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Abstract: To broaden the absorption spectrum of cells, enhance the cell stability, and avoid high costs,
a novel perovskite solar cell (PSC) with the structure of fluorine-doped tin oxide (FTO)/ZnO/CsPbI3/
FAPbI3/CuSCN/Au is designed using the solar cell capacitance simulator (SCAPS) software. The sim-
ulation results indicate that the CsPbI3/FAPbI3 heterojunction PSC has higher quantum efficiency
(QE) characteristics than the single-junction CsPbI3-based PSC, and it outputs a higher short-circuit
current density (Jsc) and power conversion efficiency (PCE). In order to optimize the device perfor-
mance, several critical device parameters, including the thickness and defect density of both the
CsPbI3 and FAPbI3 layers, the work function of the contact electrodes, and the operating tempera-
ture are systematically investigated. Through the optimum analysis, the thicknesses of CsPbI3 and
FAPbI3 are optimized to be 100 and 700 nm, respectively, so that the cell could absorb photons more
sufficiently without an excessively high recombination rate, and the cell achieved the highest PCE.
The defect densities of CsPbI3 and FAPbI3 are set to 1012 cm−3 to effectively avoid the excessive
carrier recombination centering on the cell to increase the carrier lifetime. Additionally, we found
that when the work function of the metal back electrode is greater than 4.8 eV and FTO with a work
function of 4.4 eV is selected as the front electrode, the excessively high Schottky barrier could be
avoided and the collection of photogenerated carriers could be promoted. In addition, the operating
temperature is proportional to the carrier recombination rate, and an excessively high temperature
could inhibit Voc. After implementing the optimized parameters, the cell performance of the stud-
ied solar cell was improved. Its PCE reaches 28.75%, which is higher than most of existing solar
cells. Moreover, the open circuit voltage (Voc), Jsc, and PCE are increased by 17%, 9.5%, and 25.1%,
respectively. The results of this paper provide a methodology and approach for the construction
of high-efficiency heterojunction PSCs.

Keywords: perovskite solar cell; heterojunction; thickness; defect density; work function; temperature

1. Introduction

Active layer materials of perovskite solar cells (PSCs) have a wealth of great properties
such as high optical absorption capacity [1], long electron-hole diffusion length, low exciton
binding energy, high power conversion efficiency (PCEs), and they are easy to process. [2,3].
Due to those advantages, PSCs have become a research hotspot in the field of photovoltaics.
Some studies have reported PCEs of PSCs as high as 25.5% [4], which are comparable to
those of silicon-based solar cells and indicate broad development prospects of PSCs.
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The PCE of MAPbI3-based PSCs is limited by the wide bandgap of 1.58 eV. To further
improve the PCE toward the theoretical limit above 30%, FAPbI3 with a narrow bandgap
of 1.43 eV [5] is considered the promising perovskite material for high-performance single-
junction PSCs, which fits better with the optimum value of ~1.4 eV for single-junction
photovoltaics and displays extended light absorption toward the near-IR [6]. Mari-Guaita
et al. [7] believed that for α-FAPbI3-based PSCs that use DMSO and DMF as the solvents,
toluene would be the optimal antisolvent. Among the perovskite materials used in solar
cells, the cesium-based all-inorganic halide perovskite CsPbI3 has a higher thermal stability
than the commonly used organic–inorganic hybrid perovskite MAPbI3 [8]. Bouich et al. [9]
proposed that CsPbI3 thin-films are suitable candidates for efficient, stable, and durable
perovskite devices because CsPbI3-based PSCs can achieve high Voc due to its wider band
gap. The replacement of MAPbI3 with CsPbI3 during the preparation of PSCs can improve
the long-term stability of the cell under outdoor conditions [10]. However, compared
with MAPbI3-based PSCs, CsPbI3-based PSCs output lower PCEs because CsPbI3 is prone
to phase transitions, leading to relatively poor photoluminescence properties [11–13].
In addition, for single-junction photovoltaic cells, the band gap of CsPbI3 is not optimal
(greater than 1.7 eV) [14,15].

