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Abstract: In a distributed generation system, the all-pass-filter phase-locked loop (APF-PLL) is a
commonly used method for grid synchronization. However, the coupling effect between APF-PLL
and current control loop increases the risk of oscillation instability for the inverter in the weak
grid. At present, there are few effective methods to solve the adverse effect of APF-PLL on the
inverter-grid interconnection system in the weak grid. Therefore, a small-signal impedance model
of the inverter considering the dual d-q frame brought by APF-PLL is first established. Then the
reason for the inverter instability caused by APF-PLL in the weak grid is analyzed. Subsequently, an
impedance reshaping method based on a modified first-order filter PLL with a complex coefficient
filter (CCF-MFOF-PLL) and its parameter optimization design method are proposed. Finally, the
experimental results verify that the proposed method widens the stable range of the inverter and
ensures the stable operation of the inverter even with the large grid impedance.

Keywords: grid-connected inverter (GCI); phase-locked loop (PLL); complex coefficient filter (CCF);
weak grid; robustness

1. Introduction

Global environmental pollution and the energy crisis have greatly promoted the
development of distributed generation technology [1,2]. As the power interface between
distributed energy and power grid, the GCI plays a vital role in feeding the renewable
energy output to the grid [3]. In order to control the power delivered to the grid by the
inverter, PLL is often used to obtain the synchronization information of grid voltage [4].
However, the dynamic characteristic of PLL in the weak grid brings an angular deviation
between the control and system d-q frame in the small-signal perturbation state, which
in turn deteriorates the operating environment of the grid-connected system through the
current controller [5]. Meanwhile, with the deepening of the weak grid degree, the coupling
between PLL, current controller and the power grid is gradually strengthened, which brings
adverse influence to the stability of the grid-connected system [6,7].

In current studies, there are two types of methods regarding the stability analysis and
control of GCI in the weak grid. One category is the method considering the influence
of PLL, and the other category is the method without considering the influence of PLL.
To improve the robustness of GCI to the grid, some robust or adaptive control methods
are proposed, such as robust active damping and current control methods [8–10], robust
grid voltage feedforward control methods [11–13], adaptive methods based on feedback
loop [14], and so on. In fact, it is reasonable to ignore the PLL when the research mainly
focuses on the output characteristic of GCI at the high-frequency band, which is much larger
than the bandwidth of PLL. In the case of an extremely weak grid, where the equivalent
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impedance of the grid is large, the frequency point at which oscillation instability occurs
is close to the bandwidth of PLL. At this time, the effect of PLL must be considered when
analyzing the stability of the grid-connected system.

In terms of inverter stability analysis considering the influence of PLL, scholars world-
wide have conducted a lot of research. The influence mechanism caused by the synchronous
reference frame PLL (SRF-PLL) on the inverter stability is studied in [15], which shows that
PLL is required to achieve the strong attenuation characteristic at the low-frequency band
and suppress the adverse effect of PLL. Then a decoupling method combined with the grid
measurement is proposed in [16], which can reshape the input signal of SRF-PLL and thus
weaken the negative phase shift brought by PLL. However, this method relies on the accu-
racy of the impedance measurement, which causes the inverter to become unstable when
the system is under faulty working conditions. In [17], an improved voltage feed-forward
control method for GCI is proposed to reduce the influence of PLL, but the optimal design
principle for the inverter control parameters is not redesigned when the control structure
is altered. A conservative design method for PLL parameters with the bandwidth and
system phase margin as constraints is proposed in [18], which improves inverter stability,
but this is at the expense of current dynamic tracking performance. Then two impedance
reshaping methods in the q-axis for the GCI are proposed in [19,20]. However, the specific
stability region extension scope of these methods is not clear. In [21], the influence of the
proportional gains of SRF-PLL and dc-link voltage loop on the inverter stability is analyzed,
based on which an improved voltage feedback control method is proposed. However,
this method increases the complexity of the system, which in turn destroys the dynamic
response speed for GCI to a certain extent. In [22], the stability margin of the inverter
is improved by designing a phase angle compensation link of SRF-PLL, but this method
cannot adapt to the wide frequency variation in the grid impedance and it also increases
the complexity of the system control. In [23], three types of improved SRF-PLL structures
based on the pre-filter are proposed to suppress the adverse effect of SRF-PLL on inverter
stability. The analysis shows that the CCF-based SRF-PLL has better dynamic characteristic
than the band-pass and low-pass filter-based SRF-PLL, which also require no additional
phase compensation link. Based on this research, in this paper the CCF-based pre-filter
structure is extended to the single-phase APF-PLL to study its optimization role on the
operating characteristic of GCI and its adaptation to grid impedance in the weak grid.

