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Abstract: The accuracy and stability of short-term photovoltaic (PV) power prediction is crucial for
power planning and dispatching in a grid system. For this reason, the multi-resolution variational
modal decomposition (MVMD) method is proposed to achieve multi-scale input features mining for
short-term PV power prediction. Here, the MVMD combined with Spearman extracts correlation
features of the weather data. An equilibrium optimizer (EO) is integrated with MVMD to achieve
optimal values of the long short-term memory (LSTM) parameters. Firstly, the correlation of input
features is determined and selected by Spearman. The MVMD model is used to mine the high
correlation features of solar radiation and conduct cross-correlation analysis to extract input feature
components. Secondly, the similar weather days of the sample set are classified to ensure a good
adaptability in different weather situations. Finally, the high correlation features are introduced
into the photovoltaic power prediction model of EO optimized LSTM. Performance analysis using
actual output power data from a PV plant shows that the proposed MVMD feature extraction method
can effectively mine correlation features to achieve an optimized dataset under different seasons.
Compared with the gray wolf and particle swarm optimization algorithms, the proposed model has a
better optimization performance in a low discrimination of input feature decomposition components
and low correlation with output power.

Keywords: solar energy; short-term PV power forecast; multiresolution variational modal decomposition
(MVMD); feature extraction; equilibrium optimizer (EO); long short-term memory (LSTM)

1. Introduction

With the increasing demand for energy globally, the power generation from photo-
voltaic (PV) power has been extensively exploited around the world. However, its random,
fluctuating and intermittent characteristics can result in a significant impact on the power
system’s stability and quality when it connects to the large-scale grid [1,2]. For this reason,
the prediction of PV power generation has been a hot research topic [3]. In terms of time
scale, the prediction can be classified into ultra-short, short-term, medium and long term.
Among them, medium and long term forecasts generally require a longer period of time
for data collection, used mainly for grid planning, design and dispatch. Ultra-short and
short term forecasts can be used particularly for real-time grid dispatch, which is of great
importance for ensuring safe and stable grid operation.

Traditional short-term PV power forecasting studies applied time-series forecasting
methods for numerical weather data as the input variables and generated power data
for the output variables. For instance, references [4,5] used autoregressive moving av-
erage model (ARMA) and autoregressive integrated moving average model (ARIMA)
for power prediction. Unfortunately, directly taking environmental factors and historical
data as the input variables may make the model have a lower applicability and robust-
ness. In reference [6], a support vector machine (SVM) regression model was established
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using temperature, dew point, humidity, wind speed, time and historical photovoltaic
power data as the inputs. The one-hour ahead prediction was realized under unknown
irradiance in two weather conditions, fair and cloudy. On the other hand, reference [7]
analyzed the influencing PV output power factors using the Pearson correlation coefficient
method. The results indicated that solar irradiance, ambient temperature, wind speed
and humidity were significantly correlated to PV predictions. In reference [8], the PV
power and its influencing factors were decomposed by wavelet, and the decomposition
results were used as the input variables to establish an artificial neural network (ANN) PV
power prediction model. Apart from wavelet transform, variational modal decomposition
(VMD)was widely applied in PV power signal decomposition to overcome the modal
aliasing phenomenon [9]. Reference [10] used VMD to decompose photovoltaic power data,
thus improving the grasshopper algorithm (GOA)-nuclear limit learning machine (KELM)
(GOA-KELM). However, the single-layer VMD has insufficient features for mining long-
time data, and KELM has some limitations in the correlation of time series. Refs. [11,12]
proposed a wavelet packet decomposition (WPD) model to overcome the shortcomings of
single-layer decomposition, but the adaptability was still insufficient due to the inherent
limitations of wavelet transform.