Generally, single-junction solar cells cannot completely take advantage of photons with
energies lower than the bandgap energy while thermalization loss occurs at the energy levels
larger than the PCS bandgap [16]. To avoid the disadvantage of single junction CsPbI3, one
effective method is to construct heterojunction structures which contain series of different
perovskite materials that absorb in various regions of the light spectrum. Those structures
are stacked on top of each other to provide bilayer or multilayer heterojunctions. Such
structures can extract a wider energy range of spectrum from the sun light, thus, promot-
ing the generation of photogenerated carriers and improving the PCE. Preparation of p-n
perovskite heterojunction solar cells can break the single-junction Shockley–Queisser limit.
The heterojunction between the two perovskite layers is widely regarded as a new paradigm
in device engineering. For example, Lin et al. [17] proposed a novel energy band struc-
ture with MAPbI3/MAPbI2Br cascade layers and obtained 25.32% PCE. High-performance
CsPbI3/XPbI3 (X = MA or FA) heterojunction perovskite solar cells were investigated by
Akhtarianfar et al. [18], who believed that perovskite heterojunctions consisting of two differ-
ent perovskite layers could make far-reaching changes in solar cell efficiency and stability.
Li et al. [14] prepared α-CsPbI3/FAPbI3 bilayer active layer PSCs and showed that PCEs
up to 15.6% could be harvested from the PSCs. The device stability was improved as well.
A new hole transport layer (HTL) free PSC proposed with MAPbI3/CsSnI3 all-perovskite
heterojunction as a light-harvester was proposed by Duan et al. [19], and the results revealed
that the narrow band gap CsSnI3 broadens the absorption spectrum to the near-infrared
region and the high hole mobility favors efficient hole transfer. Additionally, an all-inorganic
perovskite-heterojunction CsPbI3/CsSnI3 is proposed as the absorber and the HTL-free
CsPbI3/CsSnI3 was proposed as the absorber and the HTL-free CsPbI3/CsSnI3 PSCs were
investigated systematically by Xu et al. [20]. As verified in their study, the proposed structure
effectively extended the absorption range and enhanced its overall performance. Clark
et al. [21] developed the sequential solution and processing method to fabricate a series
of APbX3/MASnX3 (A = FA, MA, or Cs; X = I or Br) heterojunctions, which showed an en-
hanced device performance due to the heterojunctions.

PSCs with excellent performance often include carrier transport layers in their structural
design. A carrier transport layer is divided into an electron transport layer (ETL) and a HTL,
which is used to facilitate the transport of photogenerated electrons and photogenerated holes,
respectively. In efficient PSCs, titanium dioxide (TiO2) and
2,2′,7,7′-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (spiro-OMeTAD) are
often used as the ETL and HTL, respectively. However, the preparation of TiO2 must be
carried out in a high-temperature environment, which is not conducive to the preparation
of flexible cells. Moreover, spiro-OMeTAD is expensive, which makes the preparation cost
high, and its characteristics are unstable, which hinders the enhancement of the cell per-
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formance. These issues limit the large-scale promotion and application of PSCs. The latest
research shows that inorganic materials possess outstanding stability and high carrier mobil-
ity [22]. Therefore, the use of inorganic materials as carrier transport layers to explore new
materials that can be used as ETLs and HTLs is of significance for promoting the commercial
application of PSCs.

Zhang et al. [23] discussed the application of zinc oxide (ZnO) as the ETLs in PSCs
and introduced a method to prepare ZnO materials. Other related studies [24–27] have
also confirmed the feasibility of using ZnO as the ETLs for PSCs. Azri et al. [28] com-
pared inorganic materials, including nickel(II)oxide (NiO), cuprous thiocyanate (CuSCN),
poly(3-hexylthiophene-2,5-diyl) (P3HT), and cuprous iodide (CuI), with spiro-OMeTAD,
and the results revealed that when CuSCN was used as the HTL, the optimal cell perfor-
mance was obtained. Madhavan et al. [29] used CuSCN as the HTL to prepare cells and
obtained a PCE similar to that of spiro-OMeTAD. Murugadoss et al. [30] also confirmed
that CuSCN can be used as the HTL for the preparation of PSCs.

In this study, the solar cell capacitance simulator (SCAPS) software was adopted
to investigate the photovoltaic performances of heterojunction PSCs based on the previ-
ous findings. Three cell structures, fluorine-doped tin oxide (FTO)/TiO2/CsPbI3/spiro-
OMeTAD/Au, FTO/TiO2/CsPbI3/FAPbI3/spiro-OMeTAD/Au, and FTO/ZnO/CsPbI3/
FAPbI3/CuSCN/Au, were constructed and analyzed. The results showed that the per-
formance of the cell with the structure of FTO/ZnO/CsPbI3/FAPbI3/CuSCN/Au could
achieve a satisfactory performance while avoiding high fabrication costs and poor device
stability. Based on this structure, the effects of the thickness and defect density of the pho-
toactive layers, the work function of the contact electrodes, and the operating temperature
on the performance of the cell were investigated. The Voc, Jsc, fill factor (FF), and PCE
were used as evaluation indicators, combined with the quantum efficiency (QE), carrier
concentration, and carrier recombination rate, to explore and optimize the key material
parameters of CsPbI3/FAPbI3 heterojunction PSCs.

