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Abstract: In this paper, an improved single-phase second order generalized integrator (SOGI) fixed-
frequency phase-locked loop (FFPLL) is presented. The proposed improvement comprises the
modification of the PLL input signal estimated phase angle correction factor, which is in this paper
calculated and implemented with the exactly accurate value, while in the existing literature the
approximated correction value is employed. Also, in this paper, the FFPLL with DC offset is presented,
together with the corresponding estimated angle correction technique. Furthermore, the PLL with
the positive sequence separation is outlined, based on the new FFPLL structure. The proposed
technique is analyzed and verified by simulation and experimental runs, which proved the accuracy
and efficiency of the proposed PLL technique. Furthermore, a corresponding PLL parameter values
tuning procedure is presented that illustrates the dynamic performance improvements that SOGI
based FFPLL introduces when compared with SOGI based PLL. Consequently, FFPLL combined
with the proposed new estimated angle correction factor represents a significant improvement when
compared to the conventional SOGI based PLL.

Keywords: estimated angle correction; DC offset compensation; fixed-frequency orthogonal signal
generator; positive sequence separation; single-phase PLL; SOGI

1. Introduction

The single-phase PLL represents a significant task in many engineering applications,
including various types of grid-connected single-phase power converters. Namely, accurate
and fast frequency and phase angle estimation of the grid voltage is required, which needs
to operate with the PLL input signals contaminated by higher harmonics, voltage dips,
and also frequency and phase angle variations. Consequently, several comprehensive
single-phase PLL survey papers have been published [1–3], in which major PLL design
problems and issues are reviewed and presented.

1.1. Motivation

The main motivation behind the work outlined in this paper emerges from the possi-
bility to improve significantly the estimation precision of existing FFPLL solutions. Also,
the importance of the FFPLL solutions is based on several analyses, which show that imple-
mentation of frequency non-adaptive FFPLL solutions, when compared to conventionally
used frequency adaptive PLL solutions, introduces significant improvements in resulting
stability, maximum response speed, and phase-locked loop robustness of operation.

Namely, the main drawback of existing FFPLL solutions comprises the approximated
estimated phase angle compensation, contrary to the proposed solution, which is based on
the analytically accurate compensation factor.

1.2. Literature Review

Generally, the single-phase PLL solutions can be divided into two main groups–power
PLL [3] and PLL based on different orthogonal signal generators (OSG) [1]. Power PLL
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algorithms represent simple and effective solutions, which, however, suffer from the
significant double main frequency component, which results in the substantially reduced
PLL response speeds that need to be tuned. Orthogonal signal generator based solutions,
however, result in much higher response speed, and they can operate with a DC offset
present at the PLL input.

There is a wide range of different OSG filters and techniques [1] proposed in the
literature, which is outside the scope of this paper. However, one of the most commonly
used OSG algorithms, SOGI [4], represents the basis of the FFPLL solution proposed in
this paper. Namely, SOGI based applications are commonly used as adaptive resonant
frequency filters fit for the OSG, which can also successfully be applied in the case when
a DC offset is present at the PLL input [4,5]. However, the fact that the single-phase PLL
closed-loop algorithm operates with an adaptive frequency OSG filter results in a non-linear
PLL operation, which introduces difficulties in parameter tuning in order to enable stable
and fast PLL operation.

Consequently, in order to avoid the nonlinear adaptive frequency SOGI filter applica-
tion, single-phase PLLs are proposed using OSG with a fixed frequency tuned SOGI [6–10].
In [9], an OSG is implemented based on the fixed-frequency SOGI, with the accurate or-
thogonal voltage amplitude and phase angle corrections, which are necessary because of
the estimation error caused by the fixed frequency SOGI tuning. However, in [9] a complex
input signal frequency estimation method is proposed, when compared to other different
FFPLL solutions.

