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Abstract: Before selecting a proper hydraulic turbine for power generation, conflicting factors fre-
quently emerge from the wide range of available technology alternatives. The preliminary selection
of hydraulic turbines (PSHT) has been usually carried out by overlooking and/or overshadowing
downstream and upstream processes. The development of a new conceptual framework that allows
for including more parameters into the decision-making process at company levels is still required
to avoid the danger of engaging in a one-dimensional approach, which would not only result in
a reduced and simplistic vision of the choice but would also overlook the trade-offs between in-
dividual aspects and the possible unintended side-effects. This paper aims to provide empirical
evidence for the PSHT by proposing a well-thought-out framework based on a mixed methodol-
ogy approach (analytical hierarchy process (AHP) and fuzzy-VIKOR multi-criteria methods) and
focused on small hydropower projects. A total of 16 criteria are proposed and divided into 4 main
categories—(i) turbine performance, (ii) turbine and generator costs, (iii) other equipment costs, and
(iv) civil costs. Findings reported here reveal a specific alignment between investors’ preferences and
experts’ judgments with real market practices. The 16 proposed criteria can be further considered to
support the decision-making process for PSHT in different head and flow conditions.

Keywords: hydraulic turbines; multi-criteria decision making (MCDM); renewable energy;
small hydropower plant (SHP); analytic hierarchy process (AHP); fuzzy-VIKOR

1. Introduction

In the new global economy, including sustainability aspects in decision-making has
become a central issue for a cleaner and affordable energy transition. Different pathways
to decarbonize energy-related activities have been proposed by the uptake of climate-
friendly innovations and novel technologies (see [1,2], for example). At the same time,
sustained growth in electricity generation from renewable energy sources (RES) has been
seen worldwide [3]. The joint use of RES and energy efficiency measures (EEMs) [4,5] might
have a significant effect on decreasing the level of greenhouse gas (GHG) emissions and, at
the same time, supporting the achievement of the goals proposed in the Paris agreement to
strengthen the world responsiveness to the threat of climate change [6].

Hydroelectricity is considered a proven technology and offers advantages over other
power-producing facilities, including reduced GHG emissions, high efficiency, low operat-
ing and maintenance costs, and a high level of reliability [2,7,8]. The worldwide installed
capacity from hydropower sources reached 1292 GW in 2018, representing 62% of the over-
all electricity production among RES (4200 TWh) [9]. The remaining global hydropower
potential is still high (9.49 PWh), although only approximately 5.67 PWh is supposed to be
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exploited in an ecological scenario [10]. This high hydropower potential also suggests new
project opportunities for the future, even considering the existence of trade-offs related to
constructing new hydropower plants.

Small hydropower plants (SHP) have been considered “one of the most environ-
mental friendly cost-effective energy technologies for generation of electrical power [11]”.
Breeze [12] highlights that “high-head sites are often preferred because smaller turbines
and smaller water flows can be used”. SHPs present a set of advantages compared to
traditional power supply options, including their high reliability, high-efficiency levels, low
maintenance costs, and storage capacity (depending on the construction scheme) [13,14].
Furthermore, small-scale hydropower systems usually have a shorter construction period,
possible subsidies on capital costs, do not require large areas, present high-capacity factors
and are considered a safer and waste-free technology [15]. SHPs also exhibit minor envi-
ronmental impacts compared to traditional power sources acting as decentralized energy
resources improving network stability and reducing transmission losses [16]. However,
regardless of these advantages, the current worldwide installed capacity of SHPs repre-
sents only 4.5% among RES, and nearly 66% of the overall world’s hydropower potential
remains untapped [17].

The technical aspects of using hydraulic turbines in hydropower plants have been
widely discussed in the literature. Recent research developments in the field have been
addressed by previous research, including, for example, the material selection for hydraulic
turbines [18]. Based on operating data and expert elicitation, the ranking and prioritization
of the risk factors responsible for hydraulic turbine equipment failures have been performed
in [19]. An overview of the recent efforts to increase hydraulic turbines’ operational range
to reach exceptional flexibility levels has been investigated in [20]. Ref. [21] proposed a
method for sizing and siting SHP projects using geographic information systems (GIS)
capabilities. In contrast, the selection of turbines for ultra-low-head (ULH) power plants by
evaluating potential sites for these enterprises has been dealt with by Zhou and Deng [22].
An optimization model has been developed by Ibrahim et al. [23] for the preliminary design
of run-of-river projects. Yildiz [24] proposed an evolutionary algorithm to optimize the
design of run-of-river projects. The algorithm maximizes a set of parameters, including the
type, number, discharge of turbines, and penstock diameter and length. An algorithm has
been proposed by Nasir [25] to design micro-hydro power plants based mainly on the head
and flow rate data. A review of micro-hydropower turbines for low-head applications is
undertaken by Elbatran et al. [26], focusing on the different categories, performance, cost,
and operation aspects.

Despite the fundamental role of SHPs worldwide, there has been little research on
the methods for selecting the most suitable hydraulic turbine for a given hydropower
project. The turbine selection process is considered “one of the most difficult decisions
in the design of a hydropower plant [24]”. The decision-making process is complex and
subjected to conflicting and interrelated technical, environmental, and economic criteria.
Sangal et al. [27] reviewed the optimal selection of hydraulic turbines. The optimal choice of
hydraulic turbines focused on SHPs has been discussed in [28] for a Nigeria case study. At
the same time, there has also been disagreement on the criteria for selecting the most suitable
hydraulic turbine, mainly for small-scale hydropower projects. Williams and Upadhyay [29]
addressed the turbine selection process focused on SHP projects by considering the capital
cost per kW output, ease of installation, average turbine lifetime, local manufacture and
local repair/maintenance capability criteria. In a follow-up study [27], the need to address
the efficiency, constructability, cost, maintenance, serviceability, portability, and scope of
modularity criteria was reported. Williamson et al. [30] emphasized the importance of
including the efficiency, power, civil structures, portability, modularity, and maintenance
and serviceability criteria in the hydraulic turbine’s selection process.

The key stages related to the development of a hydropower project are illustrated in
Figure 1 [31], which can be summarized as follows: The physical aspects of a SHP induces
the types of turbines employed and the civil structures required for the deployment and,



Energies 2022, 15, 7383 3 of 26

therefore, influence the cost and economic benefits generated by the project [8]. Stage
1 (Feasibility) can be split into (i) the opportunity identification, (ii) preliminary turbine
selection, (iii) preliminary design, and (iv) pre-feasibility study, as illustrated in Figure 1.
The planning phase (Stage 2—Planning) can be split into three key stages: schedule prepa-
ration, final feasibility study, and decision-making for execution [32]. The next stage (Stage
3—Construction) deals with the civil structures, i.e., related to the construction of the
hydropower plant, including manufacturing, delivery, and equipment installation. The last
stage (Stage 4—Start-up) is responsible for conducting a set of tests (e.g., load, vibrations,
temperature, safety systems, protections, power test, load rejections, and index tests) until
the full operation is achieved.
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The preliminary study for selecting the most suitable hydraulic turbine for a hy-
dropower project is complex. Understanding the complexity associated with the turbine
selection phase is vitally crucial since inadequate selection may under or overestimate
the real turbine needs for a given hydropower project. It might also deeply impact the
capital, operational, and maintenance costs and, therefore, future project cash flows [33].
However, the preliminary selection of hydraulic turbines (PSHT) has been traditionally
performed based on the previous knowledge background of industry experts by applying
two approaches: (i) the rule of thumb (practical approach) (i.e., based on the available man-
ufacturer’s information) and/or using (ii) the scientific approach (i.e., based on simplified
calculation methods).