In recent years, deep learning algorithms, represented by LSTM, have been widely ap-
plied in the PV power prediction [13]. Refs. [14,15] combined particle swarm optimization
(PSO) and gray wolf optimizer (GWO) algorithms to optimize LSTM parameters in short-
term PV power prediction. However, PSO is prone to produce premature convergence and
fall into a local optimum solution. Moreover, GWO may present low accuracy and slow
convergence speed when there are many optimization-seeking parameters involved. On the
other hand, EO proposed by Afshin Faramarzi et al. in 2019 has superiority over traditional
intelligent algorithms on several test functions [16]. In reference [17], the EO algorithm was
employed to solve the optimal tide calculation problem of hybrid AC–DC grids, and the
calculation results on four objectives such as generation cost, pollutant emission, network
loss and voltage offset showed that the EO algorithm has a better optimization performance
than the differential evolution algorithm and PSO algorithm.

2. Data Preprocessing Based on MVMD for Feature Extraction

Traditional decomposition algorithms such as fast Fourier decomposition (FFT), em-
pirical mode decomposition (EMD), composite empirical mode decomposition (EEMD),
wavelet packet decomposition (WPD), variational mode decomposition (VMD), etc., may
suffer from dividing the spectrum interval according to only local extreme spectrum
points [8–12]. Apart from overcoming the shortcomings as above, the proposed MVMD
decomposition model can reduce the interference of large amplitude clutter components
caused by strong background noise in the spectrum, and suppress the problem of mode
aliasing. Combined with the multi-resolution analysis architecture, it can also avoid exces-
sive dispersion of effective information, and achieve a more flexible and detailed division
of the entire spectrum interval of the signal.

Firstly, Spearman correlation analysis method is used to calculate the correlation
coefficient between each influencing factor and photovoltaic output power, screen the
influencing factors with high correlation coefficient and then decompose the influencing
factors through MVMD to obtain the characteristic components, so as to increase the number
of input characteristics. Finally, K-means is used to establish corresponding training sets
for different types of weather.
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2.1. Spearman Correlation Analysis Method

The Spearman correlation analysis method is applied to determine the correlation
between the characteristics of non-linear, non-normal distribution PV dataset. It can be
calculated as follows:

ρ =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(1)

where n is the sample size; ρ is the correlation coefficient; x, y are the corresponding
elements in the two variables. In practical applications, the link between the variables is
irrelevant, which can be calculated in a simple step:

rs = 1−
6

n
∑

i=1
d2

i

n3 − n
(2)

di = R(xi)− R(yi) (3)

where rs is the rank correlation coefficient; R(xi) and R(yi) are the ranks of xi and yi,
respectively; di is the position after the ranking. The strength of correlation is determined
by the value of rs: the closer it is to 0, the weaker the correlation is.

2.2. Fundamentals of MVMD Algorithm

The MVMD algorithm takes VMD as the core decomposition algorithm and combines
with multi-resolution decomposition architecture. The number K of VMD decomposition at
each layer is a fixed value (K = 2) to prevent effective information from being too scattered.
To balance computation amount and computation speed, the number of decomposition
layers is set as 3 (L = 3). As shown in Figure 1, H1 and L1 are decomposition components
using VMD decomposition in the first layer of the original signal, and then H1 and L1 are
decomposed to obtain HH1, HL1, LH1 and LL1 by VMD again. Components obtained by
VMD decomposition of each layer is used as input signals of the next layer decomposition,
where K value of each decomposition is set as 2. Therefore the original signal S can be
expressed as:

S = IF1 + IF2 + IF3 + IF4 + IF5 + IF6 + IF7 + IF8 (4)
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In this paper, the solar radiation, which has the highest correlation with the output
power, is taken as the decomposition object and its wave characteristics are further exca-
vated. Meanwhile, in order to avoid feature redundancy, the Spearman correlation analysis
method is adopted to evaluate the correlation and cross-correlation of the decomposition
components obtained by MVMD (Equations (1) and (2)) and screen them. Finally, in or-
der to further improve the prediction accuracy, K-means is used to carry out similar day
clustering and establish datasets corresponding to different types of weather.