In [8], a detailed analysis of the FFPLL structure and dynamics is presented, while in [7]
the original FFPLL structure is outlined. Also, in [8] a modification of the basic FFPLL [7]
structure is proposed, with the increased PLL frequency and phase angle estimation speed.
In [10], the FFPLL based estimator is presented, used to separate the positive and negative
sequence components in the non-symmetrical PLL input signals.

Regarding the application of the FFPLL algorithms in radio frequency (RF) and micro-
wave applications, it is limited by the features of the employed control platform. Namely,
in order to implement an FFPLL based on a digital signal processing (DSP) in an RF
application, a specialized RFSoC platform [11] could be employed. However, there is a
possibility of an analogue FFPLL application [12], which can overcome shortcomings of a
DSP based solution.

1.3. Contribution and Paper Organization

In this paper, the modification of the original FFPLL [7] structure is proposed, with
the accurately calculated phase angle estimate correction value, as opposed to [7] in which
an approximation is employed. Namely, in conventional FFPLL applications [7] phase
compensation value is approximated for the estimated input signal frequency value close
to fixed resonant frequency of the employed SOGI term, while the new proposed solution
comprises an analytically calculated accurate phase compensation factor. In this way,
accurate operation of the FFPLL for the much wider differences between the input signal
frequency and SOGI term fixed resonant frequency value, which was not the case in
conventional FFPLL solutions. Also, in this paper, the FFPLL structure is analyzed to
operate with a DC offset present at the PLL input together with the PLL based on the
input signal positive sequence separation, which is not the case in any of the existing
FFPLL structures.

This paper comprises six sections. In Section 2, the existing FFPLL structures are
outlined and compared. In Section 3, the improved FFPLL structure is proposed, including
the modification, which enables FFPLL operation with the DC offset at the PLL input. In
Section 4 the simulation results are presented, while in Section 5 the experimental tests
are outlined.

Consequently, the problem statement comprises an effort to improve the phase angle
estimation accuracy in the complete input signal frequency range for the existing FFPLL
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solutions, which are based on several analyses [7,8] dynamically superior to conventionally
used frequency adaptive SOGI based PLLs.

2. Fixed-Frequency PLL

In this section, the existing FFPPL solutions are presented and analyzed. Namely, the
FFPLL is derived from the single-phase PLL with the adaptive frequency SOGI filter used
for the orthogonal signal generation, which is outlined in Figure 1.
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Figure 1. A conventional adaptive frequency SOGI based single-phase PLL, (a) general structure
with SOGI input section, and (b) PLL section.

In Figure 1 U represents the PLL input, Ûα and Ûβ orthogonal components generated
by SOGI, Ks the SOGI parameter, ωest and θest the estimated input signal frequency and
phase angle, Uα, Uβ, Ud, and Uq the PLL input and auxiliary signals, Kp and Ki the PLL
parameters, and ωff the estimated frequency feed-forward value. The SOGI parameter
value Ks = 2 is commonly used, while the PLL parameters Kp and Ki are commonly designed
by the symmetrical optimum technique [2].

However, in [8] a shortcoming of the adaptive frequency PLL in Figure 1 is analyzed,
caused by the nonlinear SOGI filter operation, which restricts the resulting PLL dynamics.
Consequently, the FFPLL is proposed [7,8] in which the SOGI filter operates with a fixed
frequency, resulting in linear orthogonal signal generation. Namely, the FFPLL is designed
based on the following SOGI Equations (1) and (2), derived from the structure outlined in
Figure 1a. Namely, Equations (1) and (2) represent the basis for the derivation of the FFPLL
operating equations, which are outlined in the following part of the paper.

Ûα(s) =
Kssωest

s2 + Kssωest + ω2
est

U(s) (1)

Ûβ(s) =
Ksω2

est
s2 + Kssωest + ω2

est
U(s) (2)

As it was shown in [1], for s = jωestÛα(jωest) is equal to Û(jωest), while Ûβ(jωest) is
orthogonal with Û(jωest). However, for the input signal frequency ω 6= ωest this is not the
case, which is of special interest for the FFPLL applications.

