the modes is minimized.

3.2.4. Improved CEEMDAN

To address these two issues, a new method for CEEMDAN is presented (hence referred
to as ICEEMDAN) [45]:

Step 1. Compute the local means of I realizations x(i) = x + β0E1(w(i)) by EMD to
acquire the initial residue:

r1 = 〈M1

(
w(i)

)
〉 (13)

Step 2. In the initial phase (k = 1), compute the initial mode: d̃1 = x− r1.
Step 3. Determine the second residue as the average of the local means of the realiza-

tions r1 + β1E2(w(i)) and define the second mode:

d̃2 = r1 − r2 = r1 − 〈M
(

r1 + β1E2(w(i))
)
〉 (14)

Step 4. For k = 3, . . . , K, compute the kth residue:

rk = 〈M
(

rk−1 + βk−1Ek(w(i))
)
〉 (15)

Step 5. Calculate the kth mode:

d̃k = rk−1 − rk (16)

Step 6. Go to step 4 for the next k.
The constants βk = εkstd(rk) are chosen to achieve a desired SNR between the added

noise and the residue to which the noise is added. We employ the noise produced by EMD
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preprocessing to obtain noise realizations with lower amplitudes for the next stages of the
process of decomposition in the remaining modes, i.e., without normalizing them by their
standard deviation (β0 = ε0std(rk), k ≥ 1). In this study, I = 500, ε = 0.02, a few hundred
realizations, and the same SNR were used for all the stages in all analyses.

3.3. RNN

The ANN model is comprised of numerous sub-models of neural networks. The NAR
and NARX models are included in the classification of recurrent neural networks (RNNs).
In addition, nonlinear dynamical models, such as NARX and NAR, are used to solve time
series prediction problems [46].

3.3.1. NAR Architecture

To make projections for the future, the NAR neural network model requires as its sole
input the provided historical dataset [47]. Mathematical equations for the NAR model’s
output function are described in Equation (17):

y (t) = f
(
y (t− 1), y (t− 2), · · · , y

(
t− dy

))
(17)

where y represents the historical electricity usage dataset through (t) time, f presents the
activation function of neural network model, and dy presents the FD or lagged feedback
output. The FD influences both the simulated closed-loop output and the multistep pre-
dictive outcome. Additionally, it was defined by using the autocorrelation function of the
input dataset (electricity demand). As a result, a sufficient FD is essential, as it allows the
training process to see the peculiarities of prior data. The critical settings of the NAR model
used in this investigation are as follows:

(1) Feedback delay (FD): The autocorrelation of the training dataset was utilized to
identify the FDs, and all significant values were employed as FDs in the model.
(FD = [1 : 397, 475 : 527, 660 : 1271, 1304 : 1332]) (Figure 3).
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(2) Hidden layers: The number of hidden layer neurons was defined individually each
time, for example, 10 neurons [48] and 15 neurons [12], ranging between 3 and 10 [49]
and between 1 and 20 [50]. Therefore, the trial-and-error procedure was applied to
investigate the number of hidden layer neurons by ranging it from 1 to 20.
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(3) Transfer function: Since FDs were utilized in a variety of values, the training time
performance is technically the model’s constraint. Therefore, to lessen the need for
both memory and time during training, Kumar and Murugan [51] proposed using
scaled conjugate gradient-based back-propagation (trainscg) for this model.

(4) Activation function: Sarkar et al. [52] and Vogl et al. [53] stated that the hyperbolic
tangent-sigmoidal (tansig) transfer function Equation (18) could provide better results
based on an error evaluation during the training process, and this function was
accordingly considered as the activation function for the hidden layer and linear
function (purelin) (Equation (19)) in the output layer in this study.

(5) Weights and bias: The trial-and-error method employed a double loop for each
number of hidden layer neurons, leading to 200 tests with randomly determined
beginning weights and biases ranging from 1 to 10.