3. LSTM Power Prediction Model Based on EO Algorithm

The EO belongs to the meta heuristic optimization algorithm, and it is simple, inde-
pendent of the problem, flexible and gradient free with better universality [16]. Comparing
EO with existing optimization methods such as PSO and GWO algorithms based on sin-
gle mode, multi-mode, combined functions and engineering application problems, the
EO algorithm is highly effective in obtaining optimal or near optimal solutions [16–18].
Therefore, this study adopted the EO algorithm to optimize LSTM parameters.

3.1. EO Algorithm

The algorithm optimization model using the EO algorithm is described as follows:

(1) Population particle initialization

The initial population is used to start the optimization process. The initial concen-
trations are constructed based on the number of particles and dimensions with uniform
random initialization in the search space, as follows:

→
C

0

i =
→
Cmin +

→
r i

(→
Cmax −

→
Cmin

)
, i = 1, 2 . . . , N (5)

where r̂i is random vector between [0,1], i ∈ [i, N]; N is population particle quantity;
→
Cmax

is upper bound of the search space;
→
Cmin is lower bound of search space;

(2) Construct the equilibrium pool and select the candidate solution

When the equilibrium state is not reached in the early iteration, the candidate solution
is used to determine the particle search mode. In the whole optimization process, the
fitness value of each particle is calculated, and four particles with optimal fitness and
the average value of these four particles are identified as candidate solutions to form an
equilibrium pool:

→
Ceq,pool =

{→
Ceq(1),

→
Ceq(2),

→
Ceq(3),

→
Ceq(4),

→
Ceq(ave)

}
(6)

where
→
Ceq(ave) =

→
C eq(1)+

→
C eq(2)+

→
C eq(3)+

→
C eq(4)

4 . In the equilibrium pool, the probability of each
particle used as a solution to guide the optimization process is 0.2;

(3) Exponential term (F)

In order to balance the global search and local search of the algorithm and ensure the
convergence of the algorithm, the index is set as follows:

→
F = a1sign

(→
r − 0.5

)[
e−
→
λ t − 1

]
(7)

where t = 1−
(

Iter
Max_iter

)a2
Iter

Max_iter ; a1 and a2 are constant; Iter and Max_iter are the number

of current iterations and the maximum number of iterations, respectively;
→
λ is a random

vector between [0,1] whose dimension is the same as the dimension of the optimized space;



Energies 2022, 15, 7332 5 of 15

sign
(→

r − 0.5
)

represents the function used to control the direction of exploration and
development;

(4) Generation rate (G)

To enhance the local optimization capability of the algorithm, the MVMD generation
rate is designed as follows:

→
G =

→
G0e−

→
λ (t−t0) =

→
G0
→
F (8)

→
G0 =

→
GCP

( →
Ceq −

→
λ
→
C
)

(9)

→
GCP =

{
0.5r1r2 ≥ GP

0r2 < GP
(10)

where
→
Ceq is a randomly selected solution from the equilibrium pool;

→
GCP is the control

parameter of generation rate G, when GP = 0.5, the algorithm achieves balance between
global optimization and local optimization.

To sum up, the final update formula of EO is as follows:

→
C =

→
Ceq +

(→
C −

→
Ceq

)→
F +

→
G
→
λV

(
1−

→
F
)

(11)

→
Ceq represents the concentration of guide particles selected from the equilibrium pool.(→

C −
→
Ceq

)→
F is added to find the optimal solution in the global search space by using the

concentration difference between sample particle
→
C and equilibrium particle

→
Ceq. Through

→
F , the EO can achieve a reasonable balance between exploration and development. Here,
→
G
→
λV

(
1−

→
F
)

produces a small change in concentration through the formation rate
→
G, which

makes the result more accurate.