Although the current methods for the PSHT have proven useful, research has consis-
tently shown that the preliminary selection has been made based on empirical evidence
and can be adversely affected under certain conditions. Therefore, although there is no
one-size-fits-all solution regarding the hydraulic turbine selection process, this problem
is yet to be explored and calls for an innovative framework approach. The development
of a new methodology that allows to include more parameters into the decision-making
process at company levels is still required to avoid the danger of engaging in a one-
dimensional approach, which would not only result in a reduced and simplistic vision
of the choice but would also overlook the trade-offs between individual aspects and the
possible unintended side-effects.
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On the other hand, the proper selection of a hydraulic turbine can also be performed
using multi-criteria decision making (MCDM) methods. MCDM deals with decisions
involving the choice of the best alternative among a set of options. It has been widely
applied in different fields, including designing or managing production systems and
logistics and applications in the renewable energy sector (e.g., [34–38]). MCDM is also
considered a suitable tool in the PSHT since qualitative and quantitative criteria can be
considered for decision-making. However, previous research that attempted to employ such
MCDM practices is scarce. Therefore, this paper proposes a more efficient methodology
based on a multi-criteria approach for the PSHT. The proposed framework considers the
interdependencies between the cost and technical constraints surrounding the hydraulic
turbine selection process. The methodology has been designed and is best suited for
selecting hydraulic turbines for SHPs and expects to fill this field gap and facilitate the
knowledge exchange between the academy and industry. The proposed methodology
extends beyond the cases addressed as it may provide valuable lessons for other decision-
making processes related to the most suitable turbine choice for a given SHP project. Still,
it can also be extended to evaluating different turbine ranges, such as hydraulic turbines
for larger hydropower projects.

This paper is divided into five main sections. This first section provides background
information on the subject. A theoretical background on the fundamentals of hydraulic
turbines and multi-criteria approaches is then addressed in Section 2. The methodological
approach is further described (Section 3), together with the presentation of the proposed
framework. The paper proceeds by presenting the main research findings based on a
real case-study application in Section 4. Finally, Section 5 draws together the key results
of the research, including the implications for policymakers and possible avenues for
further investigation.

2. Theoretical Background

This chapter highlights the key theoretical concepts associated with this research
paper. The first section provides the fundamentals of hydraulic turbines, including the
most common types and standard practices for the PSHT process. The second section
attempts to overview multi-criteria decision making (MCDM) methods briefly.

2.1. Fundamentals of Hydraulic Turbines

Hydraulic turbines convert water pressure into mechanical shaft power, which drives
electricity generators. The available output power (watts) is proportional to the product of
the net head and flow rate, as illustrated in Equation (1) [39,40], where P is the mechanical
power produced at the turbine shaft (watts), ρ is the density of water (kg/m3), g is the
acceleration due to the gravity (m/s2), HN is the net head of water across the turbine (m),
Q is the flow rate passing through the turbine (m3/s), and η is the hydraulic efficiency of
the turbine.

P = ρ · g· HN · Q· η (1)

Pelton, Francis, and Kaplan models are considered the most commonly employed
turbines for hydroelectricity production and are distinguished mainly by their runner’s
shape. Traditionally, Pelton turbines (PT), Francis turbines (FT), Kaplan turbines (KT)
present different configurations based on the shaft or generator position. For PT, there
are two primary configurations: horizontal (HP) (up to three jets) and vertical (VP) (from
four to six jets). FT can be classified into vertical francis (VF), single horizontal francis
(SHF), and double horizontal francis (DHF). The most traditional KT configurations are
the Kaplan with the spiral casing and the one with a vertical shaft (VK). There are other
tubular models including the upstream S-type (UST), downstream S-type (DST), both with
the shaft in the horizontal position [41] and the Vertical S-type/Saxo (VST) [42], with the
shaft in the vertical position. There are several other types of available hydraulic turbines
usually well suited for micro and pico hydro applications, including the cross-flow/Banki,
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Turgo, propeller, Deriaz, Kinetic and Archimedes Screw. A full discussion of these types of
hydraulic turbines lies beyond the scope of this study.

Several factors can affect the selection of a suitable turbine configuration, including
the site location and the operating regimes [43]. The PSHT process can be iterative and
usually starts by verifying the net head (HN) and estimated flow rate (Q) available on-
site [27,44], which generally defines the size of the hydraulic turbine. There are two main
approaches typically employed in the PSHT: (i) the rule of thumb (practical approach) and
(ii) the scientific approach [45]. The rule of thumb approach (i) chooses the most suitable
hydraulic turbine for a given hydropower project based on the net head and flow rate
conditions of a river, which are compared to standard charts, as shown in Figure 2 (see the
examples in [27,46]). Therefore, selecting the most appropriate turbine for this practice-
based approach can be performed based on the information extracted from manufacturers
(e.g., using available catalogs). Kaunda et al. [44] highlight that manufacturers recommend
various turbine types based on the net head and flow rate information, which can guide
the turbine’s choice.
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The second-largest approach widely used in real applications for the PSHT is based
on the scientific approach (ii). For this case, the turbine is selected based on its specific
speed (Ns) [27,45,47], as illustrated in Equation (2), where N is the nominal turbine speed
(rpm), with P in kW and HN in meters. The specific turbine speed (Ns) is defined as the
speed—in revolutions per minute (rpm)—in which a turbine of homologous design would



Energies 2022, 15, 7383 6 of 26

operate if the runner were scaled down to a size that developed one metric horse power
under one meter for the net head. Table 1 presents the typical range for the specific speed
considering the most typical hydraulic turbines [48,49].

Ns =
N
√

P · 1.358)
H1.25 (2)

Table 1. Classical hydraulic turbines based on the specific speed Ns [48,49].

Type of Turbine Ns(rpm)

Pelton 18–90
Francis 55–450

Kaplan/Tubular/Bulb/Propeller 250–1350

Analyzing Figure 2 and Table 1, an intersection region in the transition between the
different types of turbines can be noted. Therefore, the decision-maker might have other
options depending on the approach used. Based on this context, this paper proposes a
framework for the PSHT, considering the most relevant criteria, which have been defined
based on a systematic literature review. The proposed framework can be used jointly with
the traditional approaches previously mentioned.

2.2. Multi-Criteria Decision Making (MCDM) in Renewable Applications

Multi-criteria decision making (MCDM) is usually employed for solving complex
decision-making problems involving quantitative and qualitative factors [50]. The most
traditional employed methods are the AHP (25.6%); TOPSIS (11.4%); ÉLECTRE (8.6%);
PROMETHEE (6.6%); and VIKOR (3.6%) [50]. Recently, considerable literature has grown
around the employment of MCDM approaches focused on renewable energy decisions.
The most significant recent developments in this direction have been related to ranking
power sources’ best choices.

A state-of-the-art review focused on decision support methods applied to renewable
and sustainable energy was carried out by Strantzali and Aravossis [51]. Suganthi et al. [52]
presented a systematic review of the most used MCDM methods for renewable energy
systems. Siksnelyte et al. [53] reviewed research papers on both energy sustainability
issues and MCDM techniques using the SWOT analysis and highlighted the usefulness and
popularity of MCDM in dealing with energy sustainability problems. The common use
of fuzzy-VIKOR and AHP techniques to define the best alternative for renewable energy
in Istambul is investigated in [54]. A comparative analysis among VIKOR, TOPSIS, WSM
(weighted sum method), and ÉLECTRE MCDM methods for ranking renewable energy
sources in Taiwan was studied in [55], whereas a hybrid MCDM model based on benefits,
opportunities, costs, and risks (BOCR) and analytic network process (ANP) techniques to
prioritize energy sources in Turkey is addressed in [56]. Tasri and Susilawati [57] associated
Fuzzy with AHP to select the best energy alternatives for Indonesia. In Pakistan, the
assessment of sustainable energy planning strategies was addressed by Solangi et al. [58]
through an integrated SWOT-AHP and Fuzzy-TOPSIS approach, whereas Wang et al. [59]
focused on selecting renewable energy strategies using fuzzy-AHP and SWOT methods.