F(x) =
2

1 + e−2x − 1 Hyperbolic Tangent Sigmoid (tansig) (18)

(x) = x Positive Linear (purelin) (19)

3.3.2. NARX Architecture

The NARX model is similar to the NAR model in terms of its framework; however,
NARX has external inputs. The NARX model’s equation can be expressed as Equation (20).

y(t) = f (y(t− 1), y(t− 2), . . . , y(t− dy), x(t− 1), x(t− 2), . . . , x(t− dx)) (20)

where the exogenous input dataset is denoted by x, and the input delay (ID) is denoted by
dx. While the NAR configuration served as the basis for the NARX configurations, further
investigation into the ID and connected input factors was necessary. Since 66 ERA5 climate
variables were used as inputs to the NARX model (Table A1), the statistically relevant
variables were identified from the entire ERA5 climate variables using the cross-correlation
function between the power demand and ERA5 climate variables (Figure A1). The six most
associated climate variables at site GS1 were used as the exogenous inputs of the NARX
model, with input delays selected as vector values between 0 and 2. (dx ≥ 0). The NARX
algorithm is described below as follows.

Step 1. Examine the input (climate variables) and target (power demand) from the ex-
tracted files, normalize or preprocess these raw data, and convert the data file
from an hourly to daily dataset by extracting data at 10:00 a.m. (the peak hour) to
represent the daily data.

Step 2. Define the correlated climate variables using a cross-correlation function between
the input (each climate variable) and the target (power demand). Set the bounds for
eliminating the variables with low correlations and set the correlation coefficient
of lag from 0 to 2 as the ID.

Step 3. For random weight generation, use MAX_TRIAL and MAX_HIDDEN_NEURON
to set the maximum number of trials and the maximum number of neurons,
respectively, in the hidden layer.

Step 4. Calculate the significant lags using the autocorrelation function and define the
number of significant lags as the FD for the network.

Step 5. For the first loop, starting from HIDDEN_NEURON = 1 to MAX_HIDDEN_NEUR
ON = 20.

Step 6. For the second loop, starting from TRIAL = 1 to MAX_TRIAL = 10.
Step 7. Construct an NARX neural network algorithms; specify the input and target

vectors, setting up number of hidden layers, training function (trainscg), and the
transfer function used in the hidden (tansig) and output (purelin) layers.

Step 8. Divide the dataset in half. First, there is a section for TRAINING, and then, there
is a section for MULTISTEP TESTING. In the Section 1, the dataset is divided



Energies 2022, 15, 7434 12 of 26

into training (75 percent), validation (15 percent), and testing (15 percent) datasets
using the divideint function. The multistep testing period is utilized to validate the
derived prediction in the Section 2.

Step 9. Prepare the data using the preparet function with the input and target of the
training period.

Step 10. Train the open-loop neural network using the training function.
Step 11. Simulate the closed-loop neural network using the closeloop function, then use the

preparets function to prepare the closed-loop system with closed-loop parameters
and execute it with the train function. By using the trained closed-loop network,
multistep prediction is simulated with the second part of the dataset.

Step 12. Denormalize or postprocess the simulated output data of the open-loop and closed-
loop neural networks. Then, calculate the performance indices of the open-loop
(normalized root mean square error (NMSE), R2

o , mean absolute error (MAEo),
mean absolute percentage error (MAPEo), and root mean square error (RMSEo)),
closed-loop (NMSEc, R2

c , MAEc, MAPEc, and RMSEc), and multistep prediction
networks (NMSEp, R2

p, MAEp, MAPEp, and RMSEp).
Step 13. Record the results of the open-loop, closed-loop, and multistep prediction neural

networks (the neuron size, number of trials, and performance indices in step 12) if
the calculated performance indices are lower than those in the previous iteration.
Skip this step otherwise.

Step 14. END\\TRIAL
Step 15. END\\HIDDEN_NEURON
Step 16. From step 13, select the optimum NARX model.
Step 17. Use the optimized NARX model for prediction.

3.4. Hybrid Model

The hybrid computational structure was proposed by combining the ICEEMDAN and
RNN (NAR and NARX) models. The original dataset was decomposed into IMFs, and the
NAR and NARX models were then fed the information from each IMF. The composition
procedure was used to establish the initial amplitude of the dataset after the forecast results
of each IMF were received. In the last phase, the optimal hybrid model between the
ICEEMDAN-NAR and ICEEMDAN-NARX techniques was sought. Figure 4 illustrates the
detailed structure of the hybrid model.

