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Abstract: The power systems of today seem inseparable from clean energy sources such as wind tur-
bines (WTs) and photovoltaics (PVs). However, due to their uncertain nature, operational challenges
are expected when WT and PV energy is added to the electricity network. It is necessary to introduce
new technologies to compensate for the intermittent nature of renewable energy sources (RESs).
Therefore, rationally implementing a demand response (DR) program with energy storage systems
(ESSs) in a virtual power plant (VPP) environment is recommended as a way forward to minimize
the volatile nature of RESs and improve power system reliability. Our proposed approach aims to
maximize social welfare (SW) (i.e., maximization of consumer benefits while minimizing energy
costs). Our method assesses the impact of the DR program on SW maximization. Two scenarios
are examined, one with and one without a DR program. Stochastic programming theory is used to
address the optimization problem. The uncertain behavior of WTs, PVs, and load demand is modeled
using a scenario-based approach. The correctness of the proposed approach is demonstrated on a
16-bus UK generic distribution system. Our results show that SW and active power dispatch capacity
of WT, PV, and ESS are fairly increased using the proposed approach.

Keywords: virtual power plant; uncertainty modeling; renewable energy sources; climate change;
electricity market; stochastic programming; social welfare

1. Introduction

The fraction of RESs has significantly increased over recent years as a result of the
growing global concern about climate change. The benefits of RES are twofold: first,
they do not contribute to the environment’s carbonization, and second, they do not cause
the warming effects of carbon emissions. Organizations, researchers, academics, and
scientists are paying close attention to the migration of traditional energy systems into non-
traditional energy systems. This is due to the prevalence of RESs, which are environmentally
friendly, pollution-free, and possible to locally manage. To incentivize investment into
RES development, a number of countries, particularly the US, the UK, Australia, China,
Germany, and Europe, have sponsored incentive-based DR programs. Enabling these
small-scale power providers to exchange electricity or offer ancillary services to power
networks, minimizes the strain on the grid during peak hours. Hence, improving the
reliability of power systems [1-5].

However, integrating RESs into the energy market is rather challenging. The effec-
tiveness of RESs, particularly WTs and PVs, is significantly impacted by climate change.
Their generation is unreliable, intermittent, and constrained by location. As a result, the
operating efficiency of the electricity system could suffer, leading to grid instability [6-10].
Moreover, RES generation is typically limited, especially when considering PVs, which
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have a maximum output of 10 kW. This makes it challenging to predict whether RESs will
be able to keep up with the stated schedule of the power market.

To overcome these challenges, the concept of a VPP was put into practice. A VPP
is a flexible decentralized network of interconnected small to medium power generating
units, controlled by a single centralized system. The units could be power sources (such
as WT, PV, hydro, biogas, and CHP), power consumers, DR, and energy storage systems.
The VPP operator monitors and manages all of the network’s aggregated assets using
a centralized control algorithm. The aim of the VPP is to jointly estimate, deliver, and
trade the power and flexibility of the assets in the day-ahead energy market. Therefore,
small units gain access to the market which would be inaccessible on their own. Although
a DR can be described as a shift in the consumer’s energy usage to better balance the
demand and supply for energy, it is a viable method of minimizing peak demand. Our
literature review includes several studies that support the concept of DR programs under
the umbrella of VPPs and show that so implementing these programs has both technical
and financial advantages.

A VPP is a fairly new phenomenon that brings together the capacity of renewable and
non-renewable energy sources, storage technologies, and CLs to operate in the day-ahead
energy market to improve system reliability. It also improves grid reliability by providing
utilities with additional distribution-level operational capacity. Therefore, implementing
a DR program with ESS is anticipated to have far-reaching positive effects on SW, WTs,
PVs, and ESS active power generation and delivery ability. There has been limited prior
research done about market-based operational planning of a MB-VPP in the context of
the electricity market. Very limited papers have committed to modeling the operational
planning problem of VPPs. In this study, we designed and developed a market-based VPP
energy trading model with a DR program and ESS that participate in the day-ahead energy
market to maximize SW in the context of the energy market environment. The VPP under
consideration is made up of a DR scheme, distributed energy resources (DERs), energy
storage technologies, and CLs. The scheduling problem determines how much energy will
be traded one day ahead of time in the market. In this study, two scenarios are examined,
one with and one without a DR program. A scenario-based method is applied to model
the uncertainties of WTs, PVs, and load demand. The correctness of the proposed model
and approach is demonstrated on a 16-bus UK generic distribution system. This method
evaluates the impact of a DR program on SW, WTs, PVs, and ESS and their active power
dispatch ability to the load demand over the planning horizon to maximize SW.