Namely, in order to avoid the PLL operation with the adaptive SOGI filter, the SOGI
rated frequency is fixed to the reference value ωn (usually equal to 2π50 rad/s), with the
corresponding PLL structure outlined in Figure 2, which includes the fixed-frequency SOGI
filter (FFSOGI) [7,8].
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Figure 2. The basic structure of FFPLL1.

Figure 2 presents the FFPLL1 structure, where ωn represents the rated SOGI frequency,
while θffpll represents the resulting estimated phase angle value. The main features of the
FFPLL1 are outlined by analyzing the following Equations (3) and (4) of the FFSOGI output
signals in Figure 2.

Gα(s) =
Ûα(s)
U(s)

=
Kssωn

s2 + Kssωn + ω2
n

(3)

Gβ(s) =
Ûβ(s)
U(s)

=
Ksωnωest

s2 + Kssωn + ω2
n

(4)

In (3), Gα(s) represents the transfer function from the PLL input to the α axis output,
while Gβ(s) represents the transfer function from the PLL input to the β axes output. By
analyzing (3) and (4), it can be concluded that for s = jωestÛα(jωest) and Ûβ(jωest) are
orthogonal, which enables the PLL to estimate successfully the PLL input signal frequency.
However, there is a phase angle error ∆ϕ (5) between Ûα(jωest) and Û(jωest), which results
in the erroneous PLL output phase angle estimate θest, which is consequently corrected.

Consequently, for ωest ∼= ωn the (5) is in [7,8] approximated by

∆ϕ = Gα(jωest) (5)

∆ϕ = −ω2
est −ω2

n
Ksωestωn

(6)

Finally, the resulting FFPLL1 phase angle estimate is equal to θffpll = θest − ∆ϕ. How-
ever, the shortcoming of (6) is that it is not accurate for ωest, which differs significantly
from ωn.

In order to avoid the aforementioned phase angle compensation (6), the FFPLL2 [8]
structure is proposed, outlined in Figure 3, which according to [8] statically and dynamically
corresponds to the derivative element (DE) based single-phase PLL [13].
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In Figure 3, Vcos and Vsin represent unity orthogonal signals, generated by the FFSOGI
for the input signal cos(θest). However, although FFPLL2 in Figure 3 generates accurate
frequency and phase angle estimates for ωest 6= ωn, it is more complex to implement.

In the next section, the improved FFPLL1 structure is proposed.

3. Improved FFPLL1 Structure

In this section, the improved FFPLL1 structure is proposed, which is based on the
accurate phase estimation error correction. Also, two additional FFPLL structures are
proposed–the first with the input signal DC offset compensation and the second with the
separation of the positive sequence component in the FFPLL input.

3.1. Improved Correction of the Phase Angle Estimated by FFPLL1

In order to enable accurately estimated phase angle correction instead of (6), the exact
correction factor is calculated based on (5). Namely, from (6) the following correction (7) of
the phase angle estimated by FFPPL1 is proposed.

∆ϕ2 =
π

2
− atan

(
Ksωestωn

ω2
est −ω2

n

)
(7)

However, it may be argued that the estimated phase angle correction (7) is more
complex to implement on the contemporary microcontroller and DSP platforms compared
with (6). Nevertheless, modern general purpose and specialized floating-point microcon-
trollers and DSP control platforms enable fast implementation of (7) in real time, which
enables Equation (7) to be easily employed in different PLL applications. Consequently, the
resulting modified FFPLL1 structure is outlined in Figure 4a.
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Figure 4. The (a) FFPLL1 structure with improved estimated phase angle correction, (b) comparison
between the conventional (5) and new (7) FFPPL phase compensation, calculated for ωest = 314 rad/s
and (b) Ks = 0.5, (c) Ks = 1, (d) and Ks = 2.

