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Abstract: Nowadays, electricity theft has been a major problem worldwide. Although many single-
classification algorithms or an ensemble of single learners (i.e., homogeneous ensemble learning)
have proven able to automatically identify suspicious customers in recent years, after the accuracy of
these methods reaches a certain level, it still cannot be improved even if it continues to be optimized.
To break through this bottleneck, a heterogeneous ensemble learning method with stacking integrated
structure of different strong individual learners for detection of electricity theft is presented in this
paper. Firstly, we use the grey relation analysis (GRA) method to select the heterogeneous strong
classifier combination of LG + LSTM + KNN as the base model layer of stacking structure based
on the principle of the highest comprehensive evaluation index value. Secondly, the support vector
machine (SVM) model with relatively good results of the stacking overall structure experiment is
selected as the model of the meta-model layer. In this way, a heterogeneous integrated learning model
for electricity theft detection of the stacking structure is constructed. Finally, the experiments of this
model are conducted on electricity consumption data from State Grid Corporation of China, and the
results show that the detection performance of the proposed method is better than that of the existing
state-of-the-art detection method (where the area under receiver operating characteristic curve (AUC)
value is 0.98675).

Keywords: electricity theft; stacking structure; analytic hierarchy process; entropy weight method;
grey relation analysis

1. Introduction

Electricity theft in the power system refers to malicious users tampering with electricity
meters or attacking smart grids through a specific technology or devices in order to reduce
or not pay electricity bills. Electricity theft seriously damages the economic interests
of power companies, and the direct economic loss of State Grid Corporation of China
due to electricity theft exceeds 1 billion yuan each year [1]. In January 2017, a research
report released by the Northeast Group, a power grid consulting firm, said that the annual
economic losses caused by non-technical losses in the 50 developing countries surveyed
by it totaled $64.7 billion [2]. The worst of them is in India. India’s annual revenue loss
caused by electricity theft amounts to $17 billion US dollars [3]. Neither is this solely an
issue in developing countries: relatively large revenue losses caused by electricity theft
occur in developed countries as well, e.g., the revenue losses from electricity theft in the
United Kingdom and the United States are as high as $6 billion per year [4]. At the same
time, theft of electricity poses a huge threat to the order of market electricity consumption
and the stable operation of the power grid. In areas where electricity theft is common (such
as India), the power consumption side encounters irregular voltage dips and intermittent
power interruptions, especially during peak loads, which can cause fires and threaten
community safety in severe cases [5]. Therefore, it is necessary to accurately detect the

Energies 2022, 15, 7423. https://doi.org/10.3390/en15197423 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197423
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15197423
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197423?type=check_update&version=1


Energies 2022, 15, 7423 2 of 25

behavior of electricity theft and provide technical support for the grid company to further
identify the users suspected of electricity theft.

The existing electricity stealing methods mainly include the undervoltage method,
the undercurrent method, the phase shift method, the differential expansion method, and
the no-table method in terms of physical means. The above physical methods can be
roughly divided into three categories, as shown in Figure 1 for the three categories of
methods [1], respectively.
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Figure 1. Three types of physical electricity theft methods. (a) Voltage reduction type wiring dia-
gram. (b) Current reducing type wiring diagram. (c.1) Power factor reduction type wiring dia-
gram. (c.2) Power factor reduction type phase diagram. 
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than the actual current by operating the current measurement loop. The electric current 
indirectly causes the electricity consumption measured by the electric energy meter to be 
reduced or zero, thereby realizing electricity theft. 
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Figure 1. Three types of physical electricity theft methods. (a) Voltage reduction type wiring
diagram. (b) Current reducing type wiring diagram. (c.1) Power factor reduction type wiring
diagram. (c.2) Power factor reduction type phase diagram.

Figure 1a is a voltage reduction type. The unlawful user disconnects the zero line
terminal and then connects it to the neighbor’s zero line through the large resistance R.
The electric energy meter is connected in series with the large resistance R to divide the
voltage, and the electric energy meter measures the voltage U’ = R1/(R1 + R) × U, where
R1 is the resistance of the electric energy meter, U is the actual voltage, and the electric
energy meter only measures the voltage obtained by its partial pressure, which reduces
the measured electricity consumption. This is supposed to make the electric energy meter
lose voltage or the measured voltage to be lower than the actual voltage by operating the
voltage measurement loop, which indirectly causes the electricity consumption measured
by the electric energy meter to decrease or be zero, thereby realizing electricity stealing.

Figure 1b is the current reducing type, where Rn is the zero line impedance, Rd is the
grounding impedance, and I is the load current. The unlawful user will ground the neutral
line after swapping the neutral line and the live line, and shunt Rn and Rd in parallel, so
that the flow through the current of the electric energy meter I0 = Rd/(Rn + Rd) × I. The
electric energy meter only measures the current divided by Rn, which reduces the measured
electricity consumption. The current measured by the electric energy meter is zero or lower
than the actual current by operating the current measurement loop. The electric current
indirectly causes the electricity consumption measured by the electric energy meter to be
reduced or zero, thereby realizing electricity theft.

Figure 1c.1 is the type that reduces the power factor. The unscrupulous user connects
the modified specific converter to the circuit in parallel, so that the current flowing through
the energy meter is the vector sum of the load current I1 and the converter current I2.
The current flowing into the electric meter in the same phase as the voltage is I1cosθ − I2
makes the electric energy meter rotate slowly, stop, or reverse with the change of the size
and nature of the load. By increasing the phase difference between the current and the
voltage, the power factor measured by the electric energy meter decreases or becomes
negative, which indirectly causes the electricity consumption measured by the electric
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energy meter to be reduced, zero, or negative, thereby realizing electricity stealing. The
phase representation is shown in Figure 1c.2.

With the intelligent development of science and technology, many high-tech power
stealing methods continue to emerge. For example, some unscrupulous users install remote
control devices inside and outside the electric energy meter, and then intelligently control
the on-off of the circuit and the size of the series-inserted resistance equipment. The timer
outputs the neutral point intermittently. With the popularization of time-of-use electricity
prices, some lawbreakers achieve the purpose of stealing electricity by reversing the timing
of electricity consumption.

The traditional electricity stealing detection method requires manual on-site inves-
tigation, which is labor-intensive and has low detection efficiency and high blindness.
At present, some experts and scholars have developed anti-theft devices based on the
mechanism of electricity theft, which can effectively prevent the occurrence of certain
electricity theft behaviors [6,7]. However, since it is only designed for some traditional
electricity stealing means or some new types of electricity stealing means, the universality
of the anti-electricity stealing device is low, and at the same time, the hardware cost and
the possibility of hardware failure are increased. With the continuous improvement of
power grid intelligence, power companies have obtained massive power consumption data
to provide strong support for data mining methods. Based on data mining methods, the
implicit information behind the data can be obtained. How to effectively use power big
data to achieve efficient and accurate anti-theft malicious user identification has become
particularly important.

1.1. Literature Review

Electricity theft detection methods based on data mining can be mainly divided
into three categories. The first category is to realize electricity theft detection by building
statistical models to analyze network status information such as grid voltage, current, power
and network topology [8–11]. The electricity theft detection method based on the statistical
model needs to obtain the grid network topology, network parameters, and the correct
household change relationship. Due to the complex and dynamic change of the power grid
network structure, this method has great limitations in practical engineering applications.

