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Abstract: The strategic intent of the African Union is to develop a “Smart Integrated African Electric
Power Super Grid” driven by modern tools and advances in high-voltage direct current (HVDC)
engineering and flexible alternating current technology systems (FACTS), which is central in support-
ing Africa’s sustained economic growth and development. The southern African region, including
South Africa, is beset by the critical challenges of perennial load-shedding, which impedes economic
growth and aggravates unemployment. This has led to the insecurity of electricity supplies and
degraded the quality of life. The parallel operation of high-voltage direct current (HVDC) and flexible
AC technology systems (FACTS) controllers is gaining traction as system conditions become more
complex, such as weak power networks which requires increased stability requirements, resulting
in load-shedding and power outages. These adversely affect business productivity and adversely
affect GDP and economic growth. Thus, the application of innovative technologies such as HVDC
links can stabilize weak power systems. It is established that HVDC delivery systems reduce losses
in long transmission lines transporting bulk power compared with high-voltage alternating current
(HVAC) transmission lines for power wheeling. This paper evaluates the parallel operation of the
Cahora Bassa 1414 km bipolar HVDC link and a weak parallel 400/330 kV alternating current (AC)
link. It demonstrates the use of FACTS controllers to enhance the technical performance of an existing
network, such as voltage control, and technical loss reduction. It combines an HVDC line commutated
converter (LCC) and HVAC transmission lines, in hybrid notation to increase the voltage stability of
the system by controlling the reactive power with a Static Var Compensator (SVC). These modern
tools can increase the transmission power controllability and stability of the power network. In this
study, HVDC–LCC was used with a setpoint of 1000 MW in conjunction with the 850 MVAr SVC. The
results show that the technical losses were reduced by 0.24% from 84.32 MW to 60.32 MW as Apollo
275 kV SVC was utilized for voltage control. The network analysis was performed using DIgSILENT
PowerFactory software that is manufactured by DIgSILENT GmbH at Gomaringen, Germany

Keywords: power interconnections; power exchange; HVDC–LCC; Static Var Compensator;
Songo–Apollo HVDC line

1. Introduction

Modern power systems are extremely complex and they are required to meet the
increasing demand for electricity with acceptable quality and pricing [1]. This study
evaluated the application of power-electronics-based FACTS controllers in electric power
systems [2], with reference to the Cahora Bassa bi-polar HVDC link between Mozambique
and South Africa. Hingorani [2] pioneered the concept of FACTS in 1988 by using power
electronics controllers to increase power transfer in existing AC transmission lines, voltage
management, and system stability without adding additional lines [1]. In Africa, the first
power exchange was between the Democratic Republic of the Congo (DRC), Zambia, and
Zimbabwe, and was built in 1960 [3]. By 1970, an interconnection was established between
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Mozambique and South Africa, and between Botswana and South Africa in 1995 followed
by a 400 kV link established between Zimbabwe and South Africa. Presently, only Tanzania,
Angola, and Malawi do not have any interconnections with other countries; however, new
links are planned [4]. In Africa, the first VSC-based (voltage source converter), the Caprivi
HVDC interconnector between Namibia and Zambia, was commissioned in 2010 as shown
in Figure 1 [5]. The overhead line is 950 km long and operates at 350 kV DC [6]. It has been
proposed to use highly complex power system controllers to integrate African national
power grids into one super-grid that can accept a large penetration of renewable powers,
without compromising power quality, active and reactive power flow, and voltage and
power system stability [7,8]. The proposed super-grid will be constructed using HVDC and
flexible AC transmission systems along with dedicated AC/DC interconnectors and smart
grids. DC interconnectors will be used to segment the entire continent’s power systems
into four or five large asynchronous segments (regions). Asynchronous segments will
prevent AC fault propagation between segments while allowing power exchange between
different parts of the super-grid, with minimum difficulty for grid code unification or the
harmonization of regulatory regimes across the continent as each segment maintains its
autonomy [7]. The Caprivi Link can be extended to a multi-terminal DC (MT-HVDC)
system as part of the African super-grid, capable of harnessing gigawatts of hydro-power
from the Congo River to energize the African continent, and for export.
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Figure 1. VSC-HVDC Caprivi Link interconnector between Namibia and Zambia [9].