In Figure 4b–d, the comparison is outlined between the phase compensation factors
in conventional FFPLL solutions (5) and proposed compensation factor (7), calculated for
ωest = 314 rad/s and Ks = 0.5 in Figure 4b, Ks = 1 in Figure 4c, and Ks = 2 in Figure 4d
(which are values typically used in SOGI based PLL design). It shows that the FFPLL1
with new phase compensation (7) enables accurate FFPLL operation for any FFSOGI fixed
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resonant frequency value ωn, while the conventional FFPLL with approximated phase
compensation (5) operates accurately only when the FFPLL input signal frequency (i.e.,
the estimated frequency value ωest is equal to ωn) with the estimated phase angle error
increasing with the increase of the difference between ωn and ωest.

In the following subsection, the FFPLL parameter tuning procedure is outlined.

3.2. FFPLL1 Parameter Tuning Procedure

In order to propose the FFPLL1 parameter design procedure, the corresponding small-
signal model needs to be devised. Consequently, in [7] the model is developed, which is
presented in Figure 5.
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Figure 5. The small-signal model of FFPLL1.

In Figure 5, θ represents the FFPPL1 input signal phase angle, while τd represents the
equivalent FFSOGI time constant τd = 2/(Ksωn). Based on the diagram in Figure 5, the
following FFPLL1 closed-loop transfer function Gpll(s) (8) can be derived.

Gpll(s) =
1

sτd + 1
Kps + Ki

s2 + Kps + Ki
(8)

In (8), the Gpll(s) pole p1 = −1/τd depends on the FFSOGI parameters (τd = 2/(Ksωn)),
while the remaining two poles can be tuned by Kp and Ki. If the FFPLL1 is designed with
poles p1 = −1/τd, and p2,3 = −apll, the following PLL parameter values (9) and (10) are
obtained. The FFSOGI parameter Ks is

Ki = a2
pll (9)

Kp = 2apll (10)

Furthermore, based on the analysis provided in [7,8], it can be concluded that much faster
PLL dynamic performance can be achieved by FFPLL than by the PLL based on the variable
frequency SOGI, based on the comparison of their corresponding small-signal models.

In the following subsection, the modification of FFPLL1 is presented, which enables
the FFPLL operation with the DC offset present in the PLL input signal.

3.3. The FFPLL Modification with the DC Offset Compensation

In order to enable variable frequency SOGI operation with the DC offset present at
the input, the SOGI with integrator (ISOGI) structure, accompanied by the corresponding
parameter tuning procedure, is presented in [2], and in the following Figure 6.
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Based on Figure 6, the following transfer functions (11)–(12) are derived from the
ISOGI input to the corresponding outputs.

Gα2(s) =
Ûα(s)
U(s)

=
Ksωests2

s3 + (Kdc + Ks)ωests2 + ω2
ests + Kdcω3

est
(11)

Gβ2(s) =
Ûβ(s)
U(s)

=
Ksω2

ests
s3 + (Kdc + Ks)ωests2 + ω2

ests + Kdcω3
est

(12)

If the fixed frequency ωn is to be employed in ISOGI (FFISOGI), the following FFISOGI
equations are obtained.

Gα3(s) =
Ûα(s)
U(s)

=
Ksωns2

s3 + (Kdc + Ks)ωns2 + ω2
ns + Kdcω3

n
(13)

Gβ3(s) =
Ûβ(s)
U(s)

=
Ksω2

ns
s3 + (Kdc + Ks)ωns2 + ω2

ns + Kdcω3
n

(14)

From (13) and (14), it can be concluded that Ûα and Ûβ are mutually orthogonal, which
enables them to be used in a PLL for the input signal U frequency and phase estimation.
However, based also on (13) and (14), it can be concluded that the amplitude of Ûβ(s) needs
to be corrected by the factor ωest/ωn, as, also, the phase error ∆ϕ3 = ∠Gα3(jωest) (15) needs
to be compensated, which is introduced by both (13) and (14), because U(s) and Ûα(s) are
not in phase.