3.2. The Procedure of EO Optimizing LSTM Parameter

The settings of learning rate, number of iterations and number of neurons in the
hidden layer of the LSTM model have a direct impact on the results of PV power prediction
accuracy. The learning rate and the number of iterations have a large impact on the training
effect of the model, the number of neurons in the hidden layer plays a decisive role in
the degree of fit of the model and these parameters have a large randomness [19–21].
Parameter selection by hand cannot guarantee the prediction effect of the model, so the
LSTM parameters are selected by using the EO algorithm with a strong merit-seeking
ability and fast convergence speed. The EO-LSTM process is described as follows:

(1) Divide the dataset into a training set and a test set;
(2) The number of iterations and learning rate of hidden layer neurons in LSTM are used

as the object of EO optimization, i.e., the information of each particle concentration
is a three-dimensional vector representing the number of hidden layer neurons, the
number of iterations and the learning rate;

(3) To guarantee global optimization results, the generation rate of EO algorithm GP is
set as 0.5, and constant a1 = 2 and a2 = 1 [16]. Considering the convergence speed and
time cost of the algorithm, the number of iterations T is set as 100 and the number
of particles K is set as 30. Cmax = [300, 0.01, 300] and Cmin = [100, 0.002, 100] are
the upper and lower limits of the particle search space, and the fitness function
F(x) is the mean absolute error (MAE) of predicted value and output value in the
photovoltaic power;

(4) Random initialization is carried out in the search space through Equation (5);
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(5) The concentration information of each particle was imported into LSTM network, and
the corresponding fitness value was calculated by training and prediction through the
training set;

(6) Compare the fitness values of each particle, filter out the four particles with the

smallest fitness values as
→
Ceq(1),

→
Ceq(2),

→
Ceq(3),

→
Ceq(4). At the same time, calculate the

mean concentration
→
Ceq(ave) of these four particles to construct the equilibrium pool

→
Ceq,pool ;

(7) Update the coefficient of exponential term
→
F by Equation (7);

(8) Randomly select guide particles
→

Ceq from the equilibrium pool, and update the gener-

ation rate
→
G according to Equation (8);

(9) Combine the guiding particle
→

Ceq, the updated pointing coefficient
→
F and the gen-

eration rate
→
G. The concentration of each particle is updated one by one through

Equation (11);
(10) Judge whether the maximum number of iterations is reached. If the maximum number

of iterations is reached, T, output the particle with the lowest fitness in the balance pool,
and assign its corresponding parameters to LSTM for model training and prediction
in combination with training set and test set; otherwise, return to Step (5).

4. The MVMD-EO-LSTM Model

The flowchart of the proposed MVMD-EO-LSTM model performance for short-term
photovoltaic power prediction is shown in Figure 2. The detailed process is demonstrated
as follows.
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The overall model performance process is illustrated as follows:

(1) Spearman is used to screen the correlation of input features of historical photovoltaic
power station data to eliminate the low-correlation features;

(2) MVMD is used to decompose the solar radiation sequence;
(3) Spearman is used to calculate the correlation coefficient between each decomposition

component and the output power, screening out the strong correlation component;
(4) The strong correlation components are analyzed by cross-correlation number, grouped

and screened as feature extraction results;
(5) The feature extraction results are combined with the original feature screening results

as the input feature of the prediction model, and the photovoltaic power is used as the
output feature. The dataset is selected based on the K-means similar day clustering
result, and the EO-LSTM is used for training and parameter optimization to achieve
the photovoltaic power prediction under different weather conditions.

5. Performance Analysis

In this paper, the historical data provided by Ningxia Taiyangshan PV Power Station,
China were used as the test object, which were collected for a total of 92 days in June, July
and August in a single year. It contained one output power data and six meteorological
data (solar radiation, temperature, humidity, pressure, wind speed and wind direction).
Considering the intermittent characteristics of PV output power, the daily 5:30–19:00 time
period was intercepted, with 54 points per day and the sampling interval was15min, i.e.,
a total of 4968 sampled points. The computer to implement the proposed model was
configured as a Windows 10 Intel (R) Core (TM) i5-8265U CPU (Acer, Taipei, Taiwan). The
running time using the Matlab (2020a, MathWorks, USA) took 51,535 s. Note that the overall
model operation time can be reduced further if it is performed on a dedicated server.