Multi-criteria decision methods have also emerged as a powerful tool focused on
selecting the best places for hydropower projects. Supriyasilp et al. [60] employed a MCDM
technique to select the best sites for hydropower projects in Thailand, taking stakeholder
involvement, electricity generation, environment, socio-economics, engineering, and eco-
nomics aspects into account. Economic, technical, environmental, and socio-political criteria
have been considered by Rosso et al. [61], which adopted the AHP method to solve conflicts
of interest among stakeholders for a SHP project placed on mountain areas. Kumar and
Singal [62] employed a MCDM method to select the best operating site based on their
current performance regarding the hydroelectric operational strategies. The combined
use of the AHP and TOPSIS methods was employed by Özcan et al. [14] for maintenance



Energies 2022, 15, 7383 7 of 26

strategy selection in hydropower projects. Fuzzy-AHP and TOPSIS have also been consid-
ered by Majumder et al. [63] to select indicators to analyze performance-related reliability
in hydropower plants. A MCDM method has also been employed to choose material for
the production of penstock [62], whereas Adhikary et al. [64] addressed the selection of
suppliers/manufacturers of hydraulic turbines for SHPs in India. The use of MCDM with
a particular focus on selecting hydraulic turbines for low head and very low power (less
than 5kW) facilities is presented in [30].

3. Materials and Methods

This research paper focuses on the PSHT for SHP projects (Stage 1—Feasibility)—see
Figure 1, which is also positioned in the first stage of the standard IEC 61116 [65]. The
research follows a mixed (quantitative and qualitative) approach within the research design.

The innovative aspects of the present research come from the proposed framework,
which combines the most relevant criteria defined in the literature review with the combined
use of MCDM methods (AHP and fuzzy-VIKOR) for the PSHT. The AHP is used to
determine the criteria weight, and fuzzy-VIKOR is considered to obtain a solution with
feasible alternatives and not only considering the hierarchy of alternatives.

The detailed conceptual framework proposed in the present research for the PSHT is
illustrated in Figure 3. The general methodological approach considers three major phases:
1. Literature Review and Criteria Definition; 2. Case Study; and 3. Application of MCDM.
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Firstly, a literature review was conducted (Step 1.1—Phase 1) using Proknow-C [66]
and snowballing [67] techniques to define the most relevant criteria for the PHST (Step 1.2—
Phase 1). The selected criteria will be presented in the results section. Phase 2 is responsible
for the project characterization (Step 2.1), which includes the characterization of the case
study, data collection, and analysis, followed by the definition of the alternatives (Step 2.2).
The definition of the first set of alternatives can be performed using the traditional ap-
proaches highlighted in the theoretical background section. The methodology proceeds to
the MCDM application (Phase 3). The weights for each criterion are first defined (Step 3.1)
based on the investor’s preferences using the AHP method. The alternatives’ perfor-
mance can be verified (Step 3.2) by comparing the alternatives using fuzzy language. The
fuzzy-VIKOR method is applied in Step 3.3 to solve the subjective preferences, and the
decision-making process can finally be conducted to choose the hydraulic turbine for the
project. Figure 4 illustrates the details of the MCDM application (i.e., Phase 3).
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The criteria traditionally considered by previous research for the design of SHP projects
differ substantially in the literature. Therefore, the literature is systematically reviewed
to obtain the most important criteria considered by previous research to design SHP
projects. The selected papers have been defined based on two techniques (i) Proknow-
C [66] and (ii) snowballing [67]. The Proknow-C procedure involves finding relevant
research through a screening and eligibility procedure using a keyword search process.
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The papers were selected and analyzed whether the titles were associated with the subject.
The methodology proceeds by reading the abstracts and selecting the related studies.
Screening the references comprises the next step (“cited-by sections”), which is known as the
“snowballing” technique.

The AHP method is used to define the criteria weighting according to the investor’s
preferences. The evaluation of the alternatives is also required to assess each alterna-
tive’s performance based on the defined criteria. The alternatives’ evaluations are per-
formed based on experts’ opinions in the field through linguistic variables and based on
the fuzzy triangular number (see Table 2) to deal with the uncertainties involved in the
decision-making process. The fuzzy-VIKOR method establishes a compromise solution
that meets technical experts’ preferences and approaches the ideal solution, considering
the alternatives (or available turbines in our case). Once the judgments are known, the
fuzzy-VIKOR method can be applied, and finally the compromise solution can be defined.
The step-by-step instructions for using AHP and fuzzy-VIKOR methods are presented in
Appendices B and C, respectively.

Table 2. Linguistic variables established based on Ref. [68].

Classification Linguistic Variable Triangular Fuzzy Number

Very Low VL (0; 0; 0.17)
Low L (0; 0.17; 0.33)

Medium Low ML (0.17; 0.33; 0.5)
Medium M (0.33; 0.5; 0.67)

Medium-High MH (0.5; 0.67; 0.83)
High H (0.67; 0.83; 1)

Very High VH (0.83; 1.00; 1)

4. Results and Discussion

The proposed methodology will be applied to a real case study based on a run-of-river
SHP project installed in the South of Brazil. The following subsections will describe each
phase and step of the detailed conceptual framework proposed (see Figure 3).

4.1. Phase 1—Step 1.2—Criteria Definition

Table 3 summarizes the categories traditionally considered by previous research to
design SHP projects related to civil structures, equipment, and operation and maintenance
(O&M). If the dot is present in Table 3, the category was considered in the study. These
categories will be further considered to establish the most relevant criteria for the PSHT.
The literature review revealed that the most important categories are related to Turbine and
Generator, Dam/Intake/Forebay, followed by the powerhouse and penstock structures.
This suggests that the aspects linked to the power plant structure have been considered
fundamental in the design phase of the SHPs projects.

However, the literature search revealed few studies that systematically reviewed the
most important criteria for selecting the most suitable hydraulic turbine for SHPs since
the traditional procedure followed for the PSHT is based on catalogs and expert opinions
approaches. Based on the literature review, the 16 criteria (Phase 1—Step 1.2) are defined,
which are split into four key categories: 1. Turbine Performance (TP), 2. Turbine and
Generator Cost (TGC), 3. Other Equipment Cost (OEC) and 4. Civil Structures Cost (CSC),
illustrated in Table 4.
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Table 3. Categories traditionally considered by previous research in the design of SHP projects.
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Mishra et al. [69] • • • • • •
Hatata et al. [70] • • • • •

Alexander and Giddens [71] • • • •
Singal et al. [72] • • • • •
Mishra et al. [73] • • • • • •

Tuna [74] • • • • •
Mishra et al. [75] • •

Okot [76] • • • • • •
Gagliano et al. [77] • • • • •

Loots et al. [78] • • • •
Ak et al. [79] • • • •

Mandelli et al. [80] • • •
Forouzbakhsh et al. (2007) [81] • • • • • •

Ogayar and Vidal [82] • • • • • •
Total 13 9 9 11 12 13

Table 4. Categories and criteria description.