2. Methodology and Materials
2.1. Numerical Method

In this study, the one-dimensional SCAPS, developed by Professor Burgelman of Ghent
University in Belgium [31], is used for the involved numerical modeling and simulation.
SCAPS is based on the basic equations of semiconductor device physics. By combining the
Poisson equation, the electron/hole continuity equations, and boundary conditions of the
semiconductor device, the current, electric field distribution, and carrier concentration
are determined. Finally, transport properties of the semiconductor device, such as J-V
characteristics, spectral response, capacitance–frequency characteristics, and capacitance–
voltage characteristics are obtained. The Poisson equation and the electron/hole continuity
equations are expressed in the following equations [32]:

d
dx

[
ε(x)

dψ

dx

]
= q

[
p(x)− n(x) + N+

D (x)− N−A (x) + pt(x)− nt(x)
]
, (1)

− 1
q

dJn

dx
+ Rn(x)− G(x) = 0, (2)

1
q

dJp

dx
+ Rp(x)− G(x) = 0. (3)

The drift-diffusion equations are presented as follows [33]:

Jn = qnµn + qDn
dn
dx

, (4)

Jp = qnµp − qDp
dp
dx

. (5)
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where ε is the relative permittivity; N−A and N+
D are the ionization acceptor concentration

and ionization donor concentration, respectively; Ψ is the electrostatic potential; x is the
position coordinate; pt and nt represent the concentrations of trapped holes and trapped
electrons, respectively; p and n represent the concentrations of free holes and free electrons,
respectively; Jn and Jp denote the photo-generated electron current density and photo-
generated hole current density, respectively; Rn(x) and Rp(x) denote the recombination
rate of electrons and holes, respectively; G(x) represents the photoproduction rate; q is the
electron charge; µn and µp denote the mobility of electrons and holes, respectively; and Dn
and Dp represent the diffusion coefficients of electrons and holes, respectively.

Under normal circumstances, these nonlinear differential equations (Equations (1)–(5))
are difficult to solve. However, if the boundary conditions, including the hole and electron
current densities and the electric potentials at both ends of the device, are specified, the
concentration of electrons and holes and the electric field can be determined, and other
relevant operating parameters of the cell device can be obtained in turn. The potential at
the back contact was set to 0, and the boundary conditions at the front contact are

φ(0) = φ f − φb + Vapp, (6)

Jn(0) = qS f
n′ [n

′(0)− neq(0)], (7)

Jp(0) = −qS f
p′ [p
′(0)− peq(0)]. (8)

The boundary conditions at the back contact are

φ(L) = 0, (9)

Jn(L) = −qSb
n′ [n

′(L)− neq(L)], (10)

Jp(L) = qSb
p′ [p
′(L)− peq(L)]. (11)

In the above equations, the labels f and b represent the front electrode and the back
electrode, respectively; Vapp denotes the bias voltage applied to the device or the bias
voltage generated by the incident light; фf and фb represent the work functions of the front
and back contact electrodes, respectively; peq and neq, respectively denote the hole and
electron concentrations at the electrode interface under thermal equilibrium conditions;
p′ and n′ are the carrier concentrations at the front and back contact electrodes, respectively;
and S f

p′ , S f
n′ , Sb

p′ , and Sb
n′ represent the surface recombination rates of holes and electrons at

the front and back electrodes, respectively, which are related to the surface passivation.

2.2. Device Structures and Input Parameters

In this research, three cell structures, FTO/TiO2/CsPbI3/spiro-OMeTAD/Au,
FTO/TiO2/CsPbI3/FAPbI3/spiro-OMeTAD/Au, and FTO/ZnO/CsPbI3/FAPbI3/
CuSCN/Au, are initially designed, as shown in Figure 1. For convenience of discus-
sion, these three structures are referred to as Structures 1, 2, and 3, respectively. It can be
seen from Figure 1 that the three structures are all planar upright structures, with FTO
(work function 4.4 eV) and Au (work function 5.1 eV) as the front electrode and metal back
electrode, respectively, and the light was incident from the FTO end. CsPbI3 is used as the
photoactive layer in Structure 1, and commonly used TiO2 and spiro-OMeTAD are used
as ETL and HTL, respectively. A main difference between Structures 1 and 2 is that in
Structure 2, a heterojunction composed of CsPbI3 and FAPbI3 is used as the photoactive
layer. In Structure 3, the same type of heterojunction is used as the photoactive layer, and
inorganic materials ZnO and CuSCN are used as the ETL and HTL, respectively.
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Figure 1. Configurations of the initial perovskite solar cells (PSCs): (a) structure of TiO2/CsPbI3/spiro-
OMeTAD, (b) structure of TiO2/CsPbI3/FAPbI3/spiro-OMeTAD, and (c) structure of ZnO/CsPbI3/
FAPbI3/CuSCN.