∆ϕ3 = π − atan
[

ωestω
2
n −ω3

est
Kdcω3

n − (Kdc + Ks)ωnω2
est

]
(15)

Consequently, the following FFPLL1 with DC offset compensation is proposed in
Figure 7.

Regarding the small-signal modeling and parameter tuning procedure of the FFPLL1
in Figure 7, it is based on the analysis outlined in [14]. Namely, it shows that the modified
SOGI with DC offset compensation from Figure 6 has the same small-signal model as the
conventional SOGI from Figure 1a (the first order single pole transfer function with time
constant τp in Figure 5), and that in both cases SOGI parameters can be tuned a way that
results with the same small-signal model time constant τp values.



Energies 2022, 15, 7297 8 of 15

Energies 2022, 15, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 6. The PLL with the ISOGI orthogonal signal generator. 

Based on Figure 6, the following transfer functions (11)–(12) are derived from the 

ISOGI input to the corresponding outputs. 

𝐺𝛼2(𝑠) =
𝑈̂𝛼(𝑠)

𝑈(𝑠)
=

𝐾𝑠𝜔𝑒𝑠𝑡𝑠2

𝑠3 + (𝐾𝑑𝑐 + 𝐾𝑠)𝜔𝑒𝑠𝑡𝑠2 + 𝜔𝑒𝑠𝑡
2 𝑠 + 𝐾𝑑𝑐𝜔𝑒𝑠𝑡

3  (11) 

𝐺𝛽2(𝑠) =
𝑈̂𝛽(𝑠)

𝑈(𝑠)
=

𝐾𝑠𝜔𝑒𝑠𝑡
2 𝑠

𝑠3 + (𝐾𝑑𝑐 + 𝐾𝑠)𝜔𝑒𝑠𝑡𝑠2 + 𝜔𝑒𝑠𝑡
2 𝑠 + 𝐾𝑑𝑐𝜔𝑒𝑠𝑡

3  (12) 

If the fixed frequency ωn is to be employed in ISOGI (FFISOGI), the following 

FFISOGI equations are obtained. 

𝐺𝛼3(𝑠) =
𝑈𝛼(𝑠)

𝑈(𝑠)
=

𝐾𝑠𝜔𝑛𝑠2

𝑠3 + (𝐾𝑑𝑐 + 𝐾𝑠)𝜔𝑛𝑠2 + 𝜔𝑛
2𝑠 + 𝐾𝑑𝑐𝜔𝑛

3
 (13) 

𝐺𝛽3(𝑠) =
𝑈𝛽(𝑠)

𝑈(𝑠)
=

𝐾𝑠𝜔𝑛
2𝑠

𝑠3 + (𝐾𝑑𝑐 + 𝐾𝑠)𝜔𝑛𝑠2 + 𝜔𝑛
2𝑠 + 𝐾𝑑𝑐𝜔𝑛

3
 (14) 

From (13) and (14), it can be concluded that 𝑈̂𝛼 and 𝑈̂𝛽 are mutually orthogonal, 

which enables them to be used in a PLL for the input signal U frequency and phase es-

timation. However, based also on (13) and (14), it can be concluded that the amplitude of 

𝑈̂𝛽(𝑠) needs to be corrected by the factor ωest/ωn, as, also, the phase error Δφ3 = ⎿Gα3(jωest) 

(15) needs to be compensated, which is introduced by both (13) and (14), because U(s) 

and 𝑈̂𝛼(𝑠) are not in phase. 