ID Categories Criteria Cost/Benefit Description

C1

Turbine Performance
(TP)

Net head variation The higher, the better
Some turbines can operate in a wide range of

water-head variations. Therefore, a wider operating
range on the hill chart is preferable [83].

C2 Flow rate variation The higher, the better

A turbine that accepts a broader flow rate variation
has a higher probability of operating for extended
periods, such as in the case of drought conditions

when the flow rate is reduced [83].

C3 Efficiency The higher, the better

An important variable to compare different turbine
types is their relative efficiencies for nominal and

reduced flow rates. Generally, different from Francis
and propeller turbines, the Pelton, Crossflow, and

Kaplan turbines retain higher efficiencies when
running below the designed flow rate [40,84].

C4 Reliability The higher, the better

After some years of operation, hydraulic turbines’
performance and efficiency might decrease because

of several factors, including cavitation, erosion,
fatigue, and material defects [85]. For example, some

hydraulic turbines are more prone to erosion and
cavitation wear (e.g., Francis turbines).
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Table 4. Cont.

ID Categories Criteria Cost/Benefit Description

C5

Turbine and Generator Cost
(TGC)

Turbine and Generator
Investment Cost The lower, the better

It represents one of the highest costs of the SHPs, and
it can reach levels higher than 30% of the overall

project’s cost [82].

C6 Turbine Operating Cost The lower, the better

A SHP has a proper operation when extracting the
maximum energy from the available potential at
minimum operating costs [86]. Modular turbines

equipped with non-complex systems and
nationalized components are cheaper.

C7 Turbine and Generator
Maintenance Cost The lower, the better

It is associated with the serviceability of both the
turbine and generator. The maintenance costs
represent a substantial amount of the overall

annual costs [87].

C8 Turbine Non-availability Cost The lower, the better

The purpose of a SHP is to sell electricity
continuously. Therefore, the turbine’s

non-availability might bring financial losses for the
company and should be avoided [14].

C9

Other Equipment Cost
(OEC)

Electric Overhead Traveling
(EOT) Cranes Cost The lower, the better

It comprises cranes for the powerhouse, intake, and
tailrace. These devices are necessary for O&M due to
the load-lifting capacities, which depend on the SHP
layout, turbine weight, generator, hydromechanical

components, and the O&M strategy. Our review
found that previous research has traditionally

neglected the cost associated with this equipment.

C10 Hydromechanical
Equipment Cost The lower, the better

This cost includes the ones related to the gates,
valves, trash racks, and other small equipment. The

turbine type might also interfere with
hydromechanical equipment, whose hydraulic

transients may require more robust equipment [33].

C11 Penstock Cost The lower, the better

The penstock’s dimensions depend on the general
layout of the power plant and the size and type of the

turbine. Therefore, it has been traditionally
considered acquisition, installation, and maintenance

costs [62].

C12 Auxiliary Systems Cost The lower, the better

Electrical and mechanical auxiliaries’ systems are
considered secondary equipment but vital for

operation and safety concerns. Depending on the
turbine type, more robust auxiliary systems are

required (e.g., Kaplan and Pelton turbines) [88,89].

C13

Civil Structures Cost
(CSC)

Powerhouse Excavation Cost The lower, the better

Depending on the turbine’s size, it might be required
larger powerhouses. Consequently, it might also

need a greater excavation volume. Additionally, the
setting of turbine installation might require

extensive excavation.

C14 Substructure Cost The lower, the better

The substructure is usually built using concrete and
reinforced with steel when necessary. This depends
on the turbine’s size and the efforts transmitted to

the structure.

C15 Super-Structure Cost The lower, the better

It can be constructed as a steel structure consisting of
columns, beams, roofing trusses, roof, railings, gates,

and trash racks. It can also be reinforced by a
concrete framed structure [90]. This structure

supports the cranes, whose capacity depends on the
turbine type. The structure’s size depends on the

powerhouse’s dimensions, which are also related to
the size of the turbine.

C16 Dam and Intake Cost The lower, the better

The dam is considered one of the largest structures in
a power plant, responsible for storing the water. It
typically supports the spillway and its respective

mechanical and auxiliary drive equipment. In some
cases, it also includes water intake and other

equipment. The penstock is connected to the intake.
Thus, the outlet structure should consider the

penstock dimensions, which are associated with the
type of turbine.

4.2. Phase 2—Step 2.1—Project Characterization

The proposed methodology is applied to a real case study based on a run-of-river SHP
project installed in the South of Brazil (Phase 2). The SHP installed capacity is approximately
2.357 MW, with the following technical data: 21.85 m for the net head (HN), 11.8 m3/s for
the flow rate (Q), and a nominal turbine speed (N) of 360 rpm.
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4.3. Phase 2—Step 2.2—Alternatives Selection

Using Equation (2), the turbine’s specific speed is obtained (Ns = 431 rpm). Based on
the net head and flow rate (Figure 2), it can be determined which turbine category best
fits this application (Phase 2—Step 2.2). Francis and Kaplan’s models are found to be best
suited considering the rule of thumb. The results are similar when considering the scientific
approach (Table 1) in which Francis and Kaplan (including its variants, i.e., tubular, bulb
and propeller) models could be selected.

Following the traditional approaches for the PSHT, the decision-maker (e.g., the
technical analyst) would select one of the turbines obtained in Step 2.2 according to its
experience and preference. Another possibility would be to analyze consumers’ preferences.
However, in general, investors are often unaware of the types of available turbines and
their particularities. For the case study, it could be chosen Francis or Kaplan family turbines.
Francis turbines are more straightforward and usually cheaper than Kaplan turbines. On
the other hand, Francis turbines have lower efficiency than Kaplan turbines, as it competes
to generate electricity with intermediate flow rates. In this case, the multi-criteria approach
becomes a great tool that may support the choice and include the investor’s preferences
and other critical criteria in the decision-making process.

The selected alternatives considered during the evaluation process are limited to
those hydraulic turbines defined in Step 2.2 (Figure 3). The alternatives comprise the
following turbines: SHF, DHF, and VF, with Francis runner; and VK, UST, DST, VST,
Bulb, with Kaplan runner (see the intersected area in Figure 2). However, according
to the literature review, the VK and Bulb subcategories are usually employed for large
hydropower projects. Moreover, typically the VST models have not been used in SHPs.
Therefore, these alternatives were subtracted from the main group based on technical
requirements and stakeholders’ expertise. Therefore, the selected options (Step 2.2) are
illustrated in Figure 5 and comprise (a) SHF, (b) DHF, (c) VF, (d) UST, and (e) DST.
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Figure 5. Selected possible hydraulic turbines for the case study: (a) SHF; (b) DHF; (c) VF; (d) UST;
(e) DST.

As mentioned in the methodology section, the AHP method establishes the criteria’s
weight, while fuzzy-VIKOR is applied to find the most suitable turbine (or turbine group),
resulting in the desired compromise solution, as represented in Figure 4.