The second category is the game theory detection method. From the perspective of
economics, this method builds a game theory model between power supply enterprises and
electricity malicious users to quantify the benefits of electricity theft and governance [12–14].
For example, in [12], a Stackelberg game theory model was established to analyze the
strategic interaction between a power company and multiple electricity malicious users,
and the sampling rate and threshold were tested for likelihood ratios according to the
Stackelberg equilibrium. Another example is the intrusion defense model based on game
theory in [14], which combines honeypot technology with game theory, and obtains the
optimal strategy for both sides of the attack through the game tree. Although the above
game theory method has well described the interest relationship between power supply
enterprises and electricity malicious users, the current research on the detection method of
electricity theft based on game theory mainly stays at the level of theoretical derivation and
simulation, which is temporarily difficult to apply to engineering practice.

The third category is the construction of electricity theft detection model based on data-
driven method mining of electricity data information. Data-driven methods can be divided
into unsupervised learning, semi-supervised learning and supervised learning according
to the amount of prior knowledge required. Among them, unsupervised learning can
automatically extract the typical characteristics of users’ electricity consumption by learning
the inherent similar correlation attributes of user electricity consumption data, cluster
normal users, and find outliers as abnormal users [15]. In [16], the authors proposed an
electricity stealing detection model based on cluster point algorithm, but because there is no
feature extraction process and the algorithm is simple, the detection accuracy is low. In [17],
the authors proposed feature extraction based on time-scale load sequence and constructed
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a sequential ensemble detector based on a deep auto-encoder with attention (AEA), gated
recurrent units (GRUs), and feed forward neural networks to detect electricity theft behavior,
but the feature extraction process is complex and computationally expensive. Reference [18]
proposes a generative adversarial network to generate realistic electricity stealing samples,
enhance the diversity of electricity stealing samples, and simplify the modelling process.
However, the unsupervised learning method relies heavily on parameters and is not
suitable for complex power grid environments and the detection of various types of
electricity theft methods.

The semi-supervised learning method uses a small amount of label data obtained to
train the initial learner, test and classify the unknown category data, and add the samples
with high confidence coefficient in the classification results to the training set to train the
model again, and repeat this process until all samples are the most excellent classification.
Reference [19] uses a correlation denoising autoencoder to achieve feature extraction and
feature association of electricity data. In [20], the authors propose a semi-supervised
learning-based SSAE generation model and design an adversarial module to enhance the
model’s anti-noise ability. In [21], the authors adopted a semi-supervised learning method
based on consistency loss to solve the problem of less label data in electricity stealing
detection. There is a serious data imbalance problem in electricity stealing detection. There
are fewer known labels in a small number of electricity stealing samples, which is easy to
cause overfitting of the semi-supervised model and cannot effectively identify other types
of anomalies. The method requires part of the label information, so the quality of the initial
label data is high, and semi-supervised learning needs to solve the problems of overfitting
and high-quality labels. Therefore, in the actual power grid situation, the applicability of
this type of method is not high.

In order to overcome the shortcomings of unsupervised learning methods and semi-
supervised learning methods for electricity theft detection, supervised learning methods
can be used to detect electricity theft. The supervised learning method requires part of the
label data confirming the user steals electricity as a training set, and uses the trained model
to test and classify the unknown category data. Supervised learning learns the implicit
information in the feature quantity according to the label information, finds the relationship
between the feature quantity and the label information, and detects the unknown category
data according to it. When using SVM or decision tree method, if the power consumption
data set contains noise, such as missing data, the detection performance is poor [22,23].
For the high-dimensional data of user power consumption, the detection model of shallow
structure cannot effectively process it. In order to further improve the detection accuracy,
ensemble learning methods such as XGboost are applied in the field of electricity stealing
detection [24,25]. However, the above methods do not perform feature extraction on the
data, cannot find the time series features of electricity consumption data, and cannot achieve
accurate prediction and classification when dealing with massive electricity consumption
data. To solve the feature extraction problem, a new feature-engineering framework
for theft detection in smart grids is introduced, however this method is complex and
computationally intensive [26]. For this purpose, neural networks [27] and LSTM [28]
can be used for feature extraction and classification prediction. However, because neural
networks or their variants are prone to overfitting due to excessive network training times
and long model training time, in addition, it is difficult to optimally set the hyperparameters,
which leads to the detection accuracy reaching a certain level, which cannot be improved
even if the optimization is continued.

1.2. Motivation

In order to break through the bottleneck of the existing single-classification algorithm
or fusion algorithm, when the accuracy of electricity theft behavior detection reaches a
certain level, even if it continues to optimize, it still cannot be improved [29,30]. For their
optimization algorithms, such as the stacking strong model ensemble learning method,
the selection of base classifiers does not have a good selection strategy, resulting in poor
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detection results or unable to explain the rationality of its selection. Moreover, these
optimization methods do not take into account the complexity of the model [31]. In this
paper, we use a multi-model fusion integrated learning algorithm based on the stacking
structure to address the above problems.

The main contributions of this paper are summarized as follows:

1. This paper considers that while improving the accuracy and generalization ability of
stacking structure algorithm and reducing the complexity of the model, the combined
weight method of subjective weight and objective weight based on grey relation
analysis (GRA) [32] is used to determine the weight of a single performance index of
the classifier.

2. We extract the user’s effective features of electricity consumption through a statistical-
based method and reduce the dimensionality of the extracted features using the
principal component analysis (PCA) method to reduce the redundancy of the data.

3. For the stacking structure, the choice of the base model is a difficult problem for
all researchers. We conducted a large number of experiments and compared and
analyzed the combination experiments of different models, and obtained the base
model combination with excellent detection results and model complexity. In addition,
for our chosen meta-model, SVM, we use particle swarm optimization (PSO) to
optimize its parameters to get a better detection result.

The remainder of the paper is structured as follows. Data preparation is introduced
in Section 2, which includes the recovery of missing values in the original dataset and the
repair of outliers, as well as feature extraction and dimensionality reduction of the dataset.
The stacking integrated structure is described in Section 3. Numerical experiments are
conducted, and the analysis of experiments results is shown in Section 4. Final remarks are
then presented in Section 5.

2. Data Preparation

In this section, the preprocessing process method based on the original dataset, includ-
ing the interpolation of missing values and the repair of outliers, is introduced in detail.
The feature extraction of electricity consumption dataset is then described.

2.1. Dataset

The dataset is gathered from smart meters of electricity consumption and was obtained
from a province of the State Grid Corporation of China. The dataset is a sequence of daily
electricity consumption, which is characterized as a time series, and records the daily
electricity consumption of 9956 users from 1 January 2015 to 31 December 2015. The data
are divided into thieves and normal electrical consumers, where the thieving consumers
compose 14% of the total. The dataset description is shown in Table 1 [27].

Table 1. The Description of Dataset.

Timeline Number of Normal
Customers

Number of Theft
Customers

The Total Number
of Customers

2015/01/01–2015/12/31 8562 (86%) 1394 (14%) 9956 (100%)

2.2. Data Preprocess

In the process of collecting electricity load data, due to software and hardware failures,
special events, and other factors, the data may contain missing or some erroneous values,
which will affect the continuity of electricity consumption records, so it is necessary to
process the original dataset.
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This paper uses the method named “three-sigma rule of thumb” to recover the missing
values [27], and the formula is as follows:

f (xi) =


xi−1+xi+1

2 if xi > 3 · σ(xi) and xi−1, xi+1 /∈ NaN
0 xi ∈ NaN, xi−1 or xi+1 /∈ NaN
xi xi /∈ NaN

, (1)

where xi represents the power consumption value of a user in a day, σ(xi) represents the
standard deviation of vector xi, denote NaN as if xi is not a number value.