The innovative application of HVDC and FACTS can contribute to power system
development and resolve some operational challenges posed by demand outstripping
supply, as well as environmental regulation, and address the demand for changes in
the way electricity is delivered [10]. The majority of transmission lines in an electrical
power transmission system are 3-∅ AC transmission lines with changeable transmission
voltages [11]. Transmission voltages continue to rise in response to a greater demand for
power transmission capacity and/or longer transmission distances. Higher transmission
voltages are directly associated with a reduction in technical losses [12].

HVAC transmission lines are primarily constrained by their tendency to generate
large amounts of reactive power [13]. In long-distance HVAC transmission systems, the
system voltage varies continuously with load changes [14]. The reactive power also varies
as the load changes, which affects the system voltage. Therefore, it is essential to carry
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out power system studies to determine the system parameters and their variation under
different load conditions [15]. Due to the significance of power exchange, the necessity for
power interconnections is expanding [16]. Utilizing HVDC schemes over long distances
has various technological advantages over HVAC [17]. Advanced solutions such as HVDC
and FACTS have the ability to deal with the modifications required for grid access [10].

Power pools and interconnections were built to enhance network efficiency across
increasingly vast distances [18]. The power interconnection enables the export of electricity
to other countries [19]. In this study, the Static Var Compensator was utilized as a part of
the FACTS devices to control the system voltage by regulating reactive power [20], and
the HVDC-LCC scheme was employed for the long transmission line; the results were
compared with the HVAC base system. The advantages and characteristics of HVDC-LCC
are available in [21]. By compensating, reactive power can be managed to enhance the
performance of the AC power system [22,23]. Using DIgSILENT PowerFactory, the Songo–
Apollo HVDC line with an SVC (FACTS device) was modeled and a power flow study was
conducted. Numerous studies demonstrate that the concurrent functioning of HVDC and
FACTS devices involves interaction between control channels [24].

2. HVDC and FACTS Device Coordination

During the initial years of HVDC technology development from mercury-arc to thyris-
tor valves, the process simultaneously reduced costs while boosting robustness [25,26].
Thus, HVDC systems and FACTS controllers based on LCC technology have a long his-
tory [27,28].

2.1. HVDC–LCC

Figure 2 shows how HVDC systems convert AC power to DC power at the rectifier
terminal (sending end) and then back to AC power at the inverter terminal (receiving
end) [29]. AC power is supplied to a rectifier-functioning converter. Since the rectifier
outputs DC active power, it is unaffected by the frequency and phase of the AC supply [30].
Thyristor valve bridges and converter transformers comprise the thyristor-based converter
topology. The conversion from alternating current to direct current is accomplished by
arranging high-voltage valve bridges in a twelve- or six-pulse design, depending on the
needed output voltage [29]. Due to its advantages, the HVDC–LCC line is predominantly
utilized on long transmission lines transporting large amounts of power [21].
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HVDC has many advantages over HVAC [31], such as asynchronous grid connections
and lower transmission losses over long distances. Therefore, the vast network is HVDC
with DC cables fitted and connected with DC–DC converters. To save costs and power loss,
no fast-acting DC circuit breakers (DCCBs) are utilized in the DC network [32].

2.2. Flexible AC Transmission System

FACTS devices use static equipment to transmit AC electrical power, by boosting
the network’s controllability and power transmission capacity; they are based on power
electronics [33]. Figure 3 illustrates several types of FACTS controllers which are classi-
fied as series-connected controllers, shunt-connected controllers, combined series–shunt-
connected controllers, and combined series–series-connected controllers [34]. Padiyar [1]
categorized FACTS controllers depending on the power electronics equipment employed
for control.

(a) Variable impedance type comprising the Static Var Compensator (SVC)—shunt con-
nected, Thyristor Controlled Series Capacitor (TCSC) or compensator—series-connected,
and Combined Shunt and Series Thyristor Controlled Phase Shifting Transformer
(TCPST) of Static PST.