4.4. Phase 3—Step 3.1—Criteria Weighting

The criteria were calculated using the AHP method according to the procedure de-
scribed in Appendix B. The criteria weights were determined by verifying the investor’s
preferences and supported by the project’s technical team, according to Step 3.1 (Phase 3)
of Figure 3. The results for the criteria weighting are illustrated in Figure 6. The calculation
of the geometrical mean is unnecessary because of the technical team’s consensus. Conse-
quently, the normalization procedure is not necessary in this case. The criteria weighting
indicates the relative importance in the category, while the value assigned to each criterion
indicates its overall participation, calculated from the fuzzy VIKOR method (Appendix C).
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The obtained criteria weighting follows as: TP = 0.0657, TGC = 0.2444, OEC = 0.1308
and CSC = 0.5591. As clearly illustrated in Figure 6, the ‘Civil Structures Cost’ category
seems to have higher relative importance, followed by the ‘Turbine and Generator Cost’ and
‘Other Equipment Cost’ categories. The ‘Turbine Performance’ category is found to have
smaller importance, which suggests that the cost criteria are more important in this case.
From the perspective of investors, the representativeness of each criterion suggests that the
cost of structures and equipment is more significant than the equipment’s performance. In
other words, even when considering performance over the long term (during the plant’s
useful life), the building and acquisition expenditures still emerge as being more significant.
These findings support those of Ogayar et al. [82] and Singal et al. [72], who concluded
that the turbine-generator set is responsible for 30% of the expenses, whereas the estimated
costs for civil works are approximately 40%.

4.5. Phase 3—Step 3.2 and Step 3.3—Alternatives Performance and Compromise Solution

The alternatives evaluation should be carried out in Step 3.2 (Figure 3) to assess the
performance of each alternative (A1 = SHF, A2 = DHF, A3 = VF, A4 = UST, and A5 = DST)
according to each decision maker (DM) judgment. The judgments of the alternatives were
performed by hydraulic turbine experts who have been working in Latin America. Four
product engineering specialists were individually interviewed (i.e., DM1, DM2, DM3, and
DM4). Table 5 illustrates the results from the expert judgment. The linguistic variables
were converted into fuzzy numbers to solve the VIKOR method.

In Step 3.3 (Figure 3), the performance of each alternative is established based on the
specialist’s judgment using the minli, maxri and the geometric mean for mi, as described in
Appendix A (Table A1). The benefits criteria are identified with the symbol (+), while the
cost criteria as (-). The distance ‘di’ for each alternative is calculated using Equations (A10)
and (A11) (see Table A2). Sj and Rj are further calculated using the normalized pondered
distance (Equations (A12) and (A13)). The maximum S∗, S−, R∗, R−− extracted from
Table A3—are shown in Table A4 and represent the fuzzy pondered sum and the maximum
fuzzy operator, respectively. These values are necessary to compute each alternative’s fuzzy
merit (Q f ), as shown in Table A5. The compromise solution is provided by alternatives A1
and A2 (SHF and DHF, respectively) (Table 6).
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Table 5. Fuzzy classification of the alternatives.

DM1 DM2 DM3 DM4
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

C1 L L L H H MH ML M VH VH MH M MH M M M ML M H H
C2 L L L H H ML L ML H H ML ML M H H M ML M H H
C3 MH M MH H H MH ML MH VH VH MH M MH H H M ML M H H
C4 H H H H H MH M MH H H M M MH MH MH MH ML ML H H
C5 MH MH H MH H MH MH VH MH H ML M H H VH ML M MH MH H
C6 L L ML ML ML ML ML M MH MH L L M M M ML M M MH MH
C7 ML ML MH MH M ML ML MH H H L M VH H H ML MH M H H
C8 ML ML H H M MH MH H VH VH ML ML MH MH MH ML M H MH MH
C9 M M VH MH MH L L MH M MH ML M H MH H ML M MH MH H
C10 ML ML MH MH M ML ML M MH MH M M H H H ML M MH H H
C11 L MH ML L L L MH MH M M ML M MH M M ML H ML L L
C12 L L ML ML L ML ML M MH MH L L M M M L ML ML M M
C13 M M H H M M ML H VH H M M H H H ML M H MH MH
C14 L ML MH M M M M H H H ML M VH VH VH ML ML M MH MH
C15 ML ML H H M M M MH MH MH ML ML VH VH VH ML M H MH MH
C16 ML ML M MH M ML ML M MH MH M M VH H VH ML ML MH MH H

Table 6. Compromise solution between alternatives.

Strategic Weight 1 Condition Alternative A1 (SHF) Alternative A2 (DHF)

v = 0.5 Condition 1 ≥ 0.25 Not Accept
(Condition 1 = 0.1115)

Accept
(Condition 1 = 0.8831)

Condition 2 - Accept

v = 0.7 Condition 1 ≥ 0.25 Not Accept
(Condition 1 = 0.1447)

Accept
(Condition 1 = 0.9552)

Condition 2 - Accept

v = 0.3 Condition 1 ≥ 0.25 Not Accept
(Condition 1 = 0.0909)

Accept
(Condition 1 = 0.8231)

Condition 2 - Accept
1 The case study will also address the verification of the selection strategy (v) for the following scenarios:
prioritization of benefits (v = 0.7), minimization of losses related to the choice (v = 0.3), and undeclared
prioritization (v = 0.5).

According to investors’ preferences and expert judgment, SHF and DHF turbines
were found as compromise solutions for all scenarios that consider the strategic weights
(v = 0.3, v = 0.5, and v = 0.7). Therefore, the strategic weights did not influence the results,
probably because of the great distance from the first and second alternatives compared to
the other alternatives. It is worth mentioning that other solutions could be obtained for
other investors’ preferences.

Therefore, the results of this study indicate that SHF and DHF turbine models were
considered best suited for the case study under analysis according to the 16 criteria con-
sidered. A practical analysis can also be performed by comparing the obtained results
with data from a set of installed hydraulic turbines in the country. Data from the largest
local manufacturer of hydraulic turbines [91] (Figure 7) is considered, taking into account
135 hydraulic turbines already installed in the last 30 years in SHP projects (with the net
head varying between 20 and 35 m). The range of net head was defined based on the
shaded region presented in Figure 2.

It can be seen from the data in Figure 7 that historically, the majority of turbines (for
the same range of head [20–35 m] and flow rates [10–30 m3/s]) already installed in the
country comprises SHF (53%) and DHF (33%). SHF is the most employed turbine in SHP
projects in Brazil. Together these turbines represent nearly 86% of the total. Along the
same lines, Ref. [92] supports that Francis turbines are the most commonly used turbines
for hydroelectric plants in Brazil. Analyzing Figure 7, it can be also noted that near the
operating conditions of the case study (i.e., HN = 21.85 m e Q = 11.8 m3/s), there are two
DHF turbines and one SHF turbine, which also supports the findings of this research. In this
case, the subjective preferences have resembled purely technical decisions, as verified by
the technical approach. Taken together, this combination of findings provides some support
for the conceptual premise that there is a strong association between experts’ preferences
and real-world practices. Therefore, it is likely that such connections exist because the
designer’s views are primarily based on cost aspects.
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Traditionally, Francis turbines present a more compact layout compared to Kaplan
turbines. This research revealed that lower costs with civil structures seem more critical
based on investors’ preferences. In general, SHP projects that employ Francis turbines
are typically cheaper than Kaplan turbines, even considering that Kaplan turbines usually
present higher capacity factors than Francis turbines [23].

5. Conclusions

The preliminary selection of the most suitable hydraulic turbine for a hydropower
project has been proven to be not a trivial task and a clearly defined process. Research
on the subject has been mostly restricted to limited comparisons of hydraulic turbines
and based on empirical evaluation processes, e.g., manufacturer’s recommendations and
single expert judgments. For both the practice-based and the scientific-based approaches,
the complexities of the hydraulic turbine selection process can be correlated to a series of
practical issues, such as the lack of precise information and the wide range of available
manufacturers’ catalogs but also depending deeply on the decision maker’s expertise.

Therefore, although the current methods have proven useful, research has consistently
shown that the PSHT has been made based on empirical evidence. This process can be
adversely affected under certain conditions. Recognizing that the existing approaches
may result in sub-optimal results is, therefore, imperative. Bringing to the table the need
for a more objective approach to selecting the most suitable hydraulic turbine for a given
hydropower project is thus very relevant.