Δ𝜑3 = 𝜋 − atan [
𝜔𝑒𝑠𝑡𝜔𝑛

2 − 𝜔𝑒𝑠𝑡
3

𝐾𝑑𝑐𝜔𝑛
3 − (𝐾𝑑𝑐 + 𝐾𝑠)𝜔𝑛𝜔𝑒𝑠𝑡

2 ] (15) 

Consequently, the following FFPLL1 with DC offset compensation is proposed in 

Figure 7. 

 

Figure 7. The improved FFPLL1 with the DC offset compensation. Figure 7. The improved FFPLL1 with the DC offset compensation.

Finally, since in both SOGI cases outlined in Figures 1a and 5 the resulting small-signal
models are the same we concluded that the same small-signal models can be obtained
for both FFPLL cases—the first in Figure 4 that is based on conventional SOGI, and the
second in Figure 7 that is based on the SOGI with DC offset compensation. Consequently,
in both cases, the same small-signal model outlined in Figure 5 is used, together with the
corresponding FFPLL1 parameter tuning procedure outlined in Section 3.2.

In the following subsection, the FFPLL is presented based on the positive sequence
separation from the PLL input signals.

3.4. The FFPLL Based Synchronization with the Positive Sequence

Because FFSOGI generates mutually orthogonal signals, substantiated by Equations (3)
and (4), it can be concluded that a similar structure can be used for the positive sequence
separation based on FFPLL as in the conventional variable frequency SOGI based PLL
structures [14].

Consequently, the corresponding PLL structure is presented in Figure 8, where Uα and
Uβ represent α and β PLL input signal components, Û′α, Û′′α , Û′β, and Û′′β auxiliary PLL

signals, Û+
α and Û+

β estimated positive sequence components, while the FFSOGI structure
employed is as already outlined in Figure 4.
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4. Results of Simulation Runs

In this section, the results of simulation runs are presented for the improved FFPLL1
structure and for FFPLL1 application in a PLL structure with input DC offset compensation,
as well as for the case of the FFPLL application in the PLL synchronization with the positive
sequence component of the input signal.

4.1. Simulation of the Improved FFPLL1

In this subsection, simulation results of the PLL structure from Figure 4 are presented for
three different FFSOGI Ks parameter values. Namely, in [1] the relation between the Ks value
and the equivalent SOGI time constant τd = 2/(Ksωn) in (8) is established, with the value
Ks = 2 recommended for practical SOGI application. However, based on Equations (8)–(10),
it can be concluded that FFPLL1 PI controller parameter values Kp and Ki can be chosen
independently from Ks by means of (9)-(10) and by using the designated bandwidth value
apll of the closed-loop section of the FFPLL1. Consequently, the following three apll values are
chosen, with the corresponding Kp and Ki values calculated by using (9) and (10), for Ks = 2:
(i) apll = ωn = 314 rad/s with Ki = 98 × 103 and Kp = 628, (ii) apll = 2ωn = 628 rad/s with
Ki = 394 × 103 and Kp = 1256, and (iii) apll = 3ωn = 942 rad/s with Ki = 887 × 103 and
Kp = 1884.

By analyzing the simulation results in Figure 9, it can be concluded that for step
input signal frequency variation ∆ωe = 31.4 rad/s, the improved FFPLL1 successfully
estimates the input signal frequency in Figure 9a, while the accurate phase angle error
compensation is performed by (7), which is illustrated in Figure 9b. Also, based on the
estimated frequency and phase responses, it can be concluded that their settling times
correspond to the designated bandwidth frequency of FFPLL1 in Figure 5 (for τd = 2/(Ksωn)
= 1/314 s = 3.1 ms, and for three corresponding apll values). Furthermore, in all three cases,
the FFPLL1 settling times (between 12 and 20 ms) are significantly faster compared with
the PLL with frequency adaptive SOGI [2], which commonly has settling times in the range
from 40 to 50 ms for ωn = 2π50 rad/s.
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Figure 9. The estimated phase angle error (a) ∆θest and estimated frequency (b) ωest for three different
apll values, for step input signal frequency ωe variation.