In addition, for the outliers in the dataset, the following formula is used to recover [27]:

f (xi)

{
mean(xi) if xi ∈ NaN
xi others

, (2)

where mean(xi) represents the average of vector xi.
The power consumption habits of each power user are different. If the load data is not

standardized, some users with high power consumption levels will have a greater impact on
the detection model, which will increase the burden of the algorithm and is not conducive
to model training. Extreme cases may lead to the model struggling to converge. Data
standardization can be performed using some mathematical transformation processing to
convert the original data to a fixed value range. The power load includes base load and
variable load. The use of min-max standardization can remove the base load and highlight
the trend of the variable load, while avoiding the impact of large differences in orders of
magnitude. The daily load can be normalized to reduce the abnormal number of days
and seasonal effects with critical peaks or false data injection. The min-max standardized
calculation formula [25] is:

xk
i,j =

xk
i,j − xk

imin

xk
imax − xk

imin
, (3)

where xk
imin is the minimum value of the kth day load for the ith user, and xk

imax is the
maximum value of the kth day load for the ith user.

2.3. Feature Extraction

Through the full understanding and comprehensive analysis of the user electricity
dataset, it can be seen that there are certain differences in the fluctuations and trends of
the electricity load between normal users and electricity users [33], and after extracting
valuable information about the user electricity consumption data, the established model
can be made to more accurately reflect the difference between the data and obtain better
training results. Statistics are extracted from the after-preparation electricity consumption
sequence as time series features, which are characterized by D1–D49, and the statistics-based
features are shown in Table 2.

Table 2. The characteristic indicators of user electricity consumption time series statistical.

Characteristic Indicators Dimension

Standard deviation and discrete coefficient of annual electricity consumption D1, D2

Standard deviation and discrete coefficient of quarterly electricity consumption D3~D6, D7~D10

Standard deviation and discrete coefficient of monthly electricity consumption D11~D21, D22~D32

Average monthly electricity consumption rising and falling trends D33~D41

The maximum and minimum value of the difference and the ratio of the average electricity
consumption in the adjacent two months D42~D43, D44~D45

The maximum and minimum value of the difference and the ratio of the average electricity
consumption in the adjacent two quarters D46~D47, D48~D49
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Note the user electricity data set X = (xn, n = 1, 2, . . . , N) after preprocessing,
where N is the number of users. The user’s daily electricity consumption sequence is
xn = {xnd, d = 1, 2, . . . , D}, the monthly electricity consumption sequence is
yn = {ynm, m = 1, 2, . . . , M}, the quarter power consumption sequence is
zn = {znq, q = 1, 2, . . . , Q}, where the user’s electricity consumption time is collected
is D days, M months, Q quarters. The standard deviation of electricity consumption is std,
which indicates the fluctuating characteristics of electricity consumption data [33]:

std =

√√√√√ k
∑
i
(xni − µ)2

k
, 1 ≤ i ≤ k ≤ D, (4)

where µ represents the average electricity consumption over time. The dissipation coeffi-
cient of electricity consumption is recorded as dc, which indicates the degree of dispersion
of the electricity consumption data, and its formula [33] is:

dc =
std
µ

. (5)

The difference between the mean values of electricity consumption in adjacent time
intervals is avgra [33], which is:

avgdi =

∣∣∣∣∣∣∣∣∣
k
∑

i=1
yn(m+1)

k
−

k
∑

i=1
yn(m−i+1)

k

∣∣∣∣∣∣∣∣∣. (6)

The ratio between the mean values of electricity consumption in adjacent time intervals
is avgra, which is:

avgra =

k
∑

i=1
yn(m+1)

k
÷

k
∑

i=1
yn(m−i+1)

k
. (7)

The trend of electricity consumption rise and fall is obtained by comparing the actual
value of electricity consumption xnt at a certain time t with the predicted electricity con-
sumption Ft at this time. Among them, the predicted value at a certain time is shifted item
by item according to the time series through the simple moving average method, and its
predicted value is the average value of the last fixed item number k. The Ft formula [33] is:

Ft =
(xn(t−1) + xn(t−2) + · · ·+ xn(t−k))

k
. (8)

The rising and falling trend tr of a certain time t is:

tr = xnt − Ft, (9)

if tr > 0, it is an uptrend; if tr < 0, it is a downtrend.
Since the feature dimension of the above-mentioned extracted power consumption

time series data is large, the features are redundant, and the feature matching is too
complicated. Therefore, the extracted feature data needs to be dimensionally reduced.
In this paper, principal component analysis (PCA) [34] is used to reduce the dimension
of high-dimensional feature data, that is, a small number of new attributes are used to
ensure that a large amount of original information is not lost. Suppose that the extracted
power-time series data features are: Yn×f , where n is the number of samples and f is
the feature dimension. The eigenvalues obtained by the PCA method are arranged from
largest to smallest as follows: λ = [λ1, λ2, λ3, . . . , λf−1, λf], and the matrix obtained by the
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eigenvectors corresponding to the previous l eigenvalues is Af×k. The new feature data
obtained after calculating the dimensionality reduction of principal component analysis
method are: Y′n×k = Yn×f × Af×k, and the principal component contribution rate r is
defined as the value criterion for l. The contribution rate r represents the proportion of the
eigenvalues corresponding to the principal components in the data after dimensionality
reduction, which reflects the reliability of the new features. In this paper, we choose
r ≥ 95% [34], that is:

r =

l
∑

i=1
λi

f
∑

i=1
λi

≥ 0.95, (10)

where l ≤ f.

3. Proposed Methods

This section details the paper’s proposed design for the stacking integrated struc-
ture, followed by the electricity theft detection method based upon it, including the se-
lection of the base-classifier model and the meta-classifier model, and the flow of the
detection method.

3.1. Principles of Ensemble Learning

Ensemble learning accomplishes learning tasks through the construction and com-
bination of multiple learners and can also be labeled a multi-classifier system. Figure 2
shows the usual architecture of ensemble learning. In essence, a set of single learners is first
created, and these are then combined using a particular strategy. The single learners are usu-
ally derived from training data by a pre-designed learning algorithm. Ensemble learning,
with its multiple combined learners, can often obtain significantly superior generalization
performance and estimation accuracy than the single learner method.
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The most common ensemble methods include bagging, boosting, and stacking. Bag-
ging trains homogeneous weak estimation models in parallel and averages the results
from each one to achieve the final output. Boosting works similarly to bagging, but the
weak models are given a variety of weights, so that the final output is given as weighted
average values. In contrast, stacking creates its models through the use of different learning
algorithms, which results in a unified methodology that can blend multiple estimation
models into a single, unique metamodel. Stacking learning also has better generalization
performance than other ensemble learning methods, as is corroborated in [35].

3.2. Stacking Integrated Structure

Stacking (sometimes called stacked generalization) was first introduced by David
Wolpert in [35]. Its main purpose is to reduce generalization errors. According to Wolpert,
stacked generalization can be understood as a “more complex version of cross-validation”
that integrates models through a winner-takes-all approach.
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The stacking integrated structure is composed of three parts. Firstly, the training data
is evenly divided into k non-intersecting pieces as the data set for the classifiers’ “leave- one-
out” method training; secondly, the base classifiers are chosen from a number of classifiers,
and their prediction results are obtained. Finally, the prediction results are used as the
next stage feature input, a classifier is selected as a meta-classifier for training, and the
prediction results are output. The integrated structure of stacking is depicted in Figure 3.
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For the first layer, the k-fold layer, the preprocessed dataset X is split between a training
dataset and a test dataset, where the training dataset Sn = {(xn, yn), n = 1, 2, . . . , N} is divided
into k-folds (i.e., F1, F2, . . . , Fk), and the test dataset is Tq = {(xq), q = 1, 2, . . . , Q}. In Sn, x is
the feature vector, and y is the classification attribute. The second layer, the base-classifier
layer, contains P base models Mp (i.e., M1, M2, . . . , MP). For each base model M1, M2, . . . ,
MP, k training is performed separately, and 1/k samples are reserved for every training to
be used as a test to make predictions. All prediction results are spliced, and M1, M2, . . . ,
MP respectively get the meta training dataset Ymeta = (Y1, Y2, . . . , YP), while the result YP
obtained by a single model is YP = {(yP1, yP2, . . . , yPk)}. Here, Ymeta actually refers to the
meta-features of the training dataset [35].