5.1. Results of Spearman Analysis

The correlation between meteorological factors and PV output power was analyzed
by Spearman method. According to Table 1, the correlation between solar radiation and
photovoltaic power generation is 0765, confirming this as the greatest influential factor. On
the other hand, the correlation coefficients on ambient temperature and relative humidity
are 0.41 and −0.339, respectively, showing a moderate correlation with photovoltaic power.
However, relative humidity is negatively correlated with photovoltaic power. It implies that
photovoltaic power will decrease with the increase in humidity. Moreover, the correlation
of air pressure and wind speed over photovoltaic power is almost zero so that it can be
discarded in practice.

Table 1. Spearman correlation coefficient between meteorological factors and photovoltaic
power generation.

Input Features Solar
Radiation

Environmental
Temperature

Relative
Humidity

Air
Pressure Wind Speed Wind

Direction

Spearman 0.765 0.410 −0.339 0.086 −0.068 −0.007

5.2. Feature Extraction Results

In order to fully mine the fluctuation characteristics between solar radiation and output
power, this study applied an MVMD algorithm to decompose the solar radiation sequence
data and obtain 14 components for the multi-resolution refinement and time-frequency
localization analysis. Considering the balance of calculation amount and operation speed,
the number of decomposition layers was selected as L = 3, the number of components as
K = 2 and the convergence criterion r = 1 × 10−7. The above three parameters values were
widely used in the MVMD model to achieve satisfactory outcomes. On the other hand,
increasing the penalty factor (α) can reduce the bandwidth of the mode, but there is a high
risk of incorrect mode central frequency being captured. If α is too low, the decomposed
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modes may contain more noise. In this study, alpha is selected as α = 2500 to reach the
compromise. For comparison, the solar radiation was also decomposed using WPD and
VMD. Simultaneously, Spearman method was used to analyze the correlation between the
decomposition components of each model and the output power.

It can be seen from Figure 3 that there are six decomposition components for MVMD
with a correlation coefficient higher than the threshold value, i.e.,0.5 as the threshold, but
only three for both VMD and WPD. It reveals that the correlation between the overall
decomposition components and the power sequence can be improved by MVMD. As
shown in Figure 3, L1 and H1 are the decomposition results of the first layer, LH1–HL2 are
the decomposition results of the second layer and IF1–IF8 are the decomposition results of
the third layer.
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Figure 4. Heat map of solar radiation cross-correlation analysis. 

Figure 3. Scatter plot of Spearman decomposition components and output power correlation coeffi-
cient of different models.

Figure 4 demonstrates the heat map of the cross-correlation analysis using Spear-
man for six decomposition components of the MVMD. It can be seen that L1–LH1, LH1–IF1,
LL1–IF2, LL1–IF3 and IF2–IF3 have very high cross-correlation coefficients. Cross -correlation
coefficients greater than 0.9 can be grouped together, and above six decomposition compo-
nents can be divided into two groups (group 1: L1, LH1 and IF1; group 2: LL1, IF2 and IF3).
The component in each group with highest correlation coefficient with output power is
selected as the feature extraction result. From Figure 3, we see that the selected component
in group 1 is LH1 with correlation coefficient as 0.8, and IF2 in group 2 with correlation
coefficient as 0.68. It indicates that the MVMD feature extraction results are LH1 and IF2,
where the cross-correlation coefficient between LH1 and IF2 is 0.54.
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Combined with Table 2, the autocorrelation and cross-correlation are used to screen
the decomposition results of VMD and WPD successively. The feature extraction results
of VMD are IF1 and IF4, and their correlation coefficient is 0.55. The cross-correlation
between the three components of WPD is above 0.9, indicating that the three compo-
nents are a group, and the correlation coefficient between L1 and the output power is the
largest. Therefore, the result of WPD feature extraction is L1, indicating that the WPD
method has the mode aliasing problem. In summary, MVMD can reduce the clutter inter-
ference of the spectrum effectively, ensuring the discrimination and recognition among the
decomposed components.

Table 2. Cross-correlation analysis of highly correlated features based on WPD and VMD.