(b) Voltage Source Converter (VSC), which comprises Static Synchronous Compensator
(STATCOM)—shunt coupled, Static Synchronous Series Compensator (SSSC), which
is a series-connected device, Interline Power Flow Controller (IPFC)—a series–series
controller, and Unified Power Flow Controller (UPFC), which is a combined shunt–
series controller.
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Based on their switching method, the FACTS devices can be split into three groups:
mechanically switched (which includes phase-shifting transformers), thyristor switched,
and rapidly switched utilizing an insulated-gate bipolar transistor (IGBTs) [35]. Figure 4
illustrates the SVC family. The SVC can be used in both voltage regulation and VAR control
modes [36].
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Some forms of FACTS, such as the phase-shifting transformer (PST) and the SVC [37],
are already well-known and widely employed in the power network. Recent advances
in power electronics and control have expanded the application of FACTS [38]. SVCs
are typically employed in power systems for voltage regulation, or as a tool to achieve
system stabilization [39,40]. For adjusting the node voltage, parallel FACTS such as SVC
are utilized [24]. Dr. Laszlo Gyugyi suggested UPFC as the most flexible FACTS controller
for regulating voltage and power flow in a transmission line. It is made up of two voltage
source converters (VSC), one shunt, and one series-connected. The two converters’ DC
capacitors are linked in parallel. The IPFC may be used to solve the challenge of compensat-
ing for several transmission lines at a substation. While pure series reactive (controllable)
compensation (in the form of a TCSC or SSSC) can be used to control or regulate active
power flow in a line, controlling reactive power is impossible unless active (actual) voltage
in phase with the line current is injected [1].

2.3. Songo–Apollo HVDC–LCC Network

The Cahora Bassa HVDC inverter station is located at Apollo in South Africa [41],
while the Songo Station rectifier is 1414 km north of Mozambique. The rating of the HVDC
link is 1920 MW, 533 kV [42]. In 2006, Eskom awarded ABB a contract to replace eight
six-pulse converters and two AC filters while preserving the existing transformers and DC
sector infrastructure, incorporating the smoothing reactors [43]. Thus far, South Africa’s
Eskom has only one HVDC scheme between the hydroelectric power plant at the Cahora
Bassa Dam in Mozambique and Johannesburg [44]. The second HVDC installation in Africa
is the VSC-based Caprivi Link interconnector between Namibia and Zambia.

The 5 × 480 MVA generators are shown in Figure 5 as G1 to G5. Cahora Bassa is
connected to the double 220 kV busbar substation in Songo, six km away [45]. Busbars are



Energies 2022, 15, 7402 6 of 15

assigned to the primary AC and DC loads. The HVDC bus is referred to as the “DC bus”
while the Bindura AC line that supplies Zimbabwe is typically linked to the “AC bus” [46].
Figure 5 shows the ZESA and Eskom electricity public utilities for Zimbabwe and South
Africa, respectively.
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The hydroelectric power station at Cahora Bassa (CB) is 6 km from the Songo rectifier
station. It was designed to transfer 1920 MW from the generated 2075 MW to the South
African Apollo inverter station [47]. The Songo–Apollo HVDC–LCC link is shown in
Figure 6. It is located in South Africa, but the rectifier is 1414 km to the north in Mozambique.
The present HVDC transmission line rating is 1920 MW with 533 kV [48].
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3. Design, Modeling, Results, and Discussion of the Songo–Apollo HVDC–LCC Line

In designing and simulating the Songo–Apollo link network model, DIgSILENT
PowerFactory software was utilized. The model was constructed using previously acquired
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data for the Songo–Apollo transmission line. To assure the system’s reliability, an HVAC
and HVDC load flow study was performed utilizing Newton Raphson’s method.

As indicated in Figure 7, the Songo–Apollo HVDC link has multiple voltage levels,
with 5 × 480 MVA generators at Cahora Bassa rated at 220 kV. The 220–400 kV step-up
transformer is used to increase the voltage to 400 kV for the 1414 km Songo–Apollo trans-
mission line. The 275–400 kV step-down transformer is used at Apollo to reduce voltage.
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The voltage at every busbar must be maintained within a 5% tolerance of its nominal
value. In emergencies involving a failed element, the temperature rating of any equipment
must not be exceeded, and the voltage must be maintained between 95% and 105% of its
nominal value. However, a 15% overvoltage is permissible for five seconds, while a 20%
overvoltage is acceptable for one and two seconds. Consequently, transformers, generators,
and line loads must fall within the range of 80–100%, and all busbar voltages must be
maintained within a tolerance of 5% of their nominal value. Figure 8 shows the Cahora
Bassa generators running at full capacity, as well as the 6 km CB–Songo transmission lines.
The Cahora Bassa substation is operating at 220 kV voltage (1 p.u) as shown in Figure 8.
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3.1. Songo–Apollo Transmission Line