The energy level matching between the carrier transport layer and the photoactive
layer has an impact on the output performance of the cell. In general, the top of the ETL
valence band should be lower than the top of the valence band of the photoactive layer
to avoid the transport of photogenerated holes in the direction of the ETL and reduce the
carrier recombination. Similarly, the bottom of the conduction band of the HTL should
be higher than the bottom of the conduction band of the absorption layer to prevent the
photogenerated electrons from being transported in the direction of the HTL. When the
bottom of the conduction band of the ETL is lower than the bottom of the conduction band
of the photoactive layer and the top of the valence band of HTL is higher than the top
of the valence band of the photoactive layer, the movement of photogenerated carriers
is promoted, but the recombination rate of the interface could be high [34,35]. Studies
have shown [36] that when the bottom of the ETL conduction band is 0.0–0.3 eV higher
than the bottom of the conduction band of the photoactive layer and the top of the HTL
valence band is 0.0–0.2 eV lower than the top of the valence band of the photoactive
layer, although the transport of photogenerated carriers is inhibited, the cell can still show
excellent performance due to the low interfacial recombination rate. A schematic diagram
of the energy levels of the materials involved in the three structures is shown in Figure 2.
In terms of the energy-level structure, the three cell devices presented in this paper are
structurally feasible.
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Following the approaches presented in authoritative literature [11,28,37–40], material
parameters of TiO2, ZnO, CsPbI3, FAPbI3, CuSCN, and spiro-OMeTAD are set as shown
in Table 1. To make the comparison of the results more convincing, in the initial models
of the three structures, the thickness of the light-absorbing layer of structure 1, CsPbI3,
is initially set to 600 nm, while the thicknesses of the light-absorbing layers of structures
2 and 3, CsPbI3 and FAPbI3, are both set to 300 nm so that the total thicknesses of the
light-absorbing layers of the three structures were the same. In addition, the electron and
hole thermal velocities of each material are set to 107 cm/s, and the simulation process
is performed under illumination using an AM1.5G solar simulator at an incident power
density of 100 mW/cm2.

Table 1. Input parameters for simulation of PSC performance.

Parameters TiO2 [11] ZnO
[37,38]

CsPbI3
[11]

FAPbI3
[39]

CuSCN
[28,40]

Spiro-
OMeTAD

[39]

Thickness (nm) 25 25 variable 300 170 170
Eg (eV) 3.2 3.3 1.73 1.51 3.4 2.9
χ (eV) 4.0 4.1 3.95 4.0 1.9 2.2
εr 9.0 9.0 6.0 6.6 10 3.0

Nc (cm−3) 1 × 1021 4 × 1018 1.1 × 1020 1.2 × 1019 1.7 × 1019 2.2 × 1018

Nv (cm−3) 2 × 1020 1 × 1019 8 × 1019 2.9 × 1018 2.5 × 1021 2.2 × 1018

µn (cm2/Vs) 20 100 16 2.7 0.0001 1 × 10−4

µp (cm2/Vs) 10 25 16 1.8 0.1 1 × 10−4

Nd (cm−3) 1 × 1018 1 × 1018 0 1.3 × 1016 0 0
Na (cm−3) 0 0 1 × 1015 1.3 × 1016 1 × 1018 1.3 × 1018

Nt (cm−3) 1 × 1015 1 × 1015 2.1 × 1014 4 × 1013 1 × 1015 1 × 1015

Table 2 shows that the PCE of structure 1 is relatively low, and the cell performances
of structures 2 and 3 are good, with minor differences in the output characteristics. The Voc
values of the three structures are not considerably different, but structures 2 and 3 output
larger Jsc values, which promote the output of larger PCEs. Similarly, it can be seen from
Figure 3a that compared with those of structures 2 and 3, the J-V characteristics of structure
1 are poor, and structure 1 has a relatively low Jsc, while the J-V characteristic curves
obtained by structures 2 and 3 essentially overlap with each other. The quantum efficiency
measures how well a device absorbs photons. Figure 3b explains the difference in the
J-V characteristics of the three structures. It can be seen from this figure that a preferable
quantum efficiency in a visible range is obtained for structures 2 and 3. The absorption
spectra of the structures 2 and 3 are broader compared to that of structure 1, which is because
both structures use a combination of wide-bandgap and narrow-bandgap absorption layers,
and the light absorption edge of the device shifted from around 720 nm to above 800 nm.
Therefore, structures 2 and 3 exhibit better absorption for longer-wavelength photons and
achieve higher QE values, and more photogenerated carriers are generated (as shown in
Figure 4), promoting the improvement in Jsc, and further increasing the PCE. As a result,
structures 2 and 3 output better J-V characteristics. The QE curves of structures 2 and 3
generally overlap with each other, so the J-V characteristics of the two structures are not
significantly distinct.