Ymeta =


(y11) (y21) · · · (yP1)
(y12) (y22) · · · (yP2)

...
...

...
(y1k) (y2k) · · · (yPk)

, (11)

Moreover, the base models M1, M2, . . . , MP are trained k times each. The model
obtained in each training is predicted on the test dataset, and the k prediction results of each
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model are averaged to obtain the meta test dataset Tmeta = T1, T2, . . . , TP, where TP = ((TP1),
(TP2), . . . , (TPq)). As before, Tmeta is the meta-features of the test dataset here [35].

Tmeta =


T11T21 · · · TP1
T12T22 · · · TP2

T1qT2q · · · TPq

, (12)

The last layer is the meta-classifier layer. A simple model is trained through the meta
training dataset Ymeta, and then the meta test dataset Tmeta is predicted to get the final
output. Since the base-classifier layer uses strong models to prevent over-fitting of the
overall model, a simple one is generally chosen for the meta-classifier layer model. The
linear regression model is a very common choice. In fact, a new simple model is used
to train the super-features of the training dataset to train a model from meta-features to
ground truth. Then, the meta-features of the test dataset are input into this model to obtain
the final result. The pseudo-codes of the stacking integrated structure approach are given
in Algorithm 1.

Algorithm 1: The stacking integrated structure
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Algorithm 1. The stacking integrated structure 
Input： Trainning Dataset Sn  = {(x1,y1) , (x2,y2), ···, (xN,yN)

Ymeta = ∅ 

1
2
3
4
5
6
7

 Base-classify Algorithm M1, M2, ···, MP

#Data processing
for p = 1, 2, 3, ···, P   do

hp = Mp (Sn  )
end for

for p = 1, 2, 3, ···, P   do
Yp = Mp(k) (xn)

8
9
10
11

Meta-classify Algorithm M

for n = 1, 2, 3, ···, N   do

end for
Ymeta = Ymeta∪(Y1, Y2,···,  YP)

end for
h' = M(Ymeta)

Output: Y =  h'(Tmeta)  

3.3. Flow of the Detection Method 
The specific steps of the electricity theft detection process based on the stacking inte-

grated structure experimental flow chart are shown in Figure 4. First, data are collected 
from smart meters, which form a historical electricity consumption dataset. The collected 
data are then preprocessed, including filling missing values and outlier removal (see Sec-
tion 2.2 for details). Meanwhile, the pre-processed electricity consumption data is ex-
tracted for feature extraction in order to obtain better detection results. Finally, the data 
training and user prediction are carried out by establishing the stacking structure of the 
electricity theft detection model, including the selection and analysis of the base model, 
the selection and analysis of the metamodel, the selection of the super parameters in the 
classification model, and the optimization of the parameters of the metamodel through 
the algorithm to achieve the best detection effect. 

3.3. Flow of the Detection Method

The specific steps of the electricity theft detection process based on the stacking
integrated structure experimental flow chart are shown in Figure 4. First, data are collected
from smart meters, which form a historical electricity consumption dataset. The collected
data are then preprocessed, including filling missing values and outlier removal (see
Section 2.2 for details). Meanwhile, the pre-processed electricity consumption data is
extracted for feature extraction in order to obtain better detection results. Finally, the data
training and user prediction are carried out by establishing the stacking structure of the
electricity theft detection model, including the selection and analysis of the base model,
the selection and analysis of the metamodel, the selection of the super parameters in the
classification model, and the optimization of the parameters of the metamodel through the
algorithm to achieve the best detection effect.
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3.4. Selection of Stacking Structural Base Model and Meta Model

According to the previous introduction, this paper uses the combined weight method
of subjective weight and objective weight based on GRA to determine the weight of a single
performance index of the classifier and takes the final result of the weighted sum of each
index as the base model evaluation criterion for selecting stacking structure.

Among them, common subjective methods of assigning weights include: expert sur-
vey method (Delphi method), analytic hierarchy method (AHP) [36], binomial coefficient
method, chain comparison scoring method, least squares method, etc. Common methods
of objectively assigning weights include: the entropy weight method (EWM) [37], principal
component analysis method, factor analysis method, etc. According to the characteris-
tics of the classifier evaluation index, the subjective assignment and weighting method
selects a decision-making method with simple quantitative relationship and simple logic,
namely analytic hierarchy process (AHP). The entropy weight method (EWM) is a more
accurate method of objectively determining weights, which can supplement the subjective
assignment and weighting method that is too subjective and insufficient, and the method
can modify the determined weights, so its adaptability is stronger than other objective
weighting and weighting methods.

Based on the GRA, the method of combining and assigning weights is based on
the principle of the maximum gray correlation between subjective preference values and
objective preference values and decision values, which has the characteristics of clear
thinking, being concise and practical, and easy to implement on the computer.

First, the subjective weight value of the classifier performance index is determined
by the AHP. In the field of electricity theft detection, the number of negative samples (i.e.,
samples of users who steal electricity) is much smaller than that of positive samples (i.e.,
normal user samples), so considering data redundancy, four relatively important evaluation
criteria are selected as reference indicators, namely: Recall rate (Recall), MAP@100, F1-score
and AUC. In order to better introduce the above 4 indicators, we need to introduce a
confusion matrix as shown in Table 3. The dataset provided in this paper is divided into
normal users and thieving users and contains labels. The essence of theft detection is a
binary classification problem.

Table 3. Confusion Matrix in the Detection of Electricity Theft.

Users Detected as a Theft User Detected as a Normal User

Theft users TP (true positive) FN (false negative)

Normal users FP (false positive) TN (true negative)
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Recall rate (Recall) and F1-score are defined using the confusion matrix in Table 3,
corresponding to (13) and (14) [27]. F1-score is the harmonic average of precision and
Recall, which is able to comprehensively evaluate the performance of a classifier.

Recall =
TP

TP + FN
, (13)

F1-score =
2TP

2TP + FN + FP
, (14)

A ROC (receiver operating characteristic) curve is used to express the relative rela-
tionship between FPR (FPR = FP/(TN + FP)) and TPR (TPR = TP/(TP + FN)) growth rates
in the confusion matrix. In the ROC space, the closer coordinates are to the ROC curve
on the upper left, the lower the FPR caused by the same detection rate, and the better the
detection performance. AUC (area under ROC curve) is the sum of the areas under the
ROC curve. For the purpose of comparing each classifier’s performance, the larger the
AUC value, the better, and when AUC = 1, the classifier is ideal. The calculation formula of
AUC is as follows [27]:

AUC =
∑i∈positive Ranki − H(1+H)

2

H × F
, (15)

where Ranki signifies the ranking value of sample i, H signifies the number of positive
samples, and F signifies the number of negative samples.

Mean average precision (MAP) is used to evaluate the performance of model detection.
MAP@F is defined as the average accuracy of the detection model correctly identified as
thieving users among the top F users with the highest suspicion. MAP@F is as follows [27]:

MAP@F =
∑r

i=1 P@ki

r
, (16)

where r represents the number of users who steal electricity among the top F users with the
highest suspicion; P@ki is defined as [27]:

P@ki =
Yki
ki

, (17)

where Yki represents the number of users who are correctly identified electricity thieves
among the first k users with the highest suspicion, and ki (i = 1, 2, 3, . . . , r) represents the
position of k. In this paper, we use MAP@100 as evaluation metrics.