Figure 9 shows the Songo–Apollo HVAC transmission line without the HVDC link,
allowing Apollo to receive 1920 MW while producing 2003.2 MW at Cahora Bassa. This
equates to an 84.32 MW loss in the line. Voltage instability is also evident in the Apollo
400 kV bus, Apollo 275 kV bus, and Eskom bus. (See Appendix A). Cahora Bassa exports
2004.3 MW active power, 194.4 Mvar reactive power, and 5.285 kA current flow, as shown
in Figure 9.
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3.2. Songo–Apollo HVDC Link

Figure 10 shows the Songo–Apollo HVDC link, which is parallel to the HVAC 1414 km
transmission line. The goal of the HVDC link is to minimize line losses. For the Eskom
load to receive 1920 MW, Cahora Bassa produces 1983.1 MW. The losses in the line are
determined to be 63.08 MW. Consequently, losses are reduced by 21.24 MW when compared
with Figure 9; thus, the voltage instability is slightly reduced (see Appendix B).
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The DC current for an HVDC–LCC link is as follows:

Idc =
Vdc cos α−Vdc cos δ

Rl + Rr + Ri
(1)

where Vac is the AC voltage, Vdc is the DC voltage, Idc is the dc current, α is the firing angle,
δ is the extinction delay angles, Rl is the resistor from the loop, Rr is the resistor from the
rectifier, and Ri is the resistor from the inverter

The voltage current is:

Vdc =
3
√

2
π

Vac (2)

3.3. Songo–Apollo HVDC Link with SVC

Figure 11 shows the Songo–Apollo HVDC link with SVC, which is utilized to control
the system’s voltage stability. To produce a 1920 MW Eskom load from the Apollo busbar,
1980.3 MW is required, which means 60.32 MW is system technical losses. It is observed that
all the voltages are now between 0.99 p.u and 1.00 p.u, indicating that the SVC did regulate
the voltages by managing a portion of the reactive power, given that all the voltages are now
between 0.99 p.u and 1.00 p.u. The power losses for the Songo-Apollo transmission line
when it was operating as an HVAC transmission line, when the HVdc link was connected
along the HVAC line, and when the SVC was utilized to enhance the voltage are shown
in Table 1.
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Table 1. Each model’s power loss.

Name Power Loss (MW)

Songo–Apollo HVAC Load Flow 84.32 MW
Songo–Apollo HVDC Link 63.08 MW

Songo–Apollo HVDC Link with SVC 60.34 MW

The SVC is then applied to the Apollo busbar to inject reactive power and regulate
the voltage, as shown in Figure 10. The system represented in Figure 11 shows the Songo–
Apollo link with minimum losses and enhanced voltage stability (see Appendix C).

Table 2 of the Songo–Apollo busbar shows the voltage profile for various scenarios:
(a) displays the HVAC transmission line busbar voltage profile, (b) represents the busbar
voltage profile for Songo–Apollo when HVDC–LCC is used to reduce long-distance losses,
and (c) displays the busbar voltage for a model consisting of an HVDC–LCC link and an
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SVC. The results were generated by DIgSILENT PowerFactory based on the performance
of the Songo–Apollo network under various conditions. According to Table 2 below, the
use of the SVC in the Apollo 275 kV busbar improves voltage stability because all voltages
connected to the busbar with the SVC increased to approximately 1 p.u.

Table 2. Different busbar voltage profiles for the Songo–Apollo network.

Busbar Name (a) HVAC (p.u) (b) HVDC Link (p.u) (c) HVDC and SVC (p.u)

Songo 220 kV 0.999 0.999 0.999
Songo 400 kV 0.997 0.989 1.001
Apollo 400 kV 0.954 0.961 0.991
Apollo 275 kV 0.954 0.960 1
Eskom 0.953 0.960 0.999
Cahora Bassa 1 1 1

Table 3 shows transmission line loading for several different scenarios: (a) when
examining the load flow between Songo and Apollo with all HVAC lines; (b) when the load
flow study was performed on Songo–Apollo HVDC–LCC connections; and (c) when a load
flow study was performed on the Songo–Apollo network with LCC–HVDC and SVC in the
Apollo 275 kV busbar.