1.1. Literature Review

We describe some of the pertinent and closely related work that has been highlighted
and proposed in the existing literature to date. The ability of the priced-based DR program
was investigated by the authors of [11] to adjust the supply and demand imbalance for the
short term. The authors of [12] analyzed the effects of the DR program with ESS on the
operational challenges of renewable energy sources. The goal of the study was to reduce
operational costs, and it was observed that DR with ESS had a favorable impact on the
operational challenges of renewables. With regard to demand response and uncertainties,
a risk-based stochastic mechanism for scheduling the energy of a VPP is proposed in
Ref. [13]. An optimal bidding strategy of a VPP that participates in the day-ahead power
market has been proposed by the authors of [14] in order to reduce costs for consumers.
The authors of [15] have evaluated the energy trading model of a VPP that consists of
dispatchable and non-dispatchable energy sources, electrical loads, and energy storage
technologies. Maximizing SW was the main objective, but this ignored the uncertainty of
RESs. The authors of [16] examined the interactive characteristics of a VPP in distribution
systems that offer flexible support services. Minimizing the operational cost function was
the main objective; however, the authors disregarded renewable energy uncertainty. In [17],
the authors presented a method for market transactions that included VPP participation
and assessed the value of VPP cooperation. However, they disregarded the uncertainties
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of distributed generators (DGs). Due to uncertainty, the anticipated output of a VPP
may deviate from the actual generation. As a result, the VPP’s actual profit may be
lower than its expected profit. Therefore, it is important to take DG uncertainties into
consideration. Hybrid AC-DC microgrid operational planning has been examined by the
authors of [18], taking into account the uncertainties associated with photovoltaics, wind
turbines, and electrical loads. Maximizing SW was the main objective. However, the
authors overlooked the significance of energy storage systems in the case of renewable
generation. The authors of [19] examined the effect of concentrating solar power plants on
some other renewable production. The results demonstrate that a renewable system can
minimize demand variation and also minimize generation costs. However, the electricity
market is disregarded in this study. The authors of [20] evaluated the role of a DR program
in the electricity market to minimize peak load demand. However, the importance of
uncertainty modeling is often underestimated in the presence of renewable generation,
which may lead to differences between estimated and actual output. The authors of [21]
proposed a two-stage stochastic programming approach for supporting sustainable power
systems under uncertainty. Their methods included minimizing system costs, lowering
pollutant emissions, and improving power system reliability. However, the significance of
ESS was overlooked. Table 1 shows the comparison of the proposed model with the body
of existing literature.

Table 1. Comparison of the proposed method with existing literature.

Reference Mani{gEeSment DR Model N][Eosdsel lli/rll(fgztlaii:gty hljl(;:“{f:t SW
[11] Yes Yes No No No No
[12] Yes Yes Yes Yes Yes No
[13] Yes Yes Yes Yes Yes No
[14] Yes Yes Yes No Yes No
[15] Yes Yes Yes No Yes Yes
[16] Yes Yes Yes No Yes No
[17] Yes Yes Yes No Yes Yes
[18] Yes No No Yes Yes Yes
[19] Yes Yes Yes Yes No No
[20] Yes Yes No No No No
[21] Yes No No Yes No No

This paper Yes Yes Yes Yes Yes Yes

1.2. Contributions and Study Layout
The following are the key contributions of this work regarding the reviewed literature:

e  To design a market trading mechanism for a VPP that trades in the day-ahead energy
market with the integration of a DR program and ESS;

e  To develop a market-based computationally efficient model for a VPP that operates in
the day-ahead market;

e  To perform a comparative analysis of a case study to demonstrate the effectiveness of
the proposed strategy by thoroughly assessing the simulation results.