Decomposition Method Characteristic Components Cross-Correlation

WPD L1–LH1 0.994
L1–IF1 0.988

LH1–IF1 0.992
VMD IF1–IF4 0.582

IF1–IF8 0.558
IF4–IF8 0.979

Considering photovoltaic (PV) power data are greatly influenced by the weather
conditions, this article selects solar radiation, ambient temperature correlation and PV
power as the K-means clustering index for similar day. The optimal cluster number K value
depends on the elbow coefficient method and the contour. Elbow method takes the sum of
squares of errors (SSE) as the core indicator:

SSE =
K

∑
i=1

∑
p∈Ci

|p−mi|2 (12)

where Ci represents class I (total class K) of the PV power sample; p is all sample points in
Ci; mi is the mean vector of the class i sample.

The formula of contour coefficient S is as follows:

S =
1
N

i

∑
N

S(i) =
1
N

i=1

∑
N

b(i)− a(i)
max(a(i), b(i))

(13)



Energies 2022, 15, 7332 10 of 15

where a is the average distance of other samples in the same category; b is the average
distance of samples in the adjacent category; N is the total number of samples; S ∈
[−1, 1]. The higher the contour coefficient S score is, the better the achievements of the
clustering effect.

Based on the k-value from 1 to 10, the corresponding SSE and contour coefficient
for each k-value cluster, the results are shown as Figure 5. Figure 5a indicates that the
degree of aggregation of various categories increases significantly when k is less than 3,
with the increase in the K value, that is, SSE decreases greatly. When k is greater than 3, the
result is the opposite. We can see that the inflection point of the elbow diagram is K = 3.
Combined with Figure 5b, it can be seen that when K = 3, the contour coefficient is the
highest. Therefore, K = 3 is selected for K-means similar day clustering. The clustering
results are shown in Table 3.
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Table 3. The number of days in the weather category at K = 3.

Weather Types Sunny Cloudy Rainy

Number of days 51 31 10

5.3. Verification of MVMD Feature Extraction

The original feature and the extraction results by MVMD, VMD and WPD worked as
the input of EO-LSTM prediction model, as shown in Table 4. The parameters of models
with different inputs are all optimized by EO. RMSE and MAE are used to evaluate the
model accuracy for short-term PV power prediction [22–25].

Table 4. The input features in each model.

Models Input Features

MVMD MVMD decomposition feature extraction results (LH1 and IF2),
solar irradiation intensity, ambient temperature, relative humidity

VMD VMD decomposition feature extraction results (IF1 and IF4), solar
irradiation intensity, ambient temperature, relative humidity

WPD WPD feature extraction results (L1), solar irradiation intensity,
ambient temperature, relative humidity

Original Solar irradiation intensity, ambient temperature, relative humidity
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Mean Absolute Error (MAE) is expressed as:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (14)

Root Mean Square Error (RMSE) is expressed as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (15)

where yi and ŷi are the actual power value and the predicted power value of the ith sample
point, respectively.

The performance evaluation of model prediction using RMSE and MAE is shown in
Tables 5 and 6, respectively. Output comparison under different weather conditions is
shown in Figure 6.

Table 5. RMSE of each model under different weather conditions.

Models
RMSE

Sunny Cloudy Rainy

MVMD 0.82709 0.93497 0.74021
VMD 0.95949 1.1857 0.93611
WPD 0.99308 1.5635 1.0313

Original 1.3219 1.7705 1.3491

Table 6. MAE of each model under different weather conditions.

Models
MAE

Sunny Cloudy Rainy

MVMD 0.69789 0.69694 0.56436
VMD 0.75892 0.99214 0.723
WPD 0.80592 1.2282 0.88054

Original 0.83864 1.2836 0.91566

Some points are concluded as follows:

(1) Compared with only original features input, all feature extraction methods (VMD,
WPD and MVMD) can improve the prediction accuracy. Among them, the MVMD
model presents the best performance, where the mean RMSE decreases by 0.64 and
the mean MAE decreases by 0.35;

(2) Compared with VMD and WPD models, the mean RMSE and mean MAE for the
three weather conditions of the MVMD model were reduced by at least 18%. It
exhibited that MVMD can better refine and decompose the input characteristics of
photovoltaic power data, indicating that it is more conducive to mining the fluctuation
characteristics of the data in the PV power prediction.
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5.4. Comparison of Optimization Algorithms

In this paper, MVMD feature extraction results and screened original features are used
as input datasets, and LSTM parameters are optimized by PSO, GWO and EO algorithms,

respectively. The upper and lower limits of each model are:
→
Cmax = [300, 0.002, 300] and

→
Cmin = [100, 0.01, 100], and the dimension is set as 3. The prediction results using different
optimization algorithms are shown in Tables 7 and 8 and Figure 7.