The higher the Recall, the lower the number of users who steal electricity and are
misidentified as normal, so this metric has a greater impact on the model. MAP@100 is in
the first 100 users with the highest suspicion, the detection model is correctly identified as
the average accuracy of the electricity theft user, if the prediction result of the classifier is all
judged to be the electricity theft user, then the Recall is very high and the accuracy rate is
very low, this result is not conducive to distinguishing between normal users and electricity
theft users, and MAP@100 is an important supplement to Recall, so its importance is higher
than Recall. F1-score is the harmonic mean of Recall and accuracy, and the higher the value,
the more credible the classification result, so its importance is higher than MAP@100. AUC
can be obtained by summing the areas of the parts under the ROC curve, the larger the
AUC value, the better, and the ideal classifier is obtained when AUC = 1. Therefore, AUC is
the most important in the pursuit of the accuracy of electricity theft detection. The weight
values of Recall, MAP@100, F1-score, and AUC obtained according to the AHP are shown
in Table 4.



Energies 2022, 15, 7423 13 of 25

Table 4. The AHP method determines the classifier performance metric weight value.

Metrics Recall F1-Score MAP@100 AUC

Recall 1 1/5 1/4 1/6

F1-score 5 1 2 1/2

MAP@100 4 1/2 1 1/3

AUC 5 2 3 1

Next, the objective weight value of the classifier performance index is determined by
the EWM. The EWM mainly determines the weight according to the amount of informa-
tion transmitted to the decision-maker by each evaluation index, and is a mathematical
method for calculating comprehensive indicators. Assuming that the base model is m clas-
sifiers or a combination of classifiers, the evaluation index reflecting its model is n. Let
X = {x1, x2, . . . , xm} represent the set of schemes for multi-attribute decision problems,
G = {G1, G2, . . . , Gn} represents its corresponding set of properties, and w = (w1, w2, . . . , wn)T

represents its corresponding property weight vector. Remember the decision matrix
R = (ri,j)m×n, where ri,j is the decision value of the ith classifier on the j indicator. Cal-
culate the information entropy of the j indicator Hj [36]:

Hj = −
1

ln(m)

m

∑
i=1

pi,jln(pi,j), (18)

where pi,j =
ri,j

m
∑

i=1
ri,j

represents the proportion of each metric for a classifier to the total

statistical value of that metric, 0 < Hj < 1. According to the entropy value Hj of each
indicator, the entropy weight wj of the corresponding indicator can be determined [36]:

wj =
1− Hj

∑ (1− Hj)
. (19)

It can be seen from the entropy weight wj that when the value of each classifier differs
on the indicator, the smaller the information entropy and the greater its entropy weight,
which means that the indicator can provide more useful information to the decision maker.

Finally, the subjective weight values determined by the above hierarchical analysis
and the objective weight values determined by the entropy method are combined by the
combined empowerment method based on the grey correlation degree analysis method.
The specific calculation steps are:

In the first step, according to the decision matrix R, the relationship between the
comprehensive attribute value Zi and the attribute weight of the scheme xi is [32]:

Zi =
n

∑
j=1

ri,jwj, i ∈ M. (20)

In the second step, the weight vector w′ of the attribute is obtained by using the AHP,
and the weight vector w” of the attribute is obtained by using the EWM. Formula (20)
is used to obtain the subjective preference value Z′ and the objective preference value
Z” of each scheme. Before calculating the grey correlation coefficient, the parent and
sub-indicators need to be determined. The parent indicator is X0 = (x1,0, x2,0, . . . , xm,0)T.
Other factor indicators, i.e., sub-indicators, are denoted as Xj = (x1,j, x2,j, . . . , xm,j)T, where
j = 1, 2, . . . , n. Calculate the gray correlation coefficient δi,j for X0 and Xj [32]:
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δi,j =

min
1≤j≤n

min
1≤i≤m

∣∣∣∣∆i,j

∣∣∣∣+ρ max
1≤j≤n

max
1≤i≤m

∣∣∣∣∆i,j

∣∣∣∣∣∣∣∣∆i,j

∣∣∣∣+ρ max
1≤j≤n

max
1≤i≤m

∣∣∣∣∆i,j

∣∣∣∣ , (21)

where ∆i,j = xi,0 − xi,j, ρ represents the resolution coefficient, the value of which is ρ ∈ [0, 1],
which is generally ρ = 0.5. According to Equation (20), the gray correlation coefficient δi,j
between the subjective preference value Z′ and the objective preference value Z” and the
decision value ri,j (where the former is δ′i,j, and the latter is δ”i,j). The grey correlation coef-
ficient δi,j reflects the similarity between the objective preference and subjective preference
of the decision maker for indicator j and the decision value, and the larger the value of δi,j
indicates that the subjective preference and objective preference of the decision maker for
indicator j are more similar to the decision value.

In the final step, since the various schemes are fairly competitive, that is, no preference
for any of them, the following objective optimization model can be established [37]:

maxδi,j =
n
∑

j=1

m
∑

i=1
(δ′i,j + δ′′i,j)Wj

s.t.Wj ∈ w, Wj > 0,
n
∑

j=1
Wj = 1

. (22)

According to the above optimization model, the combined weight vector Wj can
be solved.

For the final result of the weight vector Wj weighted sum of m classifiers or classifiers
obtained by the analysis of GRA, η used as the base model evaluation criterion for selecting
stacking structure, in which a classifier or combination of classifiers with relatively large
comprehensive evaluation index values is selected as the base model. In the process of
feature extraction, due to the use of complex nonlinear transformations, complex classifiers
are not required at the metamodel layer, but a simpler model is selected to prevent overfit-
ting of the overall model. The model selection principle is a classifier that is simple and has
good classification prediction results [35].

4. Evaluations

In order to authenticate the effectiveness and accuracy of the algorithm given in this
paper, it should be noted that the experimental hardware is a 64-bit, 6-core Intel Core
i7-8750H CPU@2.20 GHz, and the deep learning framework uses TensorFlow and Keras.
The programming accomplished using PyCharm 2020 (The software version number is:
Pycharm2020.3.2, developed by JetBrains, headquartered in Prague, Czech Republic). The
experimental data used in this paper are based on a dataset from a province of the State
Grid Corporation of China (refer to Section 2.1 of this paper).

4.1. Construction of Base Model Layer in Stacking Structure

According to the experimental flow of the electricity theft detection model based on
stacking structure in Figure 4, the data preprocessing, including missing value comple-
ment and outlier value repair, has been described in detail in Section 2 of the article, and
the principle of feature extraction (i.e., load sequence feature extraction) for electricity
consumption data has been described in detail in Section 2.3 of the article, where the
load sequence feature extraction is performed on the SGCC dataset to obtain time series
features [D1, . . . , D49]. The newly dimensionality-reducing features of the extracted high-
dimensional time series [D1, . . . , D49] were then treated by the PCA method described
above to obtain the new dimensionality-reducing feature values from largest to smallest:
λ = [λ1, λ2, λ3, . . . , λ48, λ49]. Calculate the value of l when the principal component contri-
bution rate r ≥ 95% is calculated by Formula (10), and l = 6 is obtained after calculation,
that is, the first six principal component eigenvalues are selected as the new feature set Y.
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The selection of the base model layer and the metamodel layer in Figure 3 is the most
important part of building the stacking structure, and the principle of the selection of the
base model layer and the metamodel layer has been described in detail in Section 3.3,
where the base model layer is more complex than the metamodel because of the large
number of classifiers in this layer. The base model layer determines the weight values
of a single performance index of the classifier by using a combined weight method of
subjective weights and objective weights based on GRA, of which the subjective weight
method obtains the weights of Recall, MAP@100, F1-score and AUC through the AHP
as shown in Table 4, and the weights of the four indicators are further calculated to be:
w′ = (0.0598, 0.2933, 0.1786, 0.4683).