With the above analysis, a small-signal control model for a single-phase LCL-type
inverter considering the influence of APF-PLL is taken as the basis for the research. The
GCI with an APF-PLL based on CCF is obtained by attaching CCF to the pre-stage of
APF-PLL. On the one hand, the addition of the CCF can reshape the output impedance of
GCI, thus improving the output characteristic of the inverter in low-frequency band and its
adaptability to the weak grid. On the other hand, the CCF as the pre-stage structure is more
conducive to the extraction of the grid fundamental frequency by the back-stage APF-PLL
in the case of grid impedance perturbation, which in turn improves the stability of the GCI
in the weak grid. In addition, a parameter optimization design method for CCF-MFOF-PLL
is given, which simultaneously takes into account the constraints of the performance for
PLL and the stability domain for GCI, thus enhancing the adaptability of GCI to the weak
grid. Finally, the experimental results verify the correctness of the theoretical analysis in
this paper.

The rest of this paper is organized as follows. In Section 2, a small-signal impedance
model and stability of the inverter are analyzed. Then, an impedance reshaping method
for GCI based on CCF-MFOF-PLL and its parameter design method are proposed in
Section 3. Moreover, the effectiveness of the proposed control method is verified through
experimentation in Section 4. Finally, the conclusion is drawn in Section 5.
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2. Stability Analysis for GCI Considering MFOF-PLL
2.1. Small-Signal Impedance Model of the Inverter under Multiple Perturbation

Figure 1a shows the control block diagram of the single-phase LCL-type grid-connected
inverter, where L1 denotes the inverter-side inductor, C denotes the filter capacitor, L2 de-
notes the grid-side inductor, and Hi1 denotes the active damping factor. In this paper, a
modified first-order filter (MFOF) proposed in [24–26] is chosen as the quadrature signal
generator (QSG) of the inverter, which is a type of improved APF-PLL. The control diagram
of MFOF-PLL is shown in Figure 1b. To improve the stability of the inverter in the weak
grid, the harmonic resonance controller Gc(s) with phase compensation link proposed
in [27] is used as the current controller for the inverter.
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Figure 1. Structure and model of single-phase grid-connected inverter: (a) the control block diagram
of the single-phase LCL-type grid-connected inverter; (b) the control diagram of MFOF-PLL.

Due to the dynamic characteristic of the PI controller in MFOF-PLL, there is an angular
deviation ∆θ between the control d-q frame and system d-q frame in the small-signal
perturbation state. Considering the effect of small-signal perturbation, the variables in dual
d-q frame can be expressed as [28]:
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where, the variables in the system d-q frame and control d-q frame are defined as xs and xc,
respectively. The symbol ∆x denotes the small-signal variable in d-q frame, HPI(s) denotes
the transfer function of PI controller in MFOF-PLL, and UPCC0 is the voltage amplitude at
PCC point.

Through the above analysis, the small-signal control block diagram of the inverter
considering the influence of MFOF-PLL can be obtained as follows (Figure 2).

Energies 2022, 15, x FOR PEER REVIEW 4 of 19 
 

 

PI

PI

PI

PI

( )
0

( )
= +

( )
0 -

( )

s

q

s c s

d d PCCdPCC

s c ss
q q PCCqd

PCC

H s x

x x us H s U

x x uH s x

s H s U

 
 

       + 
                   

+  

0

0

 (1) 

where the variables in the system d-q frame and control d-q frame are defined as xs and xc, 

respectively. The symbol x  denotes the small-signal variable in d-q frame, PI ( )H s  de-

notes the transfer function of PI controller in MFOF-PLL, and PCCU
0  is the voltage ampli-

tude at PCC point. 

Through the above analysis, the small-signal control block diagram of the inverter 

considering the influence of MFOF-PLL can be obtained as follows. 