In summary, this research established a robust methodology to support current real-
world decision-making problems related to the PSHT. The overall goal of this research
lies in the development of a model for the pre-selection of hydraulic turbines through a
multicriteria approach, useful for real situations in which the available technical data for
the net head and flow rates present a conflict of interest. The framework proposed in this
paper not only recognizes the investor’s preferences in the preliminary solution but also
integrates other fundamental technical aspects into the decision-making process through an
integrated MCDM approach (AHP and fuzzy-VIKOR). A significant advantage of using a
MCDM approach is that it allows considering a broader perspective for the investor’s choice
and goes beyond the traditional empirical approaches typically employed in the sector.
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We systematically reviewed the literature to select the most representative criteria,
which were combined into 16 subcriteria, that can be used in future research to evaluate
selecting a broad range of hydraulic turbines for hydropower projects. Previous research
emphasized the importance of including the efficiency, power, civil structures, portability,
modularity, ease of installation, and maintenance and serviceability criteria in the hydraulic
turbine’s selection process. Compared to previous studies on the topic, this research
increased the perception of essential criteria to be considered for the PSHT.

According to the 16 subcriteria taken into account, the simple horizontal francis (SHF)
and double horizontal francis (DHF) turbine models were found to be the most suitable
for the case study under analysis. Analyzing existing projects in the region (Brazil), it was
found that nearly 86% of the projects employ Francis turbines for the same range of head
[20–35 m] and flow rates [10–30 m3/s] (SHF—53% and DHF—33%). These findings clearly
indicate the connection between investors’ preferences and local market practices for the
case study under analysis. This also suggests that the preliminary project is valid for the
executive project since it seems to point to the intended solution. It is worth mentioning that
the proposed framework might also support the investor’s preferences in the preliminary
stage of the project (PHST). It is worth noting that the results may differ according to the
investor’s preferences. Therefore, with the investor’s participation in the decision-making
process, the final choice will consider not only the investor’s interest but also other core
technical aspects.

Previous studies on typical power applications (i.e., with head [20–35 m] and flow
rates [10–30 m3/s]) were found to be scarce, and the most suitable turbine may differ
for each project. For example, a method to select a hydro turbine has been proposed by
Williamson et al. [30], but with a particular focus on pico hydro turbines for low head sites.
The authors of [30] concluded that propeller or single-jet Turgo designs would be more
suitable for the particular power applications considered in their study. Adejumobi and
Shobayo [28] also dealt with the optimal selection of hydraulic turbines but focused on
SHP projects and taking into account a particular net head and flow rate.

The results of the present research can be extended and used in other projects, particu-
larly in the range of net head and flow rates established. Although the case study is focused
on a specific head and flow range, projects whose technical data are not included in this
range may adopt the same criteria, but the alternatives should be reviewed considering the
particular project’s data. The proposed methodological approach proves to be particularly
useful if more than one alternative or type of turbine is considered in the application.
Therefore, the 16 subcriteria proposed in the present research can be further considered to
support the decision-making process for other hydropower projects with different head
and flow rates, including SHPs and larger hydropower projects.

The findings of this study make several contributions and policy implications to the
current literature and the insights gained may be of assistance to both practitioners and
policymakers. Further research should be undertaken, including information regarding the
river’s flow curve, which would define the ideal number of generating units, which can
also depend on the turbine type.
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Abbreviations
The following abbreviations are used in this manuscript:
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BOCR Benefits, Opportunities, Costs, and Risks
CSC Civil Structures Cost
DHF Double Horizontal Francis
DM Decision Maker
DST Downstream S-type
EEMs Energy Efficiency Measures
ÉLECTRE ÉLimination Et Choix Traduisant la REalité
FT Francis Turbine
GHG Greenhouse Gas Emissions
GIS Geographic Information Systems
GW Gigawatt
H High
HP Horizontal Pelton
IEC International Electrotechnical Commission
KT Kaplan Turbines
kW Kilowatt
L Low
M Medium
MCDM Multi-Criteria Decision Making
MH Medium High
ML Medium Low
MW Megawatt
N Nominal Turbine Speed
Ns Specific Turbine Speed
O&M Operation & Maintenance
OEC Other Equipment Cost
P Mechanical Power
PT Pelton Turbine
PWh Petawatt-hour
PROMETHEE Preference Ranking Organization METHod for Enrichment of Evaluations
PSHT Preliminary Selection of Hydraulic Turbines
RES Renewable Energy Sources
SHF Simple Horizontal Francis
SHP Small Hydropower Plant
SWOT Strengths, Weaknesses, Opportunities, and Threats
TGC Turbine and Generator Cost
TOPSIS Technique for Order Preference by Similarity to Ideal Solution
TP Turbine Performance
TWh Terawatt-hour
ULH Ultra-Low-Head
UST Upstream S-type
VF Vertical Francis
VH Very High
VIKOR VIseKriterijumska Optimizacija I Kompromisno Resenje
VK Vertical Kaplan
VL Very Low
VP Vertical Pelton
VST Vertical S-type or Saxo
WSM Weighted Sum Method
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Appendix A. Fuzzy-VIKOR Results

Table A1. Aggregation judgments.

Criteria
A1 A2 A3 A4 A5

l m r l m r l m r l m r l m r

C1 (+) 0.000 0.387 0.830 0.000 0.272 0.670 0.000 0.360 0.830 0.330 0.766 1.000 0.330 0.731 1.000

C2 (+) 0.000 0.272 0.670 0.000 0.182 0.500 0.000 0.301 0.670 0.670 0.830 1.000 0.670 0.830 1.000

C3 (+) 0.330 0.623 0.830 0.170 0.406 0.670 0.330 0.623 0.830 0.670 0.870 1.000 0.670 0.870 1.000

C4 (+) 0.330 0.657 1.000 0.170 0.512 1.000 0.170 0.592 1.000 0.500 0.787 1.000 0.500 0.787 1.000

C5 (−) 0.170 0.470 0.830 0.330 0.579 0.830 0.500 0.824 1.000 0.500 0.707 1.000 0.670 0.870 1.000

C6 (−) 0.000 0.182 0.500 0.000 0.202 0.670 0.170 0.451 0.670 0.170 0.522 0.830 0.170 0.522 0.830

C7 (−) 0.000 0.245 0.500 0.170 0.437 0.830 0.330 0.688 1.000 0.500 0.787 1.000 0.330 0.731 1.000

C8 (−) 0.170 0.394 0.830 0.170 0.437 0.830 0.500 0.787 1.000 0.500 0.781 1.000 0.330 0.688 1.000

C9 (−) 0.000 0.272 0.670 0.000 0.334 0.670 0.500 0.781 1.000 0.330 0.623 0.830 0.500 0.746 1.000

C10 (−) 0.170 0.366 0.670 0.170 0.406 0.670 0.330 0.657 1.000 0.500 0.746 1.000 0.330 0.693 1.000

C11 (−) 0.000 0.182 0.500 0.330 0.657 1.000 0.170 0.470 0.830 0.000 0.224 0.670 0.000 0.224 0.670

C12 (−) 0.000 0.135 0.500 0.000 0.182 0.500 0.170 0.406 0.670 0.170 0.485 0.830 0.000 0.360 0.830

C13 (−) 0.170 0.451 0.670 0.170 0.451 0.670 0.670 0.830 1.000 0.500 0.787 1.000 0.330 0.693 1.000

C14 (−) 0.000 0.272 0.670 0.170 0.406 0.670 0.330 0.726 1.000 0.330 0.726 1.000 0.330 0.726 1.000

C15 (−) 0.170 0.366 0.670 0.170 0.406 0.670 0.500 0.824 1.000 0.500 0.781 1.000 0.330 0.688 1.000

C16 (−) 0.170 0.366 0.670 0.170 0.366 0.670 0.330 0.640 1.000 0.500 0.707 1.000 0.330 0.766 1.000

Table A2. Distance of the alternatives.