In Figure 10, improved FFPLL1 estimated phase angle and frequency values are
presented for the step variation ∆θe = 0.5 rad of the input signal phase angle value. The
simulation results show that similar response times are achieved to the results presented in
Figure 9, which correspond to the three different PLL apll parameter values.
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4.2. Simulation of the Improved FFPLL1 with DC Offset Compensation

In this subsection, simulation results are presented of the FFPLL1 with the DC offset
compensation outlined in Figure 7. Firstly, it is necessary to determine the FFISOGI
parameter values Ks and Kdc. This is performed by [15] with the following values proposed
for FFISOGI parameters: Ks = 1 and Kdcωn = 85, for ωn = 314 rad/s, resulting in Kdc = 0.27.

In Figure 11, the simulation results of an FFPLL with the input signal DC offset
compensation are presented, for the input signal frequency step change ∆ωe = 31.4 rad/s.
By analyzing the estimated frequency and phase angle responses, the following conclusions
can be drawn: (i) that the FFPLL settling times that are in the range tset = 30–37 ms
correspond to designated apll and to FFISOGI dynamics (which based on [15] has the time
constant τISOGI = 8–10 ms for Ks = 1, and KDC = 0.27), and (ii) that the estimated phase
angle correction (15) works correctly.
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In Figure 12, the FFPLL simulated responses are presented for the DC offset equal to
0.5 V introduced at the PLL input. The simulation results show that a similar frequency
and phase angle estimation times are achieved as in Figure 11, and that FFPLL with
FFISOGI successfully compensates the DC offset while accurately estimating the input
signal frequency and phase angle values.
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4.3. Simulation of the Improved FFPLL with the Input Signal Positive Sequence Separation

In this subsection simulation results of the FFPLL with the positive sequence outlined
in Figure 8 are presented, with the asymmetrical input signals. This is achieved by intro-
ducing the sinusoidal signal with the frequency ωe at the input Uα and zero signal at the
input Uβ.

The simulation tests with the results outlined in Figure 13 are performed for the same
set of FFSOGI and PLL parameter values as in the simulation runs in Section 4.1. By
analyzing the results in Figure 13 it can be concluded that the FFPLL in Figure 8 success-
fully separates the positive sequence component from the input signals and estimates its
frequency and phase angle with the settling times in the range tset = 10–15 ms, which are
similar to the results achieved in Section 4.1 (which should be expected since the structures
in Figures 4 and 8 have the same dynamic characteristics).
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different apll values, for the FFPLL with the positive sequence separation.

In the following section, the results of a wide range of experimental tests are presented
and analyzed.

5. Experimental Tests

In this section the results of experimental tests are presented, obtained by an experi-
mental setup comprising components outlined in Figure 14 below.

The experimental setup comprises the programmable signal generator used to emulate
the grid voltage signal, a floating-point digital signal processor (DSP) TMS320F28335 based
control card used to implement the FFPLL, and personal computer (PC) running software
for real-time signal acquisition and FFPLL parameter settings.

The following subsections present the experimental results of three different
FFPLL applications.
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Figure 14. Experimental setup, (a) programmable signal generator, (b) TMS320F28335 microcontroller
based PLL platform, (c) PC used for the experimental data acquisition.

5.1. Experimental Tests of the FFPLL1 in Figure 4

This subsection details the experimental tests of the FFPLL structure in Figure 4, for
the three sets of parameters apll calculated in Section 4.1, Ks = 2, and nominal frequency
value ωn = 314 rad/s outlined in Section 4.1.