Table 2. Output parameters of three PSC structures.

Structure Voc (V) Jsc (mA/cm2) FF (%) PCE (%)

TiO2/CsPbI3/Spiro-OMeTAD 1.18 19.22 73.74 16.68

TiO2/CsPbI3/FAPbI3/Spiro-OMeTAD 1.19 23.82 79.21 22.45

ZnO/CsPbI3/ FAPbI3/CuSCN 1.19 23.84 80.91 22.98
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It can be seen from Figure 2 that ZnO and CuSCN provide good band alignment, thus,
it is reasonable for ZnO and CuSCN to be used as ETL and HTL, respectively. Compared
with TiO2, ZnO has greater electron mobility and can promote the movement of photogener-
ated electrons to reduce recombination. CuSCN, a low-cost inorganic HTL, exhibits notably
high hole mobility (much higher than spiro-OMeTAD) and material stability. Many studies
have confirmed that charge accumulation at the perovskite/CuSCN interface would be
reduced and the hysteresis in J-V measurement would be minimized by passivation of the
defects [41]. Additionally, CuSCN adopted as HTL can enhance carrier extraction [29] and
improve the cell performance [42].

Due to the similar output cell performances of structures 2 and 3, considering the prepa-
ration cost and device stability, we believe that ZnO and CuSCN can replace TiO2 and spiro-
OMeTAD as the carrier transport layers for device design. Therefore, in this study, the per-
formance of heterojunction PSC is investigated based on ZnO/CsPbI3/FAPbI3/CuSCN/Au.

3. Results and Discussion
3.1. Effect of Thickness and Defect Density of the Photoactive Layers on Cell Performance

The characteristics of the photoactive layer have a great impact on the performance
of the cell, especially its thickness and the defect density. When the thickness of the pho-
toactive layer is relatively low, the photon absorption of the device is insufficient, which
affects the Jsc output and thus limits the performance of the cell. When the thickness of the
photoactive layer is greater than the carrier diffusion length, the collection of photogener-
ated carriers is inhibited, and the recombination rate of the device increases. The increase
also has an adverse effect on the cell performance [38,43–45]. For the defect density of the
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photoactive layer, an excessively high density of the defect state corresponds to more carrier
recombination centers, leading to a higher carrier recombination rate and thus lower cell
performance [38,44]. Therefore, the effects of the thickness and defect density of CsPbI3
and FAPbI3 on the cell performance are investigated in this research.

The thickness of the photoactive layer affects the absorption of photons and the
generation of carriers and plays a dominant role in the performance of the cell [19]. Figure 5
shows the energy band of the device and the direction of electrons and holes. It can be
seen from the figure that the transport of carriers is affected by the thickness of CsPbI3 and
FAPbI3. Therefore, in this study, the thicknesses of the CsPbI3 and FAPbI3 are set in the
range of 100–1200 nm to explore the optimal thickness for the photoactive layers, and the
simulation results are plotted in Figure 6. As illustrated in that figure, as the thicknesses
of the CsPbI3 and FAPbI3 increase, Voc and FF show decreasing trends, while Jsc and PCE
gradually increase. Additionally, a similar phenomenon is shown in Figure 7. Figure 7a
displays the numerical result when the thickness of FAPbI3 is 100 nm and only the thickness
of CsPbI3 is changed, while Figure 7b exhibits the result when the thickness of CsPbI3 is
100 nm and only the thickness of FAPbI3 varies.

QE measures the absorption of photons by the device. As the thickness of the pho-
toactive layer increases, the photons absorbed by the device improves, and the QE shows
a rising trend (as shown in Figure 8), which leads to an increase in the photogenerated
carrier concentration [19]. As a result, Jsc gradually increases. Figure 6b shows that as the
thickness increases from 100 to 1200 nm, the thickness change of the FAPbI3 had a more
significant effect on Jsc than that of the CsPbI3. The thickness change of the FAPbI3 makes
the trend of the change in QE of the device more significant, resulting in a larger difference
in the photon absorption effect. This means that the thickness change of the FAPbI3 has
a more significant effect on Jsc compared with that of CsPbI3.
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Figure 6. Effect of the thickness of the photoactive layer on the output characteristics of the cell:
(a) effect of the thickness on the open circuit voltage (Voc), (b) effect of the thickness on the short-circuit
current density (Jsc), (c) effect of the thickness on the fill factor (FF), and (d) effect of the thickness on
the power conversion efficiency (PCE).
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thickness of FAPbI3 is fixed at 100 nm), (b) effects of the thickness of FAPbI3 (the thickness of CsPbI3

is fixed 100 nm).
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The following equation describes the inverse relationship between Voc and the diode
reverse saturation current J0 [44]:

Voc=
kT
q

ln(
Jl
J0

+ 1) (12)

where k is the Boltzmann constant, T is the temperature, Jl is the photo-generated current.
As the thicknesses of the CsPbI3 and FAPbI3 increase, the carrier diffusion length

increases, and the recombination rate of carriers rises as well, so Voc gradually reduces.
In addition, an increase in the thickness of the photoactive layer would lead to the increase
in the series resistance of the device, as well as the internal power consumption [44].
As a result, the FF performance tends to decrease. According to the analysis of Figure 6d,
when the thicknesses of CsPbI3 and FAPbI3 are 100 and 700 nm, respectively, the cell
achieves the highest PCE.

The effect of the defect density Nt of the photoactive layers of CsPbI3 and FAPbI3 on the
J-V characteristics of the cells are shown in Figure 9a,b, respectively. As the value of Nt of the
photoactive layer increases from 1012 to 1018 cm−3, the J-V characteristics of the cell gradually
deteriorate, the PCE goes down (see Figure 10), and the cell performance gradually declines.
Increasing Nt in the photoactive layer is equivalent to introducing more carrier recombination
centers inside the cell [19]. This would cause the carrier recombination rate to increase (the
simulation results are shown in Figure 11), the carrier diffusion length to be shorter, and the
carrier lifetime to shrink [46]. The minority carrier lifetime τ and the carrier diffusion length
LD can be obtained using Equations (13) and (14) [11]:

τ =
1

Ntδυth
, (13)

LD =

√
µ(e,h)kTτ

q
. (14)

where µ(e,h) is the mobility of electrons and holes, δ is the trapping cross-sectional area
of electrons and holes, and νth is the thermal velocity of the carrier.
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Figure 10. PCE as a function of the defect density of the photoactive layer. 

Figure 9. Effect of the defect density of the photoactive layer on cell performance: (a) effect of the
defect density of the CsPbI3 on the cell’s J-V characteristics and (b) effect of the defect density of the
FAPbI3 on the cell’s J-V characteristics.
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Figure 9. Effect of the defect density of the photoactive layer on cell performance: (a) effect of the 
defect density of the CsPbI3 on the cell’s J-V characteristics and (b) effect of the defect density of the 
FAPbI3 on the cell’s J-V characteristics. 
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Equations (13) and (14) indicate that with increasing Nt, τ decreases gradually. As
a result, both LD and Voc decrease gradually. Therefore, to achieve a better cell performance,
the Nt value of the photoactive layer should be controlled within a relatively low range.
Considering the difficulty of preparing thin films with a low defect density in the actual
preparation process, 1012 cm−3 is set as the optimal Nt value for the two photoactive layers
of CsPbI3 and FAPbI3 based on the simulation results.

3.2. Effect of Work Function of Metal Back Electrode on Cell Performance

For the output performance of the cell, the work function фb of the metal back electrode
is also a key parameter. The value of фb has a direct impact on whether the cell has a suitable
built-in electric field [38], and the size of the built-in electric field is related to the transport
and collection of holes, so фb plays a crucial role in Voc [47]. To analyze the impact of back
electrodes with different фb values on the cell performance, фb is set in the range of 4.5–5.1 eV
in this study, and the simulation results are shown in Figure 12. Figure 12a shows that for
this structure, when фb gradually increases from 4.5 eV, the device output Voc gradually
becomes larger, and the J-V effect is improved. However, when фb is greater than 4.8 eV, the
J-V characteristic curves of the device generally overlap with each other. Similarly, it can be
seen from Figure 12b that when фb gradually increases from 4.5 to 4.8 eV, the PCE exhibits
a gradual increase, and when фb is greater than 4.8 eV, the PCE has a minor difference.
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characteristics of back electrode cells with different work functions and (b) energy band differences
of back electrode cells with different work functions.

When фb is less than 4.8 eV, the cell performance is apparently inhibited. A possible
reason for this is the formation of Schottky junctions at the interface of CuSCN and the back
electrode [48,49], as shown by the dashed line in Figure 12b. As фb decreases, the Schottky
barrier gradually increases, the holes would need more energy to cross the Schottky barrier,
and the transport process of holes to the back electrode is hindered [38], which inhibits the
effective collection of holes. Therefore, Voc gradually decreases, which further limits the
output of the PCE.