3.4.1. Data Decomposition

In this stage of the study, the ICEEMDAN decomposition method generated IMFs
from the power demand and climate variables. Each IMF was used as the input of an NAR
(only power demand) and NARX model for the forecasting model at the next stage.

3.4.2. Experiments

Each dataset was separated into three major sections. The Section 1 was used as
training (70% of data), validation (15%), and testing (15%) data from 1 January 2013 to 30
November 2018 for the open-loop and closed-loop learning models at site GS1. The Section 2
was for multistep and targetless predictions from 30 November 2018 to 20 December 2018.
The last section was used for prediction beyond the known data from 20 December 2018
to 31 December 2018 (Figure 5). The open-loop system was used for training, validation,
and testing the model in one particular period; however, the output of the open-loop
(series-parallel) system was deducted by FDs, making it difficult to utilize that period
to understand the model. This could benefit the closed-loop (parallel) system. After the
closed-loop system was determined, its architecture was employed to predict the next
period (multistep prediction). By using the same period and closed-loop architecture for
multistep prediction, x inputs were still used, but the target was no longer used in this
model for predicting the next period; this is called targetless prediction. This procedure
was used to test the fitness of the model, while the target was not available in the model
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for future prediction. The last ten days of the known data were used to test the predicted
future values by using the closed-loop architecture; this is called prediction beyond the
known data. This procedure was used to test the prediction outcomes, while future x inputs
were available for injection into the model. The main models for the simulations were
constructed on the Intel CPU i7 processor at 2.60 GHz platform using MATLAB® 2020a
with Neural Network Toolbox™.
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Figure 5. Experimental design of neural network modelling for power demand prediction.

After applying decomposition for the power demand in the above stage, all IMF and
residue pairs were simulated in the NAR and NARX models, respectively. The prediction
results were subsequently merged into a single dataset. For the NARX model, the ICEEM-
DAN model was used to decompose the power demand and the statistically significant
climate variables chosen by cross-correlation.

Each decomposed output (IMF and residue) of the power demand (henceforth called
the target) and selected climate variables (henceforth called the x inputs) were simulated in
the NARX model, and the predicted values of each IMF were merged into a single dataset.
Finally, the ICEEMDAN-NAR and ICEEMDAN-NARX hybrid models were evaluated.

3.5. Performance Evaluation

Error indices were applied to assess the performance of the models: the NMSE [54],
coefficient of determination

(
R2), MAE ([MW]), MAPE ([%]), and RMSE ([MW]), as

given in Equation (21) to Equation (25).

NMSE =
∑N

i=1

(
Pi

f or − Pi
act

)2

∑N
i=1
(

Pi
act − Pact

)2 (21)

R2 = 1−
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(
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)2

∑N
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(
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1
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RMSE =

√
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f or − Pi
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)2
(25)

where Pi
act , Pact, Pi

f or, P f or presents the ith actual value, the average of the actual values

in period N
(

1
n ∑N

i=1 Pi
act = Pact

)
, the ith forecasted value, and the average of the predicted

values in period N
(

1
n ∑N

i=1 Pi
f or = P f or

)
for the electricity demand, respectively, and N

presents the overall value for the duration of the testing period. The R2 value close to
1 indicates a perfect linear relationship between the actual and forecasted values [55,56]. The
MAPE value is near to zero, and it depicts the behavior of the optimal model. Differences
between actual and forecasted MW values are measured using the MAE and RMSE [57].



Energies 2022, 15, 7434 15 of 26

According to Guiamel and Lee [58], the R2 value, as explained in Table 2, can be used to
determine the goodness of fit.

Table 2. The statistical performance evaluation for determining goodness of fit.