In Figure 2, the transfer functions for each link are shown as follows: 

PI

PI

PI

PI

0

0

s

q

PCC

s

d

PCC

H s i

s H s U

H s i

s H s U

 
 

+ =
 
 −
 + 

0

0

PLLi g

0

0

( )

( )
H (s)

( )

( )

 (2) 

PI

PI

PI

PI

0

0

s

q0

PCC0

s

d 0

PCC0

H s m

s H s U

H s m

s H s U

 
 

+ =
 
 −
 + 

PLLm

( )

( )
H (s)

( )

( )

 (3) 

where, 
s

d0i  and s

q0i  denote the steady state value of the inverter output current in d-q 

frame, respectively, and s

q0m  and 
s

d0m  denote the steady state value of modulation sig-

nal in the d-q frame, respectively. Gc(s), GX1(s) and GX2(s) denote the second-order diagonal 

matric with Gc(s), GX1(s) and GX2(s) as elements, respectively. The expression of GX1(s) and 

GX2(s) can be written as: 

1 2
1 1

( )
( )

1

PWM c
X

i

k G s
G s

s L C+sCH
=

+
 

(4) 

2
1 1

2 3 2
1 2 2 1 1 2

1
( )

( )

i
X

i

s L C sCH
G s

s L L C+s L CH s L L

+ +
=

+ +
 

(5) 

+

-

+

r

gdqi
gdq

ci c

dqm s

dqm
inudq

su
gdq

si-

-

-

+

s

PCCdqu

PLLigH (s)

PLLmH (s)

cG (s) 1G (s) 2G (s)

 

Figure 2. The small-signal control block diagram of the inverter considering the influence of MFOF-

PLL. 

Analyzing Figure 2, the small-signal impedance of the inverter can be achieved as 

[29]: 

 
1

c 1 2 2 PLLig c 1 2 PLLm 1 2X X X X X X X

−

 =  inv_dq
Z I+G G G G +H G G G +H G G

 
(6) 

Figure 2. The small-signal control block diagram of the inverter considering the influence of MFOF-PLL.

In Figure 2, the transfer functions for each link are shown as follows.

HPLLig(s) =

0
HPI(s)isq0

s+HPI(s)UPCC0

0 − HPI(s)isd0
s+HPI(s)UPCC0

 (2)

HPLLm(s) =

0
HPI(s)ms

q0
s+HPI(s)UPCC0

0 − HPI(s)ms
d0

s+HPI(s)UPCC0

 (3)

where, is
d0 and is

q0 denote the steady state value of the inverter output current in d-q frame,
respectively, and ms

q0 and ms
d0 denote the steady state value of modulation signal in the d-q

frame, respectively. Gc(s), GX1(s) and GX2(s) denote the second-order diagonal matric with
Gc(s), GX1(s) and GX2(s) as elements, respectively. The expression of GX1(s) and GX2(s) can
be written as:

GX1(s) =
kPWMGc(s)

s2L1C+sCHi1 + 1
(4)

GX2(s) =
s2L1C + sCHi1 + 1

s3L1L2C+s2L2CHi1 + s(L1 + L2)
(5)

Analyzing Figure 2, the small-signal impedance of the inverter can be achieved as [29]:

Zinv_dq = [I + GcGX1GX2]
[
GX2+HPLLigGcGX1GX2+HPLLmGX1GX2

]−1 (6)

where, I denotes the unit matrix. Rectifying Equation (6), the d-axis and q-axis impedance
of the inverter considering the influence of MFOF-PLL can be obtained as: Zdd_PLL = 1+Gc(s)GX1(s)GX2(s)

GX2(s)

Zqq_PLL = [1+Gc(s)GX1(s)GX2(s)]
GX2+HPLLigqGc(s)GX1GX2+HPLLmqGX1GX2

(7)

2.2. Stability Analysis of the Inverter Considering the Influence of MFOF-PLL

Analyzing Equation (7), there are two factors associated with the PLL in the denominator
of the inverter q-axis output impedance expression Zqq_PLL, which are HPLLigqGc(s)GX1GX2
and HPLLmqGX1GX2, respectively. The main reason for this is that only the q-axis voltage at
the PCC point is fed back to the reference current and modulation voltage through the loop
HPLLig(s) and HPLLm(s) when considering the effect of MFOF-PLL on the control model
of GCI according to Figure 2. As a result, two additional asymmetric negative feedback
loops associated with MFOF-PLL are added to the small-signal control block diagram of
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the inverter, which changes the original output characteristic of the inverter impedance
and reduces the adaptability of GCI to the weak grid.