In order to obtain the objective weight w” obtained by the EWM, the decision matrix
R = (ri,j)m×n of each classifier or a combination of classifiers (that is, each scheme) is first
required, that is, the different classifications in the stacking structure are selected. The
combined base model has four performance indicators: Recall, MAP@100, F1-score, and
AUC under the new feature set Y after preprocessing, feature extraction and dimensionality
reduction of the SGCC dataset, at this time, the meta-model of the stacking structure
chooses a relatively simple linear regression (LR) model [38]. According to the classifier,
selection of the base model layer, as in Section 3.3, should be strong and numerous, so the
performance index values of eight existing classifiers commonly used for electricity theft
detection under the new feature set Y are compared, and the eight classifiers are: random
forest (RF) [39], eXtreme gradient boosting (XGBoost) [25], light gradient boosting machine
(LightGBM) [40], support vector machine (SVM) [22], CART decision tree (DT) [23], deep
forest (DF) [41], long short-term memory (LSTM) [28], and K-nearest neighbor (KNN) [42].

The hyperparameters of the above eight classifier algorithms are set to: In the RF
model, the number of decision trees and the maximum depth of the tree are set to 101 and
15, respectively. The XGBoost model sets the learning rate to 0.5, the random sampling ratio
to 0.08, and the maximum depth and optimal number of iterations to 3 and 10, respectively.
The LightGBM model sets the number of leaf nodes to 10, the learning rate to 0.05, the
feature selection scale and sample sampling ratio of the tree to 0.8, and the number of
iterations required to perform bagging is 5. The SVM model sets the kernel function as a
radial basis function, and the penalty coefficient C = 15. The DT model sets the confidence
parameter θ = 0.25, the minimum number of instances on the leaf node ρ = 2. The number
of decision trees required for the DF model to set up multi-granular scanning is K = 30,
and the slicing window size is 15. The LSTM model sets the number of neurons to 32, the
number of hidden layers to 2, the learning rate to 0.1, and the number of trees to 300. The
KNN model sets the initial K value to 3.

The new feature set Y data samples are divided, and 50% of the data is randomly selected
as the training sample (corresponding to 50% of the data as the test sample), and Table 5 is
the experimental results of the above eight classifiers, that is, the decision matrix R. Therefore,
the objective weight method obtains call, MAP@100, F1-score, and AUC through the EWM,
and the four performance index weights are: w” = (0.25899, 0.24321, 0.24851, 0.24929).

The combined weight vectors of each index of the combined weighting method can
be obtained in three steps based on GRA: Wj = [0.0598, 0.2432, 0.2287, 0.4683]. Accord-
ing to the combined weight vector Wj, the comprehensive evaluation index values of the
above eight classifiers are calculated: η1 = [0.8273, 08107, 0.7991, 0.7318, 0.6863, 0.7962,
0.8110, 0.6848]T, from which the comprehensive evaluation index of the above 8 classi-
fiers is sorted as: RF > LSTM > XG > LG > DF > SVM > DT > KNN. The classifiers of the
base model layer are combined according to the above eight classifiers, and the classi-
fier combinations are combined from 2 to 8, where the number of combination types is:
C2

8+C3
8+C4

8+C5
8+C6

8+C7
8+C8

8 = 247, due to the many combinations, as shown in Table 6.
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Table 5. The experimental results of 8 classifiers under feature set Y.

Classifier
Metrics

Recall F1-Score MAP@100 AUC

RF 0.87831 0.85061 0.86121 0.79187

XG 0.87483 0.84731 0.81756 0.78112

LG 0.86815 0.84441 0.81261 0.76108

SVM 0.86743 0.82417 0.76136 0.64407

DT 0.85911 0.79401 0.63899 0.63625

DF 0.72667 0.84617 0.82528 0.76551

LSTM 0.85928 0.83304 0.85928 0.76909

KNN 0.86001 0.79529 0.61371 0.64538

Table 6. The experimental results of each classifier combination under feature set Y.

Number of Classifiers The Combination of Classifiers
Metrics

Recall F1-Score MAP@100 AUC

2

(DF + LSTM) i 0.89598 0.88095 0.92766 0.84267

(XG + LSTM) ii 0.90143 0.88937 0.94245 0.84268

(LG + LSTM) iii 0.90341 0.89259 0.95528 0.85764

3

(DF + LSTM + KNN) iv 0.98431 0.91358 0.99378 0.94881

(XG + LSTM + KNN) v 0.98642 0.98637 0.99872 0.95149

(LG + LSTM + KNN) vi 0.98712 0.99872 0.99969 0.97401

4

(DF + LSTM + KNN + SVM) vii 0.98599 0.91531 0.99667 0.95691

(XG + LSTM + KNN + SVM) viii 0.98945 0.98431 0.99378 0.95841

(LG + LSTM + KNN + SVM) ix 0.98761 0.99898 0.99979 0.97659

5 (DF + LSTM + KNN + SVM + XG) x 0.97185 0.90857 0.98011 0.93027

6 (DF + LSTM + KNN + SVM + XG + LG) xi 0.96493 0.91571 0.97401 0.92857

7 (DF + LSTM + KNN + SVM + XG + LG + RF) xii 0.95944 0.91385 0.96815 0.92779

8 (DF + LSTM + KNN + SVM + XG + LG + RF + DT) xiii 0.94521 0.91706 0.96529 0.92262

The experimental results only list some valuable classifier combinations (each quantity
combination classifier selects relatively good displays according to the performance index
values) and its corresponding Recall, MAP@100, F1-score, and AUC of the four performance
index values. At this point, the meta-model of the stacking structure selects a linear
regression model, and the k-fold setting k = 5.

The comprehensive evaluation index values of stacking structure integration learn-
ing method of each of the above classifier combinations were calculated by the com-
bined weight vector Wj based on gray correlation degree analysis, and the results were:
η2 = [0.8746, 0.8804, 0.8912, 0.9526, 0.9729, 0.9867, 0.9576, 0.9746, 0.9879, 0.9389, 0.9380,
0.9355, 0.9324]T. The η2 corresponds to the comprehensive evaluation index values of each
of the above classifier combinations, from which the comprehensive evaluation indexes of
the above 13 classifier combinations can be sorted as follows: ix > vi > viii > v > vii > iv > x >
xi > xii > xiii > iii > ii > i, that is, the top three combinations of the comprehensive evaluation
index values of the 13 classifier combinations are: LG + LSTM + KNN + SVM, LG + LSTM +
KNN and XG + LSTM + KNN + SVM, the corresponding comprehensive evaluation index
values are 0.9879, 0.9867 and 0.9746, respectively. So, the stacking structure integration
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learning method of the three classifiers combination base model layers has a better effect
on the detection and classification of electricity theft behavior.