The remaining layout of this paper is organized as follows: Section 2 describes the
aim and methodology of the proposed study. A model of the uncertainties associated with
wind speed, solar irradiation, and load demand is presented in Section 3. Section 4 presents
the VPP market model. Classification of the demand response program is presented in
Section 5. Problem formulation, a case study, and simulation results are provided in
Section 6. Section 7 provides concluding remarks.
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2. Methodology

The primary objective of this study was to optimize the social welfare of a VPP in
the electricity market by integrating a DR program into the proposed model, as shown in
Figure 1 Market-based optimal power flow is used to evaluate and solve the operational
planning problem of a VPP within the power market. The proposed approach evaluates
the effect of the controllable loads participating in the DR program, and its impact on
maximizing social welfare and on the active power generation and delivery ability of WTs,
PVs, and ESS to the load demand over the planning horizon. The DR program and ESS are
good alternatives for resolving the supply and demand imbalance, alleviating the impact
of the uncertainties associated with renewable energy sources, as well as mitigating load
demand during peak hours. Figure 1 shows a stepwise solution approach to the problem.
The stochastic programming approach is used to initialize hour f and gather historical data
on the market price, renewable generation, ESS, and load demand. Price-responsive CLs
are willing to sell their load curtailment services to VPP operators for the current hour ¢t and
the remaining hours of the day. The uncertain behavior of WTs, PVs, and load demand is
modeled using a scenario-based approach. The aim of the objective function is to maximize
social welfare in (10), subject to the equality and inequality constraints of the system. The
correctness of the proposed model and approach is demonstrated on a 16-bus UK generic
distribution system. Results of the case study show that SW and active power dispatched
by WT, PV, and ESS are fairly increased with a DR approach.

|  Uncertainties |

. Renewable generation
Load

. Energy storage system
. Electricity market

. Demand response

Preliminary information ——»

ORWONE

| Modeling |

\ 4
Scenario generation ——» Scenario tree approach

I Objective function I

—» Social welfare Maximization

\4
Stochastic optimization —|

| Constraints |
1. Operational and temporal

> of generators
2. Market interaction

3. Charge/discharge of ESS

\ 4 | Results ]

Optimal strategy > glnrglu;saigon and case study

Figure 1. Optimization solution.

3. Uncertainty Modeling

A scenario-based approach was used to model the uncertainties related to solar irradi-
ation, wind speed, and load demand, where a scenario was defined as a possible realization
of an uncertain parameter [1,15]. The probability density function (PDF) was used for each
solar irradiation, wind speed, and load demand to generate 24 scenarios.
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3.1. Wind Speed Modeling

The wind speed variation in a specific area was modeled using the Weibull PDF [1,18,21].
The PDF function that correlates the wind speed and the WT module output power is ex-

pressed by (1). ) . .
rorto = (£)(2) w9 »

where v, ¢, and k represent the wind speed, Weibull PDF scale index, and shape index,
respectively. Therefore, the WT module output power can be examined by employing its
power curve [22-24].

In Equation (2), The Py, and P,y represent the WT output power and rated power,
respectively. v, and v, represent the cut-in and cut-out speed, respectively. The rated
speed of WT is represented by v,. Figure 2 shows the wind speed power curve of WT.

0/ 0 S v S (-
V=V
P t(V) _ Prated, X vrﬂffcli’ Ve Sv <, o
’ Prated, vy < v < Vg
0, Veo SV

A

P rated

Generated power of
wind turbine in kW

\/

Wind speed (v) in (m/s)
Figure 2. WT speed power curve.

Therefore, the output power of the WT module at bus i and scenario w can be expressed
as follows:
0 < Piy < i x P, ®)

irated

where 7% is the percentage of active power generated by the WT.

3.2. Modeling of Solar Irradiance
Beta PDF was employed to model solar irradiance, as follows:

4)

T'(a+B) w g1 w (1 _S)ﬁ_l, 0<s<1,0< D‘/ﬁ
0 else

PDE(S) = { T(@)+T(B)

The solar irradiance (in kW/m?) was represented by S. The Beta PDF parameters (i.e.,
« and B) were determined as follows:

ﬁ—a—wx(”x“‘”—Q 5)

o2
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X
—kxP ©
K
where i and ¢ denote the mean value and the standard deviation. Solar irradiation and
ambient temperature were the key parameters in determining the PV module output power,
expressed by using Equations (7) and (8) [25-27].

o

G
Ppy = PSTc{loo [1+0(Teenr — 25)] } )
NOCT - 20
Tcell = Tamh + (800) G (8)

where Ppy and Psrc denote the PV module output power in kilowatts and power under
standard test conditions in MW, respectively. The power temperature coefficient in (%/°C)
is denoted by d. The cell temperature in °C is represented by T,;;. The ambient temperature
in °C is represented by T,,,;,, and the nominal operating temperature of the cell in °C is
represented by NOCT. G denotes solar irradiance in W/ m? [28,29].