By using a back electrode with a high work function, the Fermi level is lowered, which
could facilitate the production of better ohmic contacts [50]. Therefore, to prepare high-
efficiency PSCs, it is very important to choose a suitable back contact material. The HTL
and the back electrode should form an ohmic contact at the interface as much as possible to
avoid the formation of an excessively high Schottky barrier. For the structure in this study,
the back-electrode material should be chosen with фb greater than 4.8 eV.

3.3. Effect of Work Function of Front Electrode on Cell Performance

Similarly, the work function фf of the front electrode of the device has a direct correla-
tion to the transport and collection of electrons, and thus, it affects the cell performance.
During the preparation of PSCs, FTO or tin-doped indium oxide (ITO) is generally used as
the front electrode. Previous studies [50,51] confirmed that the фf of ITO can be adjusted
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experimentally in the range of 4.6–5.0 eV. To compare with FTO (whose work function is
4.4 eV), in this study, ITO is set as the front electrode and фf is set in the range of 4.6–5.0 eV.
The simulation results are shown in Figure 13: as фf increases, Voc slowly decreases, the J-V
characteristics deteriorate, and the PCE declines as well.
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Figure 13. Effects of the front electrodes with different work functions on the cell: (a) J-V characteris-
tics of the front electrodes with different work functions and (b) energy band differences of the front
electrodes with different work functions.

When фf gradually increases, a potential barrier is formed at the interface between
the ZnO and the front electrode slowly becomes larger, as shown by the dashed line in
Figure 13b. The process of electrons being transported to the front electrode and efficiently
collected requires more energy. Thus, the electron transport is hindered, and Voc gradually
decreases, which led to decreasing PCE. This comparison shows that for this device, when
FTO with a фf value of 4.4 eV is selected as the front electrode, a potential barrier would be
formed at the interface between ZnO and the front electrode reaches the lowest point, the
J-V characteristics are good, and the cell achieves its highest PCE.

3.4. Effect of Working Temperature on Cell Performance

PSCs generally work in an outdoor environment with a temperature exceeding
300 K [52], and the outdoor temperature has a direct impact on the cell performance.
Therefore, in this study, the temperature T is set in the range of 300–500 K to explore the
effect of the temperature on the cell performance. The experimental results are plotted
in Figure 14. As T increases, Jsc remains essentially unchanged, but the cell output Voc
gradually decreases, the J-V characteristics deteriorate, and the gradual decrease in Voc
also leads to a decreasing trend of the PCE. Therefore, the change in T affects the output
of the cell performance via its influence over Voc. The relationship between Voc and T can
be described as follows [44]:

dVoc

dT
=

Voc −
Eg
q

T
. (15)

It can be seen from Equation (15) that Voc and T have an inverse relationship. The in-
crease in T causes Voc to decrease and promotes the increase in the diode reverse saturation
current [53].

At high temperatures, electrons gain more energy, leading to their enhanced recombi-
nation with holes before being collected by the electrode [52]. Figure 15 confirms the inverse
relationship between T and the carrier recombination rate, and therefore, an increase in T
causes the overall performance of the cell to decline.
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Furthermore, as Voc decreases, the PCE also decreases. When T is excessively high,
properties such as electron–hole mobility, carrier concentration, and band gap are all
affected, resulting in a lower PCE output from the cell [54,55]. In summary, T and PCE have
a linear relationship, and an increase in T will lead to a decrease in PCE. To provide cell
outputs with better characteristics, the cells should avoid working in an environment with
excessively high temperatures.

Based on the above discussion, for the cell device with the structure of FTO/ZnO/CsPbI3/
FAPbI3/CuSCN/Au, the thicknesses of CsPbI3 and FAPbI3 are optimized to 100 and 700 nm,
respectively. The defect densities of CsPbI3 and FAPbI3 are both set to 1012 cm−3, and the
PCE reaches 28.75%. The J-V characteristic curves before and after optimization are plotted
in Figure 16. Voc, Jsc, and PCE are increased by 17%, 9.5%, and 25.1%, respectively, and the
cell performance after optimization improves as well.
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Table 3 summarizes the results of recently published experimental and simulation
studies on perovskite/perovskite bilayer heterojunction solar cells [5,14,17,19,20,39,56–62].
Since numerical simulations are carried out in ideal conditions, the simulation results are
better than those obtained from experiments. The devices reported by Hu et al. [58] and
Farhadi et al. [59] achieved more than 30% PCE, but both devices adopted TiO2 as the
ETL and Farhadi et al. [59] used spiro-OMeTAD as the HTL, which is not conducive to
device stability and would increase the preparation cost. On comparing the published data
with the results of the present work, the proposed device model achieves a high efficiency
of 28.75%. Moreover, the proposed model uses ZnO and CuSCN as its ETL and THL,
respectively, which is helpful to improve device stability and reduce fabrication cost.