Through the above method, three classifier combinations with relatively good compre-
hensive evaluation index values were selected, but the comprehensive evaluation index
values were relatively close (the difference was about 0.001). In order to select the optimal
classifier combination, the training time of the model is also an important reference index
for the real-time detection of electricity theft, so the training time of the stacking structure
integration learning model under different classifier combinations is considered (at this
time, the metamodel still uses a linear regression model). As shown in Figure 5, given the
training time of the stacking structure integration learning model under different classi-
fier combinations, it can be clearly concluded that when the base model layer adopts the
LG + LSTM + KNN combination, the model training time of the stacking structure is the
least, only 13.078 s. The longest model training time is the XG + LSTM + KNN + SVM
combination, and the training time is 17.154 s.
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Taking into account the accuracy of the model and the training time of the model, the base
model layer of the stacking structure ensemble learning model selects LG + LSTM + KNN.
The comprehensive evaluation index value of stacking structure ensemble learning model
detection based on this base model layer is only 0.0012 different from the comprehensive
evaluation index value of stacking structure ensemble learning model detection based on
the combination of LG + LSTM + KNN + SVM. The training time difference is 2.027 s.
Therefore, considering the above factors, the combination of LG + LSTM + KNN is selected
as the base model of the stacking structure ensemble learning model.

The above experiments set k = 5 in the k-fold layer, and different k values will greatly
affect the detection effect of the stacking structure. According to the above experiments, the
combination of LG + LSTM + KNN is selected as the base model of the stacking structure
ensemble learning model, and the linear regression model is selected for the meta-model
layer, and the k values are set to 2, 3, 4, 5, 10, 15, and 20 pairs of models respectively. After
training, Figure 6 shows the experimental results under different k values, in which the
experimental results are the four performance index values of Recall, MAP@100, F1-score,
and AUC. As can be seen from Figure 6, as the value of k increases, the values of the four
performance indicators also increase. When the value of k is 5, each indicator value reaches
the maximum value. On the other hand, the experimental results with k-fold cross-training
are better than those without k-fold cross-training, so k-fold cross-training significantly
improves the detection performance of the model. Therefore, when the combination of
LG + LSTM + KNN constitutes a stacking structure, five-fold cross-training is selected, that
is, k = 5 is set as the best parameter in the k-fold layer.



Energies 2022, 15, 7423 18 of 25
Energies 2022, 15, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 6. Experimental results of stacking structure with different k values. 

The stacking structure integration learning method integrates a variety of detection 
algorithms, which can make full use of each algorithm to observe data from different data 
spaces and structures. Therefore, the classifier of the base model layer should try to choose 
an algorithm with excellent performance and should also add different types or properties 
of classification algorithms as much as possible. In order to further verify and analyze the 
optimal base model combination selected, each base learner separately compares the clas-
sification prediction of the new feature set Y, and the Pearson correlation coefficient ma-
trix is used to analyze the correlation of the classification prediction index values (AUC), 
and its calculation formula is as follows [33]: 

1

2 2

1





- -

- -

n

i i
i =
n

i i
i =

(x x)(y y)
r =  ,

(x x) (y y)
 (23)

where x, y  is the sample mean. The larger value of |r|, the more correlated it is. Figure 
7 shows the correlation coefficient matrix between each classifier. 

It can be seen from Figure 7 that the correlation degree of the value of the classifica-
tion prediction index of each algorithm is generally high, which is due to the strong learn-
ing ability of each algorithm, and the inherent laws learned in the data during training are 
similar to the data observation angles. Among them, the classification prediction index 
values of RF, XG, LG, DF, and DT algorithms have the highest correlation, which is due 
to the fact that although the principles of the five types of algorithms are slightly different, 
they still belong to the integrated algorithms of the tree, and there are strong similarities 
in their data observation methods. The training mechanisms of LSTM, SVM, and KNN 
have a large gap, so the correlation of classification prediction index values is also low. 
Therefore, the effectiveness of the base model layer in choosing LG + LSTM + KNN algo-
rithm combination as the base model in stacking integration learning is further verified. 

Figure 6. Experimental results of stacking structure with different k values.

The stacking structure integration learning method integrates a variety of detection
algorithms, which can make full use of each algorithm to observe data from different data
spaces and structures. Therefore, the classifier of the base model layer should try to choose
an algorithm with excellent performance and should also add different types or properties
of classification algorithms as much as possible. In order to further verify and analyze
the optimal base model combination selected, each base learner separately compares the
classification prediction of the new feature set Y, and the Pearson correlation coefficient
matrix is used to analyze the correlation of the classification prediction index values (AUC),
and its calculation formula is as follows [33]:

r =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2(yi − y)2

, (23)

where x, y is the sample mean. The larger value of |r|, the more correlated it is. Figure 7
shows the correlation coefficient matrix between each classifier.

Energies 2022, 15, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 7. Matrix of correlation coefficients for the value of the classification prediction indicator 
between classifiers. 

4.2. Construction of Meta Model Layer in Stacking Structure 
As described in Section 3.2, the meta-model layer usually chooses a relatively simple 

model to prevent the overfitting problem of the collation model, so this section selects 
several relatively simple models at the meta-classifier layer to compare the experimental 
results of the stacking structural integration learning method, including the SVM, DT, 
KNN, and LR. The ROC curves of the experimental results of the stacking structure under 
the above four different meta-models are shown in Figure 8. 

 
Figure 8. The ROC curve of stacking structures under different meta-models. 

It can be clearly seen from Figure 8 that when SVM is selected for the meta-model 
layer, the overall detection effect of Stacking ensemble learning is the best, and its AUC 
value is 0.98013. When the meta-model layer adopts decision tree, the sorting and detec-
tion effect of the stacking ensemble learning is slightly worse than the other three. There-
fore, considering the detection effect, this paper adopts SVM as the model of the stacking 
integrated learning meta-model layer. 

Since the recognition accuracy of the SVM algorithm is limited to a large extent by 
the selection of parameters, and the parameter optimization algorithm generally has prob-
lems, such as slow convergence speed and a tendency to fall into local extremums, the 
particle swarm optimization (PSO) algorithm [43] with strong optimization ability, fast 
convergence speed, and short calculation time is selected in this experiment to optimize 
the penalty coefficient C and kernel function (i.e., radial basis function) parameter σ values 
in the stacking integrated learning model metaclassifier SVM hyperparameter. Figure 9 
shows the particle swarm optimization metaclassifier SVM hyperparameter flowchart, 
which is implemented as follows: 

Figure 7. Matrix of correlation coefficients for the value of the classification prediction indicator
between classifiers.



Energies 2022, 15, 7423 19 of 25

It can be seen from Figure 7 that the correlation degree of the value of the classification
prediction index of each algorithm is generally high, which is due to the strong learning
ability of each algorithm, and the inherent laws learned in the data during training are
similar to the data observation angles. Among them, the classification prediction index
values of RF, XG, LG, DF, and DT algorithms have the highest correlation, which is due to
the fact that although the principles of the five types of algorithms are slightly different, they
still belong to the integrated algorithms of the tree, and there are strong similarities in their
data observation methods. The training mechanisms of LSTM, SVM, and KNN have a large
gap, so the correlation of classification prediction index values is also low. Therefore, the
effectiveness of the base model layer in choosing LG + LSTM + KNN algorithm combination
as the base model in stacking integration learning is further verified.

4.2. Construction of Meta Model Layer in Stacking Structure

As described in Section 3.2, the meta-model layer usually chooses a relatively simple
model to prevent the overfitting problem of the collation model, so this section selects
several relatively simple models at the meta-classifier layer to compare the experimental
results of the stacking structural integration learning method, including the SVM, DT, KNN,
and LR. The ROC curves of the experimental results of the stacking structure under the
above four different meta-models are shown in Figure 8.
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It can be clearly seen from Figure 8 that when SVM is selected for the meta-model layer,
the overall detection effect of Stacking ensemble learning is the best, and its AUC value is
0.98013. When the meta-model layer adopts decision tree, the sorting and detection effect of
the stacking ensemble learning is slightly worse than the other three. Therefore, considering
the detection effect, this paper adopts SVM as the model of the stacking integrated learning
meta-model layer.