In order to further analyze the influence brought by MFOF-PLL on the inverter stability,
the criterion for the stability of the inverter-grid interconnection system is given first.
According to the impedance stability theory, the PM of the grid-connected system can be
expressed as [30,31]:

PM = 180◦ +∠Zinv(j2π fc)−∠Zg(j2π fc) (8)

where, fc denotes the intersection frequency of the magnitude–frequency characteristic
curve between inverter impedance Zinv and grid impedance Zg.

To facilitate the analysis, a single-phase GCI with a rated power of 5 kW is used for
further illustration. When the short-circuit ratio (SCR) is taken as 3, 5 and 10, respectively,
the corresponding grid equivalent inductance Lg is 10 mH, 6 mH and 3 mH, respectively.
The bode plot of the inverter impedance, with and without considering MFOF-PLL, can
be obtained from Equation (7) as shown in Figure 3, where Zqq_PLL denotes the inverter
impedance considering MFOF-PLL and Zqq denotes the inverter impedance without con-
sidering MFOF-PLL. The parameter design method of the current controller proposed
in [26] is referenced in this paper, which enables the stability margin to be always larger
than 20◦ at the intersection frequency band between inverter and grid impedance, when
the influence of MFOF-PLL is ignored.
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It can be observed from Figure 3 that the low-frequency characteristic of the inverter
impedance changes significantly when the influence of MFOF-PLL is considered. The main
reason is that the MFOF-PLL brings an additional term in the denominator of the inverter
impedance model, which results in a significant drop in the phase of the inverter output
impedance within the bandwidth of MFOF-PLL and deteriorates the robustness of the
system. When SCR = 5, the system is in a state of critical stability. Additionally, when
the SCR is further decreased, the inverter cannot maintain stable operation. Therefore,
the addition of MFOF-PLL in the weak grid significantly increases the risk of inverter
oscillation instability.

The above analysis shows that the GCI can always maintain a large PM without
considering the effect of MFOF-PLL when the grid impedance Zg changes over a wide
frequency band. Therefore, suppressing the function of two asymmetric negative feedback
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loops HPLLig(s) and HPLLm(s) brought by MFOF-PLL will help maintain the stability of the
inverter-grid interconnected system in the weak grid.

3. Inverter Impedance Reshaping Method Based on APF-PLL
3.1. Improved MFOF-PLL

By combining Equation (7) with the above analysis, it is necessary to reduce the role
of the additional term brought by MFOF-PLL on the inverter impedance. Specifically,
the impedance reshaping method can be used to make the output characteristic of the
additional term brought by MFOF-PLL similar to a negligible or real number term in the
low-frequency band. Analyzing Equation (7), all the factors in Zqq_PLL except HPLLigq
and HPLLmq are determined by the own control system of GCI, which cannot be adjusted
arbitrarily. Therefore, to improve the stability margin, the adverse influence brought by
MFOF-PLL can only be suppressed by adjusting the output characteristic of the equivalent
transfer function related to PLL. To this end, an impedance reshaping method based on
improved APF-PLL is proposed in this section.

In [24], the MFOF-PLL is obtained by adding one freedom degree to the APF-PLL as
shown in Figure 1b. It is observed that the QSG of MFOF-PLL is a single-input, dual-output
control structure. According to Figure 1b, the transfer function can be deduced as: D(s) = vα(s)

v(s) = 1

Q(s) = vβ(s)
v(s) = ω̂−ks

kω̂+s

(9)

where, ω̂ is the output angular frequency of PLL. When the angular frequency of the grid
voltage v(s) is equal to ω̂, the output signal of the MFOF-PLL is a pair of quadrature signals
with equal amplitude and 90◦ phase difference. Figure 4 shows the dynamic response curve
of Q(s) for different values of k in Equation (9), and it can be observed that the dynamic
response of the MFOF-PLL is almost consistent when k changes.
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In the weak grid, the intersection frequency of the magnitude–frequency characteristic
curve between the inverter impedance and grid impedance is usually in the range of several
hundred Hz. In order to suppress the influence of the additional term brought by PLL
on the stability of the inverter, the PLL needs to have the ability to adequately attenuate
the signal in the range of at least 100–600 Hz. Therefore, a modified first-order filter PLL
with complex coefficient filter (CCF-MFOF-PLL) is proposed in this paper as shown in
Figure 5. The complex coefficient filter (CCF) shows amplitude attenuation characteristics
in the intersection frequency band of magnitude–frequency characteristic curve between
the inverter impedance and grid impedance. Therefore, the adverse influence brought by
MFOF-PLL can be effectively suppressed by using the CCF as a prefilter link.
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Figure 6 shows the control diagram of CCF, whose transfer function can be expressed as:

GCCF =
ωc

s − jω̂ + ωc
(10)

where, ωc is the cut-off angle frequency of CCF.
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Figure 6. Control diagram of CCF.

Analyzing Figure 5, the transfer function of QSG of CCF-MFOF-PLL can be obtained as: D′(s) = v′α(s)
v(s) = ωc

s−jω̂+ωc

Q′(s) =
v′β(s)
v(s) = ωc(ω̂−ks)

(s−jω̂+ωc)(kω̂+s)

(11)

Selecting the same variation range of the parameter k, bode plot of MFOF-PLL before
and after improving is shown in Figure 7. It can be observed from Figure 7a that before the
improvement, Q(s) is a high-pass filter when the value of k is large. At this time, it has no
rejection capability for the input harmonic component, thus further amplifying the adverse
influence brought by PLL on the stability of the inverter. Even if k is small, the amplitude
of MFOF-PLL is still larger than −5 dB at the harmonic frequency band, which indicates
that the method of adjusting the parameter k still does not effectively suppress the flow
of harmonic into MFOF-PLL. Figure 7b shows the bode plot of Q′(s). It can be observed
that the magnitude–frequency characteristic curve of Q′(s) at high frequency band is a
straight line with a slope larger than −20 dB/dec. In comparison with Figure 7a, the
proposed PLL is more adaptable under the harmonic grid. At the same time, the proposed
CCF-MFOF-PLL has stronger amplitude attenuation ability in crossover band between the
inverter and grid impedance, which can weaken the role of two additional asymmetric
negative feedback loops brought by MFOF-PLL and thus suppress the adverse effect of
MFOF-PLL on inverter stability.
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3.2. Parameter Optimization Design Method for CCF-MFOF-PLL

It is worth noting that the parameter of the PI controller in PLL not only directly affects
its phase-lock performance, but also determines the stability of the inverter-grid intercon-
nection system. For this purpose, the parameter optimization design method of proposed
CCF-MFOF-PLL is given in this section. The small-signal model of CCF-MFOF-PLL can be
deduced from Figure 5, which is shown in Figure 8.
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Figure 8. Small-signal model of CCF-MFOF-PLL.

Analyzing Figure 8, the open-loop transfer function of CCF-MFOF-PLL can be obtained as:

Gol(s) =
θ′(s)
∆θ(s) = Vn

ks+(k2+1)ω0
2ks+(k2+1)ω0

ωc
s+ωc

(kp +
ki
s )

1
s

= Vn
0.5(s+ k2+1

k ω0)

s+ k2+1
2k ω0

ωc
s+ωc

kps+ki
s2

(12)

To simplify the subsequent analysis, the expression of ω1 in this paper is defined as:

ω1 =
k2 + 1

2k
ω0 (13)
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Then, Equation (12) can be rewritten as:

Gol(s) =
θ(s)

∆θ(s)
= Vn

0.5(s + 2ω1)

s + ω1

ωc

s + ωc

kps + ki

s2 (14)

It can be found from references [24,26] that for MFOF-PLL, the value range of k is
usually chosen to be

[
1√
2

,
√

2
]
. At this time, the value range of ω1 is [314.16 , 333.22]

according to Equation (13). In order to lower the order of Gol(s), ωc is chosen to be equal to
2ω1. Then, zero-pole pair elimination can be achieved in (14) and the value range of ωc can
be obtained, which is [628.32 , 666.44]. Then Equation (14) can be simplified as:

Gol(s) =
Vnω1(kps + ki)

(s + ω1)s2 (15)