Criteria
ƒ* ƒ−

l m r l m r

C1 (+) 0.330 0.766 1.000 0.000 0.272 0.670

C2 (+) 0.670 0.830 1.000 0.000 0.182 0.500

C3 (+) 0.670 0.870 1.000 0.170 0.406 0.670

C4 (+) 0.500 0.787 1.000 0.170 0.512 1.000

C5 (−) 0.170 0.470 0.830 0.670 0.870 1.000

C6 (−) 0.000 0.182 0.500 0.170 0.522 0.830

C7 (−) 0.000 0.245 0.500 0.500 0.787 1.000

C8 (−) 0.170 0.394 0.830 0.500 0.787 1.000

C9 (−) 0.000 0.272 0.670 0.500 0.781 1.000

C10 (−) 0.170 0.366 0.670 0.500 0.746 1.000

C11 (−) 0.000 0.182 0.500 0.330 0.657 1.000

C12 (−) 0.000 0.135 0.500 0.170 0.485 0.830

C13 (−) 0.170 0.451 0.670 0.670 0.830 1.000

C14 (−) 0.000 0.272 0.670 0.330 0.726 1.000

C15 (−) 0.170 0.366 0.670 0.500 0.824 1.000

C16 (−) 0.170 0.366 0.670 0.500 0.766 1.000
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Table A3. Performance Matrix.

Criteria
A1 A2 A3 A4 A5

l m r l m r l m r l m r l m r

Po
nd

er
ed

N
or

m
al

iz
ed

C1 (+) −0.002 0.002 0.004 −0.001 0.002 0.004 −0.002 0.002 0.004 −0.003 0.000 0.003 −0.003 0.000 0.003

C2 (+) 0.000 0.007 0.012 0.002 0.008 0.012 0.000 0.007 0.012 −0.004 0.000 0.004 −0.004 0.000 0.004

C3 (+) −0.002 0.004 0.010 0.000 0.007 0.012 −0.002 0.004 0.010 −0.005 0.000 0.005 −0.005 0.000 0.005

C4 (+) −0.023 0.006 0.030 −0.023 0.012 0.037 −0.023 0.009 0.037 −0.023 0.000 0.023 −0.023 0.000 0.023

C5 (−) −0.108 0.000 0.108 −0.082 0.018 0.108 −0.054 0.058 0.136 −0.054 0.039 0.136 −0.026 0.065 0.136

C6 (−) −0.008 0.000 0.008 −0.008 0.000 0.010 −0.005 0.004 0.010 −0.005 0.005 0.013 −0.005 0.005 0.013

C7 (−) −0.015 0.000 0.015 −0.010 0.006 0.025 −0.005 0.013 0.030 0.000 0.016 0.030 −0.005 0.014 0.030

C8 (−) −0.053 0.000 0.053 −0.053 0.003 0.053 −0.026 0.031 0.066 −0.026 0.031 0.066 −0.040 0.023 0.066

C9 (−) −0.006 0.000 0.006 −0.006 0.001 0.006 −0.001 0.004 0.008 −0.003 0.003 0.007 −0.001 0.004 0.008

C10 (−) −0.040 0.000 0.040 −0.040 0.003 0.040 −0.027 0.023 0.067 −0.014 0.031 0.067 −0.027 0.026 0.067

C11 (−) −0.018 0.000 0.018 −0.006 0.017 0.036 −0.012 0.010 0.030 −0.018 0.002 0.024 −0.018 0.002 0.024

C12 (−) −0.012 0.000 0.012 −0.012 0.001 0.012 −0.008 0.006 0.016 −0.008 0.008 0.020 −0.012 0.005 0.020

C13 (−) −0.093 0.000 0.093 −0.093 0.000 0.093 0.000 0.071 0.154 −0.032 0.063 0.154 −0.063 0.045 0.154

C14 (−) −0.056 0.000 0.056 −0.042 0.011 0.056 −0.029 0.038 0.084 −0.029 0.038 0.084 −0.029 0.038 0.084

C15 (−) −0.021 0.000 0.021 −0.021 0.002 0.021 −0.007 0.020 0.035 −0.007 0.018 0.035 −0.014 0.014 0.035

C16 (−) −0.172 0.000 0.172 −0.172 0.000 0.172 −0.117 0.094 0.285 −0.058 0.117 0.285 −0.117 0.137 0.285

Sj −0.628 0.018 0.657 −0.566 0.091 0.697 −0.318 0.394 0.985 −0.288 0.370 0.955 −0.392 0.380 0.956

Rj 0.000 0.007 0.172 0.002 0.018 0.172 0.000 0.094 0.285 0.000 0.117 0.285 −0.001 0.137 0.285

Table A4. The maximum S∗, S−, R∗, R−.

l m r

S* −0.628 0.018 0.657

S− −0.288 0.394 0.985

R* −0.001 0.007 0.172

R− 0.002 0.137 0.285

Table A5. Fuzzy merit.

Strategic Weight A1 A2 A3 A4 A5

v = 0.5

Qf

l −0.698 −0.675 −0.602 −0.593 −0.627

m 0.000 0.042 0.268 0.301 0.340

r 0.701 0.7013 1.000 0.991 0.991

Crisp

Sj 0.016 0.079 0.364 0.352 0.331

Rj 0.046 0.052 0.118 0.130 0.140

Qj 0.001 0.030 0.234 0.250 0.261

v = 0.7

Qf

l −0.738 −0.708 −0603 −0.590 −0.637

m 0.000 0.043 0.254 0.268 0.987

r 0.739 0.756 1.000 0.987 0.987

Crisp

Sj 0.016 0.079 0.364 0.352 0.331

Rj 0.046 0.052 0.118 0.130 0.140

Qj 0.000 0.034 0.226 0.233 0.235
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Table A5. Cont.

Strategic Weight A1 A2 A3 A4 A5

v = 0.3

Qf

l −0.659 −0.642 −0.601 −0.595 −0.618

m 0.000 0.040 0.283 0.334 0.386

r 0.662 0.670 1.000 0.994 0.995

Crisp

Sj 0.016 0.079 0.364 0.352 0.331

Rj 0.046 0.052 0.118 0.130 0.267

Qj 0.001 0.027 0.241 0.267 0.287

Appendix B. The Analytic Hierarchy Process (AHP)

The steps for applying the analytic hierarchy process (AHP) method can be summa-
rized as follows.

Step 1—Experts Decision Matrix: The decision matrix in the AHP method is de-
termined by pairwise comparison of the n elements (criteria) based on an appropriate
linguistic/numerical scale (see Table A6).

Table A6. Saaty scale.

Importance Intensity Saaty Original Definition [93] Saaty Complete Definition [94]

1 Equal importance Equal importance
2 - Weak importance
3 Moderate importance of one over another Moderate importance
4 - Medium importance
5 Essential or strong importance Strong importance
6 - Strong plus importance
7 Very strong importance Very strong importance
8 - Very, very strong importance
9 Extreme importance Extreme importance

The decision makers assess the relative importance of any two criteria Ci and Cj
by providing a comparison judgment aij, specifying the extent that Ci is preferred/not
preferred to Cj. If the criteria Ci is preferred to Cj then aij > 1. However, if the criteria are
equally preferred, then aij = 1 and if Cj is preferred to Ci then aij < 1. The aij (elements
located above the main diagonal of the decision matrix) can be obtained by n · (n− 1)/2
comparisons. The elements of the main diagonal are equal to 1. The elements below
the main diagonal are reciprocals of the values obtained above the main diagonal, i.e.,
aij = 1/aji.