Since the recognition accuracy of the SVM algorithm is limited to a large extent by the
selection of parameters, and the parameter optimization algorithm generally has problems,
such as slow convergence speed and a tendency to fall into local extremums, the particle
swarm optimization (PSO) algorithm [43] with strong optimization ability, fast convergence
speed, and short calculation time is selected in this experiment to optimize the penalty
coefficient C and kernel function (i.e., radial basis function) parameter σ values in the
stacking integrated learning model metaclassifier SVM hyperparameter. Figure 9 shows
the particle swarm optimization metaclassifier SVM hyperparameter flowchart, which is
implemented as follows:
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First of all, the initialization stage of the PSO parameter sets the step size and upper
and lower boundaries of the search parameters, and the local optimal solution of the
particles, the global optimal solution of the particle swarm, and its corresponding position
are obtained by calculating the fitness function, and the fitness function adopts the cross-
validation scores (CVS) method, which is calculated as follows [43]:

CVS =
1
k

k

∑
i=1

yi
y

, (24)

where k is the number of cross-validations, y represents the number of training samples, yi
is the number of training samples that are correctly divided, and the higher the CVS value,
the higher the accuracy of the model.

Second, the velocity and position of the individual particle swarm are iteratively
updated according to the local optimal and global optimal solutions, and the cycle is
reached until the maximum number of iterations is reached.

Finally, the parameters corresponding to the global optimal particle swarm individuals
obtained above are trained as the initial parameters of the SVM, and the fitness value of each
particle is calculated by the k-fold cross-validation value method again. If the adaptability
of the new position is better than that of the local optimal particle, the local optimal particle
is replaced with the new particle. If the optimal particle in the population is superior to
the global optimal particle, the global optimal particle is replaced by the best particle in
the population. The global optimal parameter C and σ values are returned after the above
is completed.

The above particle swarm algorithm optimizes the stacking ensemble learning model
meta-classifier SVM hyperparameter, and the basic parameters of PSO setting are: accelera-
tion factor c1 and c2 are both 2, inertia factor ω = 1, the number of particle swarms is 20, and
the maximum number of iterations is 50. Figure 10 shows an evolutionary iteration plot
that represents the resulting change in fitness values over different evolutionary algebras.
As can be seen from Figure 10, PSO optimizes the SVM process, the fitness value remains
unchanged after 26 iterations, and the final optimal fitness value is 0.976013, at which time
the optimal parameter combination of the trained SVM is C = 21.375 and σ = 1.43.
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When the PSO optimization SVM obtains the best adaptability value, the AUC value is
compared with the different effects before and after the optimization of the SVM parameters,
as shown in Figure 11, which is the ROC curve of the stacking integration learning model
before and after optimization.
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Figure 11. ROC curve before and after optimization.

It can be clearly seen from the ROC curve that the AUC value before optimization is
0.98013, while that after optimization is 0. 98675, and the AUC value is increased by about
0.007, because the detection effect of the stacking integrated learning model is relatively
satisfactory, and the room for improvement is effective. So, SVM can relatively effectively
improve the overall performance of the algorithm.

4.3. Comparison with Existing Methods

In order to verify the effectiveness of the detection method of stealing behavior based
on the stacking ensemble learning model proposed in this paper, the experimental results
are compared by using CNN [44], wide and deep CNN [27], hybrid deep neural networks
(HDNNs) [45], CNN-RF [39] and the methods adopted in this paper. The dataset used in
the above method is described in Section 3.1. Figure 12 shows the ROC curve of the above
five methods, and the experimental results of the above five methods are shown in Table 7.
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Table 7. The methods proposed in this article compare the results with other methods.

Methods
Metrics

Recall F1-Score MAP@100 AUC

CNN 0.82613 0.75625 0.86015 0.83447

wide and deep CNN 0.85862 0.86331 0.87329 0.84273

Hybrid Deep Neural Networks(HDNNs) 0.84228 0.86085 0.86265 0.83718

CNN-RF 0.87637 0.89628 0.91358 0.84729

The proposed method 0.98948 0.99913 0.99975 0.98675

We can see from Table 7 that the evaluation indicators of the method proposed in
this paper under the actual power grid data are better than the other four existing detec-
tion methods, of which the AUC value is 0.98675, which is much higher than the other
four methods.

In addition, for Recall and F1-score, the method in this paper is one order of magnitude
higher than other methods. For example, the Recall of this method reaches 0.98948, while
the highest Recall value of the other four methods is CNN-RF, which is 0.87637. In addition,
we found that the other four methods are all deep learning methods, three of which are
variants of CNNs, that is, optimization on CNNs. Compared with the automatic extraction
process of CNN, the purpose of manual feature extraction and selection of the proposed
method is more clear and more efficient. Moreover, the stacking structure is a combination
of multiple strong models that can learn from different angles of the data, and the learning
ability of this method is stronger.

In summary, the evaluation indicators of CNN and its optimization methods have
been improved to a certain extent, but they still cannot reach a very high level. It is worth
noting that the method proposed in this paper can break through the bottleneck where
other methods cannot improve after the accuracy reaches a certain level and achieve the
purpose of improving the accuracy rate.

5. Conclusions

In this paper, we propose a multi-model fusion ensemble learning algorithm based on
the stacking structure to detect electricity theft behaviors. The feature of this paper based
on the stacking structure detection algorithm is that the PCA method is used to reduce the
dimensionality of the user time series statistical feature indicators in the extracted dataset.
That is, only the new properties of the first six principal component eigenvalues are used
to ensure that a large amount of original information is not lost. The subjective weight
values determined by the AHP method and the objective weight values determined by
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the EWM are combined and weighted by GRA method. The classifier combination of
LG + LSTM + KNN with a relatively high comprehensive evaluation value (0.9867) and
a relatively low model training time (13.078 s) is selected as the base model layer of the
stacking structure by comprehensive evaluation index values through a large number
of experiments.

In the meta-model layer, several relatively simple models are selected for comparative
experiments. The SVM model with relatively good overall structure experimental results
(the AUC value is 0.98013) of stacking is selected as the meta-model. The PSO algorithm
is used to optimize the hyperparameters of the SVM model and improve the AUC value
of the model from 0.98013 to 0.98675. By comparing the stacking structural model with
the existing methods under the SGCC dataset, the effectiveness of the proposed methods
is further verified. For example, the AUC value of the method proposed in this paper
is 0.98675, which is an order of magnitude higher than the CNN-RF method with the
highest AUC value of 0.84729 among other methods. Therefore, the stacking structure
integrated learning method can effectively realize the accurate detection and identification
of electricity theft behavior.
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Nomenclature

AEA Auto-encoder with attention
AHP Analytic hierarchy process
AUC Area under ROC curve
CNN Convolutional Neural Network
CVS Cross validation scores
DF Deep forest
DT Decision tree
EWM Entropy weight method
F1-score The harmonic average of precision and Recall, which is able to comprehensively

evaluate the performance of a classifier
FN False negative
FP False positive
FPR False positive rate
GRA Grey relation analysis
GRUs Gated recurrent units
KNN K-Nearest Neighbor
LG Light gradient boosting machine, LightGBM
LR Linear regression
LSTM Long Short-Term Memory
MAP Mean average precision
PCA Principal component analysis
PSO Particle swarm optimization
RF Random forest
ROC Receiver operating characteristic
Ranki The ranking value of sample i
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SGCC State Grid Corporation of China
SSAE Semi-Supervised AutoEncoder
SVM Support vector machine
TN True negative
TP True positive
TPR True positive rate
XGBoost eXtreme gradient boosting
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