Figure 9 shows the bode plot of Q′(s) with the change in ωc, where ωc increases
from 628.32 to 666.44. It can be observed that the bode plot of Q′(s) changes less when
ωc is varied within the chosen range. At this time, CCF-MFOF-PLL can maintain strong
harmonic rejection capability, which proves the reasonableness of the above simplification.
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Gol(s) in Equation (15) is a typical second-order system. According to the symmetric
optimum method [32], the cut-off angle frequency of the system can be obtained as:

ω′
c =

√
ω1ki
kp

(16)

Combining Equations (15) and (16), the following Equation (17) can be obtained from
the definition of cut-off angle frequency.

|Gol(jω′
c)| =

Vnω1

√
ki

2 + ω′
c
2kp2

ω′
c
2
√

ω′
c
2 + ω1

2
= 1 (17)

Solving Equation (17), ω′
c can be also written as:

ω′
c = Vnkp (18)
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Combining Equation (16)–(18), the proportional and integral coefficient of CCF-MFOF-PLL
can be obtained as: kp = ω′

c
Vn

= 1
Vn

√
ω1ki

kp

ki =
Vn

2kp
3

ω1
=

ω′
c

2kp
ω1

(19)

It is not difficult to observe from Equation (19) that ki is proportional to kp
2. To

facilitate the analysis, the constant m is added in this paper. Then the following parameter
relationship can be obtained as:

ki = mkp
2 (20)

In this paper, two constraints are considered in the process of parameter design. Firstly,
the phase margin is considered, which can be obtained from Equation (15) as:

PMPLL = arctan(
ω′

ckp

ki
)− arctan(

ω′
c

ω1
) = arctan(

Vn
2 − m2

2Vnm
) (21)

According to Equation (21), the relationship curve between the phase margin of
CCF-MFOF-PLL and m is shown in Figure 10. Considering the phase margin of the system
from 30

◦
to 50

◦
, the range of m can be obtained as [113.195,179.556].
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Subsequently, considering that the q-axis voltage flowing into PLL contains mainly
the 6kth (k = 1, 2, . . . ) harmonic [33], the second parameter constraint is obtained in
this paper, which is the perturbation rejection capability of the CCF-MFOF-PLL for the
6th harmonic voltage. From Equation (15), the amplitude of the open-loop magnitude–
frequency characteristic curve of PLL at the 6th harmonic frequency can be expressed as:

T = 20lg|Gol(jωa)| = 20lg|
Vn

3kp
2
√

m2kp2 + ωa2

ωa2
√

mωa2 + kp2Vn4
| (22)

where, ωa is the 6th harmonic angle frequency. Considering the value range of T as
[−20, −40] dB, the relationship curve between kp and m can be obtained as shown in Figure 11.
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3.3. Stability Analysis of the Inverter after Impedance Reshaping 

The inverter impedance can be reshaped by using proposed CCF-MFOF-PLL. At this 

time, the equivalent transfer function of PLL is modified by multiplying Gccf(s) before the 

Figure 11. Relationship curve between kp and m.

According to the above two constraints, the value range of kp is shown in the shade of
Figure 11. It is worth noting that the effect of the PLL parameters on the output characteristic
of GCI system is also an essential constraint. Therefore, it is necessary to further optimize
the PLL parameter design method based on the above analysis.

In order to analyze the effect of m and kp on the inverter, the bode plot of Z′
qq_PLL(s)

with the change in m and kp is shown as Figure 12. It can be observed from Figure 12a that
when m changes and kp is constant, the stability domain of the inverter-grid interconnection
system is further expanded in low-frequency band with increasing m. Similarly, it can be
observed from Figure 12b that when kp changes and m is constant, the phase of Z′

qq_PLL(s)
in low-frequency band increases with decreasing kp and the stability domain of the inverter-
grid interconnection system also is expanded. Moreover, comparing Figure 12a,b, the effect
of kp on the inverter output characteristic in the weak grid is greater than that of m. In
summary, the grid-connected system can maintain a wider stability range with the larger
m and smaller kp in the constraint region of Figure 11. Therefore, combining with the
above analysis, point A in Figure 11 is chosen. According to Equation (20), ki = 3.94 can be
obtained when kp = 0.15 and m = 175 are chosen.
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3.3. Stability Analysis of the Inverter after Impedance Reshaping

The inverter impedance can be reshaped by using proposed CCF-MFOF-PLL. At
this time, the equivalent transfer function of PLL is modified by multiplying Gccf(s) be-
fore the original HPLLig(s) and HPLLm(s). In order to analyze the improvement effect of
CCF-MFOF-PLL on the inverter stability, the transfer function from us