By analyzing the results of the experimental tests presented in Figure 15 (for 31 rad/s
step frequency variation in (a), and 0.5 rad step phase angle change in (b)), it can be
concluded that the estimated frequency settling times in the range tset = 15–20 ms are
achieved, which are similar to the simulation results in Section 4.1 for the same FFPLL1
structure in Figure 4.
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Figure 15. The estimated frequency for (a) input signal frequency step variation 31 rad/s, and for (b)
input signal step phase angle variation 0.5 rad, for the FFPLL in Figure 4, for three different values of
PLL parameters apll and Ks = 2, for nominal FFPLL frequency ωn = 314 rad/s and for input signal
frequency ωe = 314 rad/s.

5.2. Experimental Tests of the FFPLL1 in Figure 7

In this subsection the experimental tests of the FFPLL1 structure in Figure 7 are
presented, for three different apll values, Ks = 1, KDC = 0.27, and for nominal frequency
ωn = 314 rad/s.

In Figure 16 the results of experimental tests are presented comprising the responses
for a 31 rad/s step frequency change in (a), 0.5 rad step phase angle change in (b), and
a DC offset introduced at the FFPLL input in (c). In all three cases, estimated frequency
settling times in the range tset = 30–35 ms are achieved, which corresponds to the results in
Section 4.2, which include the simulation of the same FFPLL structure in Figure 7 for the
same set of parameters.
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Figure 16. The estimated frequency for (a) input signal frequency step variation 31 rad/s, and for
(b) input signal step phase angle variation 0.5 rad, and (c) for DC offset introduced at the FFPLL
input, for the FFPLL in Figure 7, for three sets of PLL parameters apll, nominal FFPLL frequency
ωn = 314 rad/s and for input signal frequency ωe = 314 rad/s.

5.3. Experimental Tests of the FFPLL1 in Figure 8

In this subsection, experimental results for the FFPLL structure in Figure 8 are pre-
sented, for three different apll values calculated in Section 4.1, and for Ks= 2.

By analyzing the experimental results in Figure 17 (obtained for 31 rad/s input fre-
quency step variation in (a), for 0.5 rad step input phase angle variation in (b), and for the
nominal frequency value ωn = 314 rad/s), it can be concluded that in both cases (a) and (b)
the estimated frequency settling times tset = 10–15 ms are achieved, which are similar to the
corresponding simulation results in Section 4.3.
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Figure 17. The estimated frequency for (a) input signal frequency step variation 31 rad/s, and for (b)
input signal step phase angle variation 0.5 rad, for the FFPLL in Figure 8, for three different values of
PLL parameters apll and Ks = 2, for nominal FFPLL frequency ωn = 314 rad/s and for input signal
frequency ωe = 314 rad/s.

6. Conclusions

In this paper, an improved fixed frequency PLL is presented, with the proposed
contribution comprising the modified algorithm for the compensation of the estimated
phase angle value, which is typically required by an FFPLL. The analysis outlined in
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the paper shows that the novel FFPLL enables accurate phase angle estimation for any
combination of the fixed FFSOGI resonant frequency value ωn and estimated input signal
frequency ωest, while the conventional FFSOGI operates accurately only for ωn = ωest, with
the phase angle estimation error increasing with the difference between ωn and ωest. Also,
the corresponding FFPLL parameter tuning procedure is proposed and tested by a series
of simulation and experimental tests. Three different FFPLL applications are examined:
(i) single-phase PLL with no DC offset at the input, (ii) single-phase PLL designed to
compensate a DC offset at the input, and (iii) PLL designed to separate a positive sequence
component and to estimate its phase angle and frequency. For all three cases, corresponding
simulation and experimental tests were performed, for three sets of FFPPL parameters,
and for step variations of the input signal frequency, phase angle, and a DC offset. Both
simulation and experimental tests verified the proposed method’s dynamic and static
performance, with improved dynamic performance compared to the conventional adaptive
filter based single-phase PLL applications. In a global context, by the method outlined in
the paper, the existing frequency non-adaptive FFPLL algorithms (which are dynamically
superior to conventional frequency adaptive PLL solutions) were further improved, by
enabling analytically accurate phase angle estimation in the simplest FFPLL1 case.
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