Table 3. Comparing our results with those obtained from previous experimental and computa-
tional studies.

No. Structure Simulation/
Experimental

Voc
(V)

Jsc
(mA/cm2)

FF
(%)

PCE
(%) References

1 ITO/TiO2/
Cs0.25FA0.75PbI3/CsPbI3/Spiro/MoOX/Al Experimental 1.20 18.91 76.00 17.39 [56]

2 FTO/TiO2/CsPbI3/FAPbI3/PTAA/MoO3/Ag Experimental 1.22 17.26 74.00 15.60 [14]

3 FTO/TiO2/MAPbI3/(PEA)2(MA)4(Pb5I16)/Spiro/Au Experimental 1.08 18.63 73.00 14.94 [57]

4 FTO/TiO2/MASnI3/MAPbI3/Cu2O/Au Simulation 1.21 31.58 80.21 30.88 [58]

5 FTO/TiO2/MASnI3/MAPbI3/Spiro/Au Simulation 1.15 30.87 85.29 30.29 [59]

6 FTO/TiO2/MAPbI3/MAPbI2Br/C Simulation - - - 25.32 [17]

7 ZnO:Al/TiO2/MASnI3/MASnBr3/CuI/Au Simulation 1.12 32.03 68.82 24.78 [60]

8 FTO/WS2/MAPb(I1-xClx)3/FA0.75Cs0.25Pb0.5Sn0.5I3/Au Simulation 0.84 34.34 78.54 22.72 [61]

9 FTO/TiO2/MAPbI3/CsSnI3/C Simulation 1.08 25.33 79.27 21.64 [19]

10 FTO/TiO2/CsPbI3/MAPbI3/Spiro/Au Simulation 1.13 25.02 74.24 20.99 [39]

11 FTO/WS2/MAPb(I1-xClx)3/FA0.75Cs0.25Pb0.5Sn0.5I3/C Simulation 0.82 31.94 77.95 20.53 [61]

12 FTO/TiO2/CsPbI3/FAPbI3/Spiro/Au Simulation 1.07 26.53 71.16 20.22 [39]

13 FTO/TiO2/CsPbI3/CsSnI3/Au Simulation 0.96 26.59 78.41 19.99 [20]

14 FTO/TiO2/CsPbI3/CsSnI3/C Simulation 0.95 26.09 78.74 19.59 [20]

15 FTO/CdZnS/MASnI3/MASnBr3/back contact Simulation 0.87 31.42 68.88 18.71 [62]

16 FTO/TiO2/CsPbI3/FAPbI3/PTAA/MoO3/Ag Simulation 1.12 18.81 88.09 18.55 [5]

17 FTO/ZnO/CsPbI3/FAPbI3/CuSCN/Au Simulation 1.31 26.11 83.78 28.75 This work

4. Conclusions

In this study, the SCAPS software was employed to explore the performance of PSCs
with the structure of FTO/ZnO/CsPbI3/FAPbI3/CuSCN/Au. Currently there are few
reports focusing on PSCs of this heterojunction structure. The simulation results obtained
from the present study reveal that when ZnO and CuSCN are used as the ETL and HTL,
respectively, the unstable performances of cell devices constructed by TiO2 and spiro-
OMeTAD and the high costs could be effectively avoided. The combination of CsPbI3 and
FAPbI3 for the heterojunction structure design could effectively broaden the absorption
spectrum of the cell and promote a high Jsc cell output, thus, improving the PCE. When the
thicknesses of CsPbI3 and FAPbI3 are 100 and 700 nm, respectively, the photon absorption is
sufficient without a high recombination rate, and the cell reaches its highest PCE. When the
defect densities of CsPbI3 and FAPbI3 are both 1012 cm−3, excessive carrier recombination
centers inside the cell could be effectively avoided and the carrier lifetime could be extended.
When the work function of the metal back electrode is greater than 4.8 eV and an FTO
with a work function of 4.4 eV is selected as the front electrode, the excessive Schottky
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barrier could be avoided, and more ohmic contacts would be formed, promoting the
collection of photogenerated carriers. A high operating temperature would cause the
carrier recombination rate to increase, which inhibits the output of Voc. By optimizing
the cell structure, the PCE reaches 28.75%, and the Voc, Jsc, and PCE are increased by 17%,
9.5%, and 25.1%, respectively. The simulation results present in this paper will help to
further understand PSCs and improve the performances of heterojunction PSCs, therefore
promoting the application of solar power as a form of clean and renewable energy along
with wave energy [63,64] and wind energy [65,66].
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