Rank Description Performance Ratting

1 R2 ≥ 0.80 Excellent
2 0.70 < R2 < 0.60 Good
3 0.60 < R2 < 0.50 Satisfactory
4 R2 ≤ 0.50 Not satisfactory

4. Results
4.1. Climate Variables

Among the 66 extracted climate variables from ERA5, there were several variables
that were relevant to the electricity demand characteristics. Moreover, irrelevant climate
variables could lead the models to follow erroneous directions in terms of future aspects.
Furthermore, the elimination of irrelevant variables could prevent the heavy training
process since many variables would consume the simulation memory. By calculating the
cross-correlation coefficient at the k (0, 1, 2)-lag between the electricity demand and each
variable dataset, six climate variables were selected, as shown in Figure 6.
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Figure 6. Six climate variables from ERA5 reanalysis were selected by using the cross-correlation
function. The upper and lower bounds (blue lines) of the confidence interval were set between −0.23
and 0.23. The chosen variables needed to have 3 (0:2) cross-correlation coefficients that were higher
or lower than the bounds.

Figure 6 presents the cross-correlation coefficients for 0 to 10 lags between the electricity
demand and climate variables. The confidence intervals (blue lines) were set with a
minimum bound of −0.23 and a maximum bound of 0.23. These assumptions were used
to increase the correlation capability and eliminate the weak relationships in the variable
selection stage. Finally, the six climate variables with cross-correlation coefficients at 0 to 2
lags (daily) greater than the positive bound or smaller than the negative bound were chosen
and used in the training of neural network models. The 2-meter dewpoint temperature
(D2M), skin temperature (SKT), soil temperature level 1 (STL1), soil temperature level 2
(STL2), surface thermal radiation downwards (STRD), and 2-meter temperature are the six
climate variables for the GS1 site (T2 M).
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4.2. Decomposition Result

The power demand and six correlated climate variables were subjected to decomposi-
tion using ICEEMDAN. Figure 7 depicts the decomposition results of the power demand
with nine IMFs and the residue. IMF1 is the highest frequency mode, while IMF9 represents
the lowest frequency mode. IMFs 1 to 9 are statistically significant at the 5% and 95%
confidence intervals. The residue indicates the nonlinear trend of the power demand over
the data period.
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residue, and actual data (daily power demand), respectively.

4.3. Stand-Alone Models

A stand-alone model refers to the NAR or NARX model without the combination
with the decomposition technique. The typical workflow of the NAR model is to train
the open-loop network (including validation and testing stages), and then, the open-loop
network is transferred to a closed-loop system for multistep-ahead forecasting.

Figure 8 demonstrates the iterative prediction process by applying the NAR model.
The blue line is the original electricity demand dataset, and the red line is the predicted
values yielded by the NAR neural network. The output response of the NAR model
performed poorly compared to the original time series dataset even though the optimization
of the model was completed during the training process. Figure 8 also illustrates the
iterative prediction results in the yellow line obtained by using the NARX model. The model
configurations had the same structure as that of the NAR model; however, the correlated
variables (D2 M, SKT, STL1, STL2, STRD, and T2 M) became the improvement factors for
NARX’s outcome. It is clearly seen that values predicted by the NARX model achieved
higher accuracy than values predicted by the NAR model. Moreover, the statistical indices
of both models, presenting improvements in terms of the NMSE = 14.65, MAE = 5.192 MW,
RMSE = 6.745 MW, and MAPE = 0.435 (for NAR) were compared with NMSE = 1.343,
MAE = 2.288 MW, RMSE = 3.713 MW, and MAPE = 0.432 (for NARX), as shown in Table 3.
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Figure 8. Prediction results over the model comparison period obtained using the stand-alone NAR
and stand-alone NARX models for the GS1 site.

Table 3. Statistical comparisons between the stand-alone NAR and NARX models for the GS1 site.

Model NMSE R2 MAE (MW) RMSE (MW) MAPE (%)

Stand-alone NAR 14.65 0.678 5.192 6.745 0.435
Stand-alone NARX 1.343 0.902 2.288 3.713 0.432

4.4. Hybrid Models

The hybrid ICEEMDAN-NAR and ICEEMDAN-NARX models were applied to predict
future daily electricity demand values. In the analysis and prediction of the power demand
with the hybrid models, the IMFs generated by the ICEEMDAN were injected into the
NAR and NARX models as input. Figure 9 shows and compares the prediction results of
the ICEEMDAN-NAR model (Figure 9a) and the ICEEMDAN-NARX model (Figure 9b)
with those of the stand-alone NAR and NARX results. The prediction results of each IMF
are also illustrated in Figure 9.