3.3. Load Demand Uncertainty Modeling

The load demand for each bus was modeled using the normal PDF function. The
normal distribution PDF for undetermined load / is given by (9), as follows:

2
PDE(l) = Uliﬂ X exp [— <(l;i‘l)>] )

where 07 is the standard deviation and y; is the mean value [30-33].

4. Proposed Market Model and Method Description

The VPP brings together different distributed energy technologies in the electrical
market to improve operational performance and reliability of the power system. In our
proposed model, we postulated that we would centrally manage all trading operations
taking place inside the VPP structure. Electric energy could be sold and bought on the day-
ahead market one day before the scheduled delivery date. Sellers and buyers could present
their offers to the market operators for participation in the day-ahead energy market. The
owner of the VPP that took part in the day-ahead market (DAM) presented their energy
bids and controlled the components of the aggregated bid in a way that maximized overall
social welfare. This established how much energy could be purchased or sold on the
electricity market. The proposed model is presented in Figure 3 and shows its interaction
with the electricity market. The VPP model comprised energy storage, electrical loads,
wind farms, photovoltaics, wind, and the DR program. In this study, a direct control
method was used to ensure that DERs were coordinated and represented effectively in
the market. Figure 4 demonstrates the performance of the VPP market strategy in the
day-ahead electricity market.
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Wholesale Energy
Market

Electricity? i Power
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Figure 3. Proposed VPP electricity market structure.

Forecasted | Day-ahead (DA)
Generation Market
, DA
WT Bids Settlement
VPP Day-ahead (DA)
PV > Bidding
DR &/ ?
ESS Retail Forecasted Load
Price

Figure 4. The VPP day-ahead market strategy.

5. Demand Response Programs

The two basic categories of DR programs are time-based and incentive-based programs.

This categorization is illustrated graphically in Figure 5.
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Direct Load Confrol (DLC)
Interruptible Curtailable services

Demand BiddingBuy back (DB)
Incentive Based Em ergency Demand Response
Program (EDRP)
Capacity Market Program (CMP)
Ancillary Service (A/S) Markets
Demand Response
Programs

F Time of use programs (TOU)
P Time-Based ‘ - Real Time Pricing (RTP)
Critical Peak Pricing (CPP)

Figure 5. Classification of demand response program [34].

5.1. Incentive-Based Programs

Incentive-based programs are sub-categorized into six sections, including (1) direct
load control, (2) interruptible/curtailable services, (3) emergency demand response, (4) de-
mand bidding, (5) capacity market, and (6) ancillary service market [34].

The direct load control (DLC) application allows the system operator to remotely
manage and alter client consumption. During power system emergencies, customers
participating in the “Interruptible/Curtailable” program are obligated to minimize their
consumption; otherwise, they risk being punished. In an emergency demand response
program, the system operator compensates users for reducing their energy consumption
when the system is under stressful conditions. In a demand bidding program, big clients,
such as generation corporations, can engage in power markets to gain financial benefits.
In the capacity market program, consumers are required to lower their pre-planned loads
or face penalties. Consumers in the ancillary service market program inform the system
operator of their intention to reduce their consumption. They can then compete in the
ancillary service sector as a reserve alternative [34].

5.2. Time-Based Programs

Time-based programs are sub-categorized into three sections, including (1) time of
use, (2) real-time pricing, and (3) critical peak pricing.

In a time-of-use program, energy prices fluctuate in line with load consumption. There
are generally three basic breakdowns of energy consumption; peak load periods have a high
energy price, whereas off-peak and valley periods have average and low prices, respectively.

Real-time pricing (RTP) programs are identical to TOU programs, the primary distinc-
tion is in the abundance of pricing ranges available through RTP.

Usage of the critical peak pricing program is limited to emergency circumstances.
These kinds of programs are helpful when the system is under heavy demand.