PCCdq to irgdq is dis-
cussed as an example. Figure 13 shows the bode plot of the transfer function from us

PCCdq
to irgdq before and after the improvement. It can be observed that due to the addition of
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CCF, the MFOF-PLL has the stronger amplitude attenuation ability in the frequency band
above 100 Hz. At this time, the additional term brought by MFOF-PLL in the inverter
impedance denominator can be considered as a negligible factor, which proves that the
proposed impedance reshaping method based CCF-MFOF-PLL can suppress the adverse
influence brought by MFOF-PLL on inverter stability.

The bode plot of the inverter and grid impedance after impedance reshaping is shown
in Figure 14. It can be observed that the instability risk of the inverter is significantly
reduced after using CCF-MFOF-PLL in the weak grid. The proposed CCF-MFOF-PLL
raises the phase of the inverter impedance in low-frequency band, thus expanding the
stability domain of the inverter. It can be observed from Figure 14 that the stable frequency
band of the inverter-grid interconnection system is enlarged from f 2 > 261 Hz to f 1 > 91 Hz.
In addition, the inverter has a stability margin of 12◦ even when SCR = 3 after impedance
reshaping. In other words, even if the SCR is dropped to 3 or lower, the inverter can still
maintain the strong robustness.
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It is not difficult to understand the effectiveness of the proposed impedance reshaping
method from the above analysis. On the one hand, the role of two additional asymmetric
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negative feedback loops brought by MFOF-PLL can be suppressed, and the additional term
concerning MFOF-PLL in the inverter impedance can be ignored after using the proposed
CCF-MFOF-PLL, which in turn reshapes the inverter output characteristic in low-frequency
band and raises the inverter impedance phase. On the other hand, since the CCF has a
strong capability of the fundamental component extraction, the method of placing it in
MFOF-PLL as a pre-filtering link can significantly improve the extraction capability of it
for fundamental frequency signal in grid impedance disturbance state, thus improving the
adaptability of the inverter to the grid equivalent inductance in the weak grid.

4. Experimental Verification

To further verify the effectiveness of the proposed impedance reshaping method
based CCF-MFOF-PLL, the experimental platform of the GCI is built based on a real time
digital simulation system (RTDS) as shown in Figure 15. The control link of the inverter
is implemented on the TMS320F28335/Spartan6XC6SLX16 DSP + FPGA. The relevant
parameters of the of the CCF-MFOF-PLL and GCI are shown in Table 1.
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Table 1. Relevant parameters of the CCF-MFOF-PLL and GCI.

Symbol Parameter Value

Po Rated power 5 kW
f 1 Fundamental frequency 50 Hz
C Filter capacitors 10 µF
kp Proportion coefficient of CCF-MFOF-PLL 0.15
ki Integral coefficient of CCF-MFOF-PLL 3.94
kcp Proportion coefficient of current regulator 10
kcr Resonance coefficient of current regulator 600
f sw Switching frequency 15 kHz
fs Sampling frequency 15 kHz

Hi1 Active damping factor 10
L1 Inverter-side inductance 1 mH
L2 Grid-side inductance 1 mH

Firstly, to verify the adaptability of the proposed control method in the weak grid, the
experimental waveform of the current and voltage at PCC for different SCR (before and
after impedance reshaping) are shown in Figures 16 and 17, respectively. When MFOF-PLL
is adopted in a strong grid, the inverter can operate stably. However, when the grid
equivalent inductance Lg increases to 10 mH, the THD of the current and voltage at PCC is
high and the inverter cannot operate stably. On the contrary, when the proposed impedance
reshaping method based on CCF-MFOF-PLL is adopted, the inverter can operate stably
even when SCR is decreased to 3 and the THD of the inverter output current is 2.32%,
which meets the grid-connected power quality standard.
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Figure 16. Experimental waveform of current and voltage at PCC for different SCR before imped-

ance reshaping: (a) Lg = 0 (SCR > 10); (b) Lg = 10 mH (SCR = 3). 
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Figure 16. Experimental waveform of current and voltage at PCC for different SCR before impedance
reshaping: (a) Lg = 0 (SCR > 10); (b) Lg = 10 mH (SCR = 3).
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Figure 17. Experimental waveform of current and voltage at PCC for different SCR after impedance
reshaping: (a) Lg = 0 (SCR > 10); (b) Lg = 10 mH (SCR = 3).