Figure 10 illustrates the anticipated outcomes from the stand-alone and hybrid models,
while Table 4 provides error statistics for model performances. For site GS1, the suggested
ICEEMDAN-NARX hybrid model produced excellent NMSE, R2, MAE, RMSE, and MAPE
values of 0.048, 0.952, 1.923, 2.605, and 0.032%, respectively. Among the various models,
the ICEEMDAN-NAR hybrid model could also provide good performance in terms of
the NMSE, MAE, RMSE, and MAPE, with values of 0.074, 0.926, 2.519, 3.240, and 0.214%,
respectively. While the stand-alone NAR and NARX models yielded relatively poor per-
formance, the stand-alone NARX model is still capable of outperforming the stand-alone
NAR model in terms of the NMSE; their values were 1.343 and 14.654, respectively. Clearly,
the ICEEMDAN-NARX hybrid model attained the highest performance.
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Figure 9. Prediction results of the power demand at GS1 using (a) the hybrid ICEEMDAN−NAR 
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Figure 9. Prediction results of the power demand at GS1 using (a) the hybrid ICEEMDAN−NAR and
(b) the hybrid ICEEMDAN−NARX models. The prediction results of each IMF are also presented,
and the prediction results of the stand-alone models are shown for comparison.
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IMF9 0.052 0.952 1.024 1.144 20.868 2.68 × 10−11 0.999 0.002 0.006 0.014

Residue 0.096 0.898 0.980 1.089 0.402 1.65 × 10−13 0.999 0.001 0.001 5.62 × 10−5

Hybrid model 0.074 0.926 2.519 3.240 0.214 0.048 0.952 1.923 2.605 0.032

5. Discussion
5.1. Sensitivity to the Number of Climate Variables

The climate variables are the motivational factors for improving the model outputs
since exogenous inputs highly impact electricity demand behavior. The temperature was
found to be closely related to electricity consumption since the temperature rose parallel
to the demand. However, the other variables could also be affected by the geographical
terrain and atmosphere; for instance, the electricity demand curve in coastal areas was
influenced by the total cloud cover and total precipitation. These necessities require serious
attention when deciding which variables are useful for raising the performance of the
utilized forecasting model.

Experiments investigated the climate variables to understand the impacts of climate
variables with low and high correlations. The thirty-four (34) climate variables, including
low- and high-correlation climate variables, were simulated in the NARX models; how-
ever, the statistics of this experiment provided poor performance in terms of evaluation
indices (NMSE = 3.814, R2 = 0.830, MAE = 3.814 MW, RMSE = 4.897 MW, and MAPE
= 0.354) compared with the stand-alone NARX model with six high-correlation climate
variables at the GS1 site (NMSE = 1.343, R2 = 0.902, MAE = 2.228 MW, RMSE = 3.713 MW,
and MAPE = 0.432), and the evaluation indices of thirty four climate variables of hybrid
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ICEEMDAN-NARX (NMSE = 0.062, R2 = 0.937, MAE = 2.225 MW, RMSE = 2.967 MW,
and MAPE = 0.302) underperformed compared to the six climate variables of hybrid
ICEEMDAN-NARX (NMSE = 0.048, R2 = 0.952, MAE = 1.923 MW, RMSE = 2.605 MW, and
MAPE = 0.302), as shown in Table 5. Due to this experiment, the combination of low- and
high-correlation climate variables probably prevented the improvement of the prediction
models. Therefore, defining the bounds for highly correlated variable selection is the ideal
solution that leads to outstanding prediction performance.

Table 5. Statistical comparisons among highly correlated (HC) and all correlated (AC) variables using
NARX for the GS1 site.