Table 3. Different transmission line loading profiles for the Songo–Apollo network.

Transmission Line Name (a) HVAC (%) (b) HVDC Link (%) (c) HVDC and SVC (%)

Apollo–Eskom 84.55449 83.94794 80.64736
CB–Songo 81.3024 85.45054 80.10344

Songo–Apollo Tx 83.04459 43.96473 43.5309

Table 4 shows transmission line losses under three distinct conditions: (a) when the
Songo–Apollo network load flow analysis is performed on all HVAC lines; (b) when the
load flow analysis is conducted using HVDC–LCC links, for which losses dropped to
63 MW; and (c) when analysis is conducted using both SVC and HVDC–LCC systems, for
which there were 60.4 MW total technical losses.

Table 4. Different transmission total line loss profiles for the Songo–Apollo network.

Transmission Line
Name (a) HVAC (MW) (b) HVDC Link

(MW)
(c) HVDC and SVC

(MW)

Apollo–Eskom 0.7 0.7 0.7
CB–Songo 1.1 1.3 1.1

Songo–Apollo Tx 82.6 23.1 22.7
Songo–Apollo HVDC

link - 38 35.9

Total 84.4 63.1 60.4

4. Conclusions

The primary goal of this study is to conduct load flow studies on power exchanges
between countries and communities within Southern Africa, particularly those without
access to electricity, with minimal losses while ensuring grid reliability. This study models
the interplay between the existing and established FACTS device and HVDC (LCC) on the
Songo–Apollo HVDC link.

As new generations of FACTS devices are developed and deployed for industry testing
at the transmission (UPFC) and distribution level (D-FACTS) to mature technology, further
studies will be conducted at those levels to ascertain their inherent impact on the technical
performance of these HVDC schemes and their impact on the broader, smart distribution
networks and regional power grid. These aspects were not part of the current study.
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DIgSILENT PowerFactory was utilized to study the transmission line performance
when utilizing the HVAC transmission line to transmit 1920 MW of power from Songo to
Apollo. Large distances carrying massive amounts of power resulted in 84.32 MW of line
losses. The HVDC–LCC was added to the existing HVAC transmission line to reduce losses,
resulting in 63.08 MW of transmission line losses. Figure 10 shows the voltage instability
on the Apollo receiving side, where the Apollo 400 kV and 275 kV busbars and the Eskom
busbar have 0.96 p.u.

By controlling a portion of the reactive power, 850 MVAr SVC is utilized to decrease
voltage instability in all busbars connected to the SVC busbar. Figure 11 represents an entire
model with both HVDC–LCC and SVC, where it is determined that the transmission line
losses are 60.34 MW (See Table 1). The voltage instability is controlled as seen in Figure 11,
with the Apollo 400 kV busbar at 0.99 and the Apollo 275 kV and Eskom busbars at 1 p.u.
In Figure 11, losses are minimized, and voltage instability is under control, making the
network more resilient.

Tables 2–4 show the respective voltage busbar profile, the transmission line loading
profile, and the transmission line losses that occur in the system to compare the results of
the three distinct networks that are shown in Figures 9–11. This study can be applied in the
future, including the most recent FACTS controllers, such as the UPFC, which is the most
adaptable FACTS controller for regulating voltage and power flow in a transmission line,
with the addition of IPFC to address the issue of compensating for multiple transmission
lines connected at a substation.

HVDC links and FACTS controllers have been utilized as innovative methods for
increasing the entire power system performance. Through this study, it is noted that HVDC
and FACTS devices offer a superior solution for the long-distance transmission of bulk
power; that they improve grid resilience against unforeseen events; that the voltage is
regulated and the power is optimized through the HVDC–LCC and SVC systems; and that
HVDC–LCC and SVC are used to control and optimize voltage and power, respectively.
With further interconnections planned across Africa, this study provides preliminary insight
into how large power networks with several power interconnections will enhance electricity
trading and power exchanges throughout the African region or among African power pools.
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