Subsequently, to verify the dynamic performance of the proposed control method,
the experimental waveform of the current and voltage at PCC when the reference current
changes abruptly is shown in Figure 18. It can be observed that after impedance reshaping,
the inverter can operate stably when the reference current is set either from half load to full
load, or from full load to half load. At the same time, the inverter can enter the stable state
within 0.005 s at the instant of reference current jump, and the dynamic response of the
system is fast, thus verifying that the proposed method can effectively solve the problem
of system robustness degradation and oscillation instability caused by MFOF-PLL in the
weak grid.
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Figure 18. Experimental waveform of current and voltage at PCC when the reference current 
changes abruptly: (a) from half load to full load; (b) from full load to half load. 

Figure 18. Experimental waveform of current and voltage at PCC when the reference current changes
abruptly: (a) from half load to full load; (b) from full load to half load.

In addition, to verify the dynamic characteristics of the proposed impedance reshaping
method when the grid parameter changes, the experimental waveform of current and
voltage at PCC when SCR changes is shown in Figure 19. It can be observed that the
inverter gradually destabilizes when the grid changes from the strong grid to the weak grid
before impedance reshaping. When the proposed CCF-MFOF-PLL is used, the inverter can
quickly resume stable operation and maintain a fast dynamic response when SCR changes,
which verifies that the proposed impedance reshaping method broadens the adaptation
range of the inverter to the grid impedance.
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5. Conclusions 

Figure 19. Experimental waveform of current and voltage at PCC when SCR changes: (a) with
MFOF-PLL; (b) with CCF-MFOF-PLL.

Finally, to verify the effectiveness of the proposed control method under the harmonic
grid, Figure 20 shows the experimental waveform of current and voltage at PCC after
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injecting harmonic voltage, in which the 5th and 7th harmonic content of both are 0.1 pu,
and Lg is set to 10 mH. It can be observed that when switching the PLL from MFOF-PLL
to CCF-MFOF-PLL, the inverter can resume stable operation and the THD of current at
PCC is 2.62% at this time, which meets the grid-connected standard. The above analysis
indicates that the proposed impedance reshaping method is still highly adaptable even
under the harmonic grid.
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to CCF-MFOF-PLL, the inverter can resume stable operation and the THD of current at 
PCC is 2.62% at this time, which meets the grid-connected standard. The above analysis 
indicates that the proposed impedance reshaping method is still highly adaptable even 
under a harmonic grid. 
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Figure 20. Experimental waveform of current and voltage at PCC after injecting harmonic voltage.

5. Conclusions

By establishing the small-signal impedance model for GCI, the adverse effect of
MFOF-PLL on the stability for the inverter-grid interconnection system in the weak grid is
revealed. Then the existing three-phase SRF-PLL structure based on pre-filter is extended to
the single-phase APF-PLL application area in this paper, thus obtaining the CCF-MFOF-PLL
structure. It can reshape the impedance of the inverter with APF-PLL and improve the
stability margin of the grid-connected system, even when the grid equivalent inductance is
large according to the impedance stability criterion. Furthermore, a parameter optimization
design method for CCF-MFOF-PLL considering the performance of PLL and the stability
domain for the inverter is given, which ensures the performance of the PLL under the
distorted grid and the stability of inverter-grid interconnection system. The experimental
results verify the correctness and effectiveness of the proposed method. It is worth noting
that how to obtain the parameter of impedance reshaping method based on APF-PLL
by building expressions or quantifying indexes will be the further work to be explored
in the future.
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Abbreviations
The following abbreviations are used in this paper:

PLL Phase-locked loop
SRF-PLL Synchronous reference frame phase-locked loop
APF-PLL All-pass-filter phase-locked loop
CCF Complex coefficient filter
MFOF Modified first-order filter
MFOF-PLL Modified first-order filter phase-locked loop
CCF-MFOF-PLL Modified first-order filter phase-locked loop with complex coefficient filter
GCI Grid-connected inverter
QSG Quadrature signal generator
PM Phase margin
PCC Point of common coupling
THD Total harmonic distortion
SCR Short-circuit ratio
RTDS Real time digital simulation system
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