Model
NARXAC NARXHC

NMSE R2 MAE
(MW)

RMSE
(MW) MAPE (%) NMSE R2 MAE

(MW)
RMSE
(MW) MAPE (%)

Stand-alone
model 3.989 0.830 3.814 4.897 0.354 1.343 0.902 2.288 3.713 0.432

IMF1 6.396 0.1737 2.092 2.783 81.16 3.904 0.359 1.869 2.464 63.230
IMF2 0.020 0.944 0.390 0.5938 6.383 0.007 0.969 0.184 0.466 0.158
IMF3 0.003 0.983 0.193 0.431 0.674 0.0003 0.995 0.044 0.251 0.074
IMF4 9.58 × 10−7 0.999 0.039 0.061 0.011 0.004 0.981 0.056 0.490 0.381
IMF5 1.05 × 10−7 0.999 0.011 0.029 0.128 3.95 × 10−7 0.999 0.010 0.039 0.299
IMF6 1.27 × 10−10 0.999 0.002 0.005 0.026 6.23 × 10−9 0.999 0.003 0.016 0.105
IMF7 9.99 × 10−5 0.996 0.115 0.1624 0.470 5.07 × 10−7 0.999 0.005 0.040 0.006
IMF8 5.05 × 10−11 0.999 0.003 0.004 0.004 3.06 × 10−11 0.999 0.001 0.004 0.004
IMF9 1.76 × 10−7 0.999 0.038 0.045 0.042 2.68 × 10−11 0.999 0.002 0.006 0.014

Residue 9.13 × 10−13 0.999 0.001 0.002 2.4 × 10−4 1.65 × 10−13 0.999 0.001 0.001 5.62 × 10−5

Hybrid model 0.062 0.937 2.225 2.967 0.302 0.048 0.952 1.923 2.605 0.032

5.2. Sensitivity to the Key Parameters in RNNs

Among the key parameters of RNNs, the identification of FDs is extremely crucial
and mainly determines the overall model performance. The calculation of the FDs is
based on the target (electricity demand) time series dataset and performed by using the
autocorrelation function. The different electricity demand curves at the various stations
cause the number of FDs to vary in diverse ranges. The second key parameter is the
optimization of the weight and bias. The trial-and-error approach was utilized to determine
the optimal weight and bias for the model to reduce error propagation. Moreover, the
double loop of the trial-and-error algorithm was also used to find the numbers of hidden
neurons for the optimized model. The third key parameter is the transfer function of
the neural network. Since a wide range of FDs was used in the model, the transfer
function needs to be defined as a transfer function that consumes less memory, exhibits
less calculation variation, and possesses sufficient efficiency. The fourth key parameter is
the activation function of the hidden and output layers. The activation function of both
layers also plays a crucial part in each layer after being exported to another layer using
mathematical properties. The detailed configuration of the neural networks is described in
Section 3.

6. Conclusions

The understanding of the future demand for power systems could enable policy
makers to visualize a clear path for managing the operation system environmentally,
efficiently, securely, and economically for the country. A ground-based investigation of
electricity demand forecasting is an ideal analysis method for system operations.

Medium-term electricity demand prediction could affect system planning within
several weeks or months, making it more realistic for energy experts to balance demand
and supply. There are many types of factors that influence the shape of the electricity
demand curve; however, weather or climate factors can provide insight into customer
behaviors during different seasons. The available climate variables obtained from reliable
sources can address the uncertainty of the local climate variables since data management is
a major challenge for developing countries.
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In this study, an RNN was introduced to estimate future electricity demand. By using
a historical electricity demand dataset, RNNs allowed the developed model to learn the
sharpness of the electricity demand during the training period. After treating the missing
values and converting the hourly dataset into a daily demand dataset, decomposition
techniques were applied to decompose the nonlinear and nonstationary power demand
data into IMFs from the high-frequency to the low-frequency bands and the residue. In
general, IMF1 and IMF2 gained the high-frequency nature of the original dataset, while
IMF3 and onward depicted the relatively low-frequency oscillatory behavior of the data.
The residue represents the nonlinear trend of the power demand. Then, each IMF is input
and predicted with trained NAR and NRAX models. The predicted results of each mode
showed very good performance, particularly for the low-frequency modes from IMF3 and
onward. Relatively low performance and large RMSE were obtained for the high-frequency
mode predictions (IMF1 and IMF2). The hybrid models of this study illustrate very good
performance for power demand forecasting. If the low-frequency modes are utilized for
prediction depending on a specific need, then mid-term and long-term power demand
forecasts would be possible with significant information on sustainable power development
and management.