Table 7. RMSE of each optimization model under different weather conditions.

Input
RMSE

Sunny Cloudy Rainy

EO-LSTM 0.82709 0.93497 0.74021
PSO-LSTM 0.88802 1.0711 0.82262

GWO-LSTM 0.90334 1.0947 0.8284
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Table 8. MAE of each optimization model under different weather conditions.

Models
MAE

Sunny Cloudy Rainy

EO-LSTM 0.65789 0.69694 0.56436
PSO-LSTM 0.66806 0.89498 0.65755

GWO-LSTM 0.7632 0.83247 0.55425

Energies 2022, 15, x FOR PEER REVIEW 12 of 14 
 

 

prediction results using different optimization algorithms are shown in Tables 7 and 8 

and Figure 7. 

Table 7. RMSE of each optimization model under different weather conditions. 

Input 
RMSE 

Sunny Cloudy Rainy 

EO-LSTM 0.82709 0.93497 0.74021 

PSO-LSTM 0.88802 1.0711 0.82262 

GWO-LSTM 0.90334 1.0947 0.8284 

Table 8. MAE of each optimization model under different weather conditions. 

Models 
MAE 

Sunny Cloudy Rainy 

EO-LSTM 0.65789 0.69694 0.56436 

PSO-LSTM 0.66806 0.89498 0.65755 

GWO-LSTM 0.7632 0.83247 0.55425 

It can be seen from Tables 7 and 8 that all three models can achieve satisfactory re-

sults under different weather conditions. Compared with PSO-LSTM and GWO-LSTM, 

the EO-LSTM model has the lowest PV power prediction error, and the mean RMSE and 

MAE are reduced by at least 10%. Moreover, the MAE value is only 0.56 on rainy days. In 

Figure 7, it can be seen that EO-LSTM shows good stability and robustness and has good 

optimization ability for LSTM parameters under different weather conditions, which can 

effectively improve the prediction accuracy of photovoltaic power. 

 

Figure 7. Power prediction of each optimization model in different weather conditions. 
Figure 7. Power prediction of each optimization model in different weather conditions.

It can be seen from Tables 7 and 8 that all three models can achieve satisfactory results
under different weather conditions. Compared with PSO-LSTM and GWO-LSTM, the
EO-LSTM model has the lowest PV power prediction error, and the mean RMSE and MAE
are reduced by at least 10%. Moreover, the MAE value is only 0.56 on rainy days. In
Figure 7, it can be seen that EO-LSTM shows good stability and robustness and has good
optimization ability for LSTM parameters under different weather conditions, which can
effectively improve the prediction accuracy of photovoltaic power.
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6. Conclusions

In this study, a short-term PV power prediction model using MVMD-EO-LSTM algo-
rithm based on the feature process from the influence of solar radiation on photovoltaic
power output has been performed successfully under three weather conditions: sunny,
cloudy and rainy. Some major contributions are concluded as follows:

(1) For non-stationary photovoltaic historical data, the MVMD feature extraction method
based on the fusion of VMD and WPD decomposition can effectively build up the rela-
tionship between input features and photovoltaic output power. This realizes the fine
division of features so that the accuracy and stability in the short-term photovoltaic
power prediction can be promised;

(2) By way of EO algorithm with a strong global search ability and high process conver-
gence, LSTM parameters can be determined to optimize the MVMD model. Compared
with existing algorithms, the proposed method has better optimization performance,
stronger stability and robustness under different weather conditions.
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