6. Objective Function

The purpose of the MB-VPP operational planning was to maximize SW in (10). It
jointly maximizes the well-being of the end-users and minimizes energy generation costs
over the planning horizon, which is represented as follows:
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D RID
LEL P, Costh + LE PP Cost

i tw

— LY Y PWIND.CostVIND — v 57y~ PPV .Cost!Y,
i tw i tw

MaximiseSW = itw Ltw itw Ltw (10)
DIS
DR DR Possiw pCH ) B
- Z ; % Pi,t,w ’ Incenti,t,w + (< DIS flca Pess,t,w> COStess,t,w)
1

where active power demand is represented by PL)  in the 1st term of the objective function

(10), and CostP,  represents its bid price that is charged to consumers. The 2nd term,

itw .
Pt%id, is the quantity of power exchanged with the grid and Cost%’d is the price of power
exchanged with the grid. Wind power generation and its production costs are represented

by the 3rd term, PI-VXL;N D Costivl\{ﬂ,\l D respectively. The 4th term, Pipt‘;) Costf tV w» Tepresents PV

power generation and its production cost. The 5th term, PEX 1 ncentﬂlio, represents the
demand response program active power reduction and the incentive price offered. The
last term of the objective function, ng/t,w / Pgs{ f,w, indicates the charging and discharging
of the ESS and its cost is represented by CostSL, . /CostllS | respectively. Charging and

ess,t,w ess,t,wrs

discharging efficiencies of the ESS is represented by n7cr/#pis.
6.1. Constraints
Wind turbine installed capacity: Equation (11) shows the maximum and minimum

installed capacity of WT generators.

PWINDfMIN < PWIND < P'WINDfMAX (11)

it,w it,w it,w

Photovoltaics installed capacity: Equation (12) represents the minimum and maximum
generation capacity of PV units.

PV—MIN PV PV—-MAX
Pi,t,w < Pi,t,w < Pi,t,w (12)

Maximum installed capacity: Equation (13) represents the maximum installed capacity
of both WTs and PVs.

G
pMAX _ NZ pWIND 4 pPV (13)

itw itw itw

The minimum and maximum permissible energy exchange between the upstream
grid and the VPP is limited by Equation (14).

GRID—MIN GRID GRID-MAX
Pt,w S Pt,w S Pt,w (14)
Demand response constraint: Equation (15) describes contribution from demand re-
sponse providers as a demand drop in each period of time and scenario.

DR—-MIN DR DR—-MAX
Pi,t,w =< Pl',t,w < Pi,t,w (15)
Voltage limits: Equation (16) represents the maximum and minimum limits of voltage

at each bus.

Energy storage system operation: The energy storage system operation is presented from
Equations (17) to (23).

0 < Pglh, < PEH -uf" (17)
0< Pe[s)sl,f,w < chsl,?,w 'utDIS (18)
EESS S SOCESS S HSS (19)

soc=0) = gJyTiAL (20)
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SOC(t=24) = fINAL (21)

UG +URl® <1 (22)

soc®) = soctV 4 yey PEH AL — ;71PtDISAt (23)
DIS

where the charging and discharging of the ESS is represented by PSH . and PRIS | respec-

ess,t,w ess,t,w’
tively. Maximum charging and discharging of the ESS are represented by Pe%ft,w / Pgs{ f/w,
respectively. USH and UL!S are binary variables, meaning that charging and discharging

of the ESS in the same time period is not allowed. Ecss/ Eess represents the maximum and

minimum energy store in the ESS. The initial and final energy storage levels in the ESS are
denoted by ENITIAL and EFINAL respectively. 57cpy and #7p;s represents the charging and
discharging efficiencies of the ESS. soct) represents the state of charge of the ESS.
Power balance constraint: Equation (23) represents the power balance constraint that
applies to each bus and must be satisfied. It means that the required generation of the VPP
and desired amount of power should be met.
Y PIIND LN piY + Y POR + PERIP 4 PR3 — PSE , > PR

1,t,w 1,t,w i,t,w = “itw

(24)

6.2. Case Study

We use a case study to illustrate the effectiveness of the proposed strategy and validate
the results. For numerical analysis, a generic 16-bus 33 kV UK generic distribution system
(UKGDS) was used. A 16-bus UKGDS single-line diagram is shown in Figure 6. During
normal operation, the VPP is connected to the main grid. The ultimate capability of PVs,
energy storage systems, and WTs are determined by applying optimal power flow over
the planning horizon. In this study, we made the assumption that the distribution network
consists of three PV and four WT units. In the distribution network, there are three PV
candidate buses with nominal generations of