This study was focused on and limited to the normal condition of electricity usage
from 2013 to 2018. The effects on power generation or energy consumption were not
considered in the analysis. The electricity trend was based on consumers’ behaviors,
economic activities, and development activities during the study period.

In regard to the error propagation section of the study, numerous aspects could be
improved, and the first improvement would be the climate variables. Various climate
resources could be measured in terms of the reliability of the input data, which would
benefit future research. The second improvement would be to randomly initialize the
weight and bias. Optimizers for weights and biases were introduced, such as the grey wolf
optimizer, PSO, the genetic algorithm, the harmony search algorithm, simulated annealing,
tabu search, and ant colony optimization. These optimizations could be compared to
improve the learning process of the network. The major improvement would be the real-
time measurement of climate variables (maximum temperature, minimum temperature,
sunshine, humidity, etc.) at a local station, which is essentially necessary for consideration
in the model’s prediction process. Moreover, socioeconomic variables (such as the electricity
consumption levels of different consumers, energy policies, energy consumption levels on
weekdays and holidays, electricity usage behaviors, etc.) could also be used as improvement
factors for the ANN model.
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AC All correlated
ADB Asian Development Bank
AFD Adaptive Fourier decomposition
ANN Artificial neural network
ARIMA Autoregressive integrated moving average
BPNN Back-propagation-based neural network



Energies 2022, 15, 7434 22 of 26

CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
CNN Convolution neural network
CO2 Carbon dioxide
EAC Electricity Authority of Cambodia
ECMWF European Center for Medium-Range Weather Forecast
EDC Electricité du Cambodge
EEMD Ensemble empirical mode decomposition
EMD Empirical mode decomposition
ExSS Extended snapshot
FFNN Feed-forward neural network
GDP Gross domestic production
GS Grid substation
HC Highly correlated
HFO Heavy fuel oil
HFT Hidden transfer function
HHO Harris hawks optimization
ICEEMDAN Improved complete ensemble empirical mode decomposition with adaptive noise
IMF Intrinsic mode function
LEAP Long-range alternatives energy planning
LPG Liquefied petroleum gas
LRF Linear recurrent formula
LSSVM Least-square-support vector machine
LSTM Long–short-term memory network
MAE Mean absolute error
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression spline
ML Machine learning
MLR Multiple linear regression
NAR Nonlinear autoregressive neural network
NARX Nonlinear autoregressive neural network with exogenous inputs
NMSE Normalized mean square error
OFT Output transfer function
PDP Power development plan
PSO Particle swarm optimization
RMSE Root-mean square error
RNN Recurrent neural network
SCADA Supervisory control and data acquisition
SDGs Sustainable development goals
SSA Singular spectrum analysis
SVR Support vector regression
SWPT Stationary wavelet packet transform decomposition
TCN Temporal convolutional network
VMD Variational mode decomposition
WAsP Wind Atlas Analysis and Application Program
WPP West Phnom Penh grid substation
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Figure A1. For the GS1 site, the outcomes of cross-correlation coefficient (daily) between electricity
demand and climate variables from the ECMWF-ERA5 reanalysis dataset. The climate variables
were selected based on their 95% confidence intervals and are demonstrated by the blue lines. The
six chosen blue variables were based on the number of significant daily lags (from 0 to 2) and the
number of decomposed power demand outputs. The details are described in Table A1.
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Table A1. Input climate variables from the ECMWF-ERA5 climate reanalysis.

Data Description No. Main Climate Variables Acronym
Daily Dataset

Mean
(1 January 2013)