Step 2—Prioritization method: The additive normalization method [95] is the proce-
dure used in this paper to obtain the priority vector w of the elements (criteria). Priority
vector w is obtained by dividing the elements of each column of the decision matrix by the
sum of that column (i.e., to normalize the column). The next step consists of summing up
the resulting values in each row and dividing the obtained sum by the number of elements
in the row. Equations (A1) and (A2) describe this procedure mathematically.

a′ij = aij/
m

∑
i=j

aiji, j = 1, 2, . . . , m. (A1)

Pi = (1/m)
m

∑
j=1

a′iji, j = 1, 2, . . . , m. (A2)

where aij is the element of the decision matrix; a′ij is the normalized element of the decision
matrix and wj represent the normalized weight of the criterion j.

Step 3—Consistency of the Decision Matrix: The consistency of the priority vector
is calculated by using the harmonic consistency index (HCI) as proposed by [96]. HCI is
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recommended as a consistency measure if the additive normalization method is used, and
it can be calculated using Equation (A3).

HCI =
[HM(s)− n ]· (n + 1)

n·(n− 1)
(A3)

where HM(s) represents the harmonic mean of the sum of the columns of the comparison
matrix and n is the number of elements of the decision matrix.

The division between HCI and the appropriate harmonic random consistency index
(HRI) results in the consistency ratio (CR) illustrated in Table A7 and calculated according
to Equation (A4).

Table A7. Harmonic Random Consistency Index Matrix [96].

Matrix (n) 3 4 5 6 7 8 9 10 15 20 25

HRI 0.550 0.859 1.061 1.205 1.310 1.381 1.437 1.484 1.599 1.650 1.675

HCR =
HCI
HRI

(A4)

If a matrix has a CR up to 0.10 (0.05 for n = 3 and 0.08 for n = 4) then the priority vector
obtained is sufficiently close to the eigenvector matrix to be consistent [96].

Step 4—Aggregation of the experts’ weights: The aggregation of the weights can then
be obtained by using the geometric mean (GM), such as described in Equation (A5), without
compromising the reciprocal relationship [97]. The normalization for the average of the
judgments can be defined according to Equation (A6).

wj =
l

∏
k=1

(
wjk

) 1
l (A5)

=
wj =

wj

∑m
j=1 wj

(A6)

where wj represents the aggregated weight of the criterion j for the l experts and
=
wj is the

aggregated and normalized weight of the criterion j for the l experts.
The procedure described for determining the weights by the AHP method is applied

to determine the weights of the groups of criteria and the weight of each criterion within
the respective group. The overall weight of all criteria used in the evaluation is obtained
using a weighted average.

Appendix C. Fuzzy-VIKOR Method

The VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) method was
first introduced by [98], aiming to present a feasible compromise solution through the
relationship between criteria and alternatives. Initially, the VIKOR method employed the
crisp numbers set. However, as it is relatively complex for the DMs to inform the exact
values of alternatives’ judgments, data can be expressed in linguistic terms. Therefore, to
model uncertainty in human preferences, fuzzy logic can be successfully applied [98].

The VIKOR mathematical model is presented in detail in the work of [98,99], which
includes the group decision aspects extracted from [68]. The essence of the Fuzzy-VIKOR
method is given by Equation (A7) (the fuzzy set and fuzzy number definition are illustrated
in Appendix A).

mcoj

{(
f̃ij
(

Aj
)
, j = 1, . . . , J

)
, i = 1, . . . , n

}
(A7)

where J is the number of feasible alternatives; Aj = {x1, x2, . . .} is the jth alternative
obtained with specific values of system variables x; fij is the value of the criterion function
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for the alternative Aj; n is the number of criteria; mco is referencing the operator of a
MCDM procedure for selecting the best compromise alternative [99]. The step by step for
the VIKOR classification algorithm can be described as follows [99]:

Step 1: Find the ‘best’ f ∗i =
(
l∗i , m∗i , r∗i

)
and the ‘worst’ f−i =

(
l−i , m−i , r−i

)
, being dij

the closest solution to the ideal, with i = 1, 2, . . . , n. According to Equations (A8) and (A9),
the ith function can represent benefit or cost. The minli, maxri, and geometrical mean for
mi can be employed as the average operators [100].

Benefit f ∗i = max fij f−i = min fij (A8)

Cos : f ∗i = min fij f−i = max fij (A9)

Step 2: Compute the distances for each alternative, using Equations (A10) and (A11):

Bene f its → di =

(
f ∗i − fij

)(
r∗i − l−i

) (A10)

Cost → di =

(
fij − f ∗i

)(
r−i − l∗i

) (A11)

Step 3: Compute the values of the fuzzy pondered sum Sj (Sl
j, Sm

j , Sr
j ) and the maxi-

mum fuzzy operator (Rj) (Rl
j, Rm

j , Rr
j ) through pondered normalization (and defuzzification)

of the distance (di) according to Equations (A12) and (A13), where wi represents the weights
of the criteria according to the preference of the DM as the relative importance among the
various criteria.

Sj =
n

∑
i=1

wi · di (A12)

Rj = maxj(wi·di) (A13)

Step 4: Determinate the values of S∗, S−, R∗, R−, from Sj and Rj of the alternatives, where:
S∗ = minjSj, S− = maxjSj,
R∗ = minjRj, R− = maxjRj

Step 5: Compute the values of Fuzzy merit Qj (Ql
j, Qm

j , Qr
j ) for each alternative using

Equation (A14):

Qj =
v·
(
Sj − S∗

)
(S− − S∗)

+
(1− v)·

(
Rj − R∗

)
(R− − R∗)

(A14)

where v is the strategic weight of the majority of criteria or the maximum group utility,
whereas (1− v) is the individual regret weight, with 0.7 > v > 0.3. For v = 0.5, the
prioritization is not declared, as the preferences for maximum benefit are considered when
v > 0.5, and those of minimum regret when v < 0.5.

Step 6: Defuzzification of the values of the Sj, Rj and Qj for each alternative, according
to Equation (A15):

Crisp
(
Sj , Rj , Qj

)
=

(l + 2m + r)
4

(A15)

Step 7: Classification of the alternatives in descendent order, from Qj, Sj and
Rj, respectively.

Step 8: Definition of the compromise solution, selecting the alternative with the lower
Qj. This solution is determined if two conditions were found to be satisfactory:

Condition 1—Acceptable Advantage, according to Equation (A16):
(

Q(A2) −Q(A1)
)

(
Q(Aj) −Q(A1)

)
 ≥ 1/(n− 1) (A16)
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Condition 2—Acceptable Stability: The alternative A1 must also be the best classified
concerning the Sj and/or Rj.

If one of the conditions is not satisfied, a set of compromise solutions must be
proposed, namely:

• Alternatives A1 and A2 if only Condition 2 is not satisfied.
• Alternatives A1, A2, . . . , AM if Condition 1 is not satisfied, with AM given from

Equation (A17):

Q(AM) −Q(A1) < 1/(n− 1) (A17)

Finally, a set of alternatives is adopted as a compromise solution that simultaneously
satisfies Condition 1 and Condition 2.
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