ERA5 climate
reanalysis

1 Boundary layer dissipation (J m−2) BLD 4303.75
2 Boundary layer height (m) BLH 563.93
3 Convective available potential energy (J kg−1) CAPE 0.04
4 Charnock ( ∼) CHNK 0.02
5 Convective precipitation (m) CP 0.00
6 2-metre dewpoint temperature (K) D 292.15
7 Evaporation (m of water equivalent) E 0.00
8 Eastward turbulent surface stress (N m−2 s) EWSS −109.38
9 Forecast albedo (0− 1) FAL 0.16
10 10-metre wind gusts since previous postprocessing (m s−1) FG10 6.12
11 Forecast logarithm of surface roughness for heat ( ∼) FLSR −3.84
12 Forecast surface roughness (m) FSR 0.47
13 High cloud cover (0− 1) HCC 0.87
14 Instantaneous moisture flux (kg m−2 s−1) IE 0.00
15 Instantaneous eastward turbulent surface stress (N m−2) IEWS −0.04
16 Instantaneous northward turbulent surface stress (N m−2) INSS −0.15
17 Instantaneous surface sensible heat flux (W m−2) ISHF −52.10
18 Low cloud cover ((0− 1)) LCC 0.17
19 Large-scale precipitation fraction (s) LSPF 0.00
20 Medium cloud cover ((0− 1)) MCC 0.06
21 Mean sea level pressure (Pa) MSL 101,139.75
22 Northward turbulent surface stress (N m−2s) NSSS −528.31
23 Vertical integral of potential, internal, and latent energy (J m−2) P62.162 2,780,152,438.89
24 Vertical integral of total energy (J m−2) P63.162 2,780,456,503.09
25 Vertical integral of eastward kinetic energy flux (W m−1) P67.162 −1,832,177.66
26 Vertical integral of eastward geopotential flux (W m−1) P73.162 −2,982,667,364.29
27 Vertical integral of northward geopotential flux (W m−1) P74.162 2,069,308,190.16
28 Vertical integral of eastward total energy flux (W m−1) P75.162 −14,986,239,992.45
29 Vertical integral of eastward ozone flux (kg m−1 s−1) P77.162 0.02
30 Runoff (m) RO 0.00
31 Skin temperature (K) SKT 300.50
32 Surface latent heat flux (J m−2) SLHF −286,915.24
33 Surface pressure (Pa) SP 100,833.20
34 Skin reservoir content (m of water equivalent) SRC 0.00
35 Surface sensible heat flux (J m−2) SSHF −186,000.54
36 Surface net solar radiation (J m−2) SSR 692,607.54
37 Surface net solar radiation, clear sky (J m−2) SSRC 721,085.09
38 Surface net solar radiation, downwards (J m−2) SSRD 818,633.89
39 Soil temperature level 1(K) STL1 301.93
40 Soil temperature level 2(K) STL2 301.76
41 Soil temperature level 3(K) STL3 302.18
42 Soil temperature level 4(K) STL4 301.95
43 Surface net thermal radiation (J m−2) STR −222,398.82
44 Surface net thermal radiation, clear sky (J m−2) STRC −254,379.87
45 Surface thermal radiation, downwards (J m−2) STRD 1,435,890.80
46 Volumetric soil water layer 1 (m3 m−3) SWVL1 0.21
47 Volumetric soil water layer 2 (m3 m−3) SWVL2 0.22
48 Volumetric soil water layer 3 (m3 m−3) SWVL3 0.29
49 Volumetric soil water layer 4 (m3 m−3) SWVL4 0.29
50 2-metre temperature (K) T2 M 300.33
51 Total cloud cover (0− 1) TCC 0.88
52 Total column cloud liquid water (kg m−2) TCLW 0.02
53 Total column ozone (kg m−2) TCO3 0.00
54 Total column cloud ice water (kg m−2) TCIW 0.00
55 Total column water (kg m−2) TCW 37.75
56 Total column water vapor (kg m−2) TCWV 37.71
57 TOA incident solar radiation (J m−2) TISR 1,260,279.10
58 Total precipitation (m) TP 0.00
59 Temperature of snow layer (K) TSN 273.05
60 Top net solar radiation (J m−2) TSR 1,009,476.83
61 Top net solar radiation, clear sky (J m−2) TSRC 1,043,013.34
62 Top net thermal radiation (J m−2) TTR −863,546.10
63 Top net thermal radiation, clear sky (J m−2) TTRC −1,037,561.45
64 10-metre U wind component (m s−1) U10 −0.48
65 Downward U.V. radiation at the surface (J m−2) UVB 95,201.23
66 10-metre V wind component (m s−1) V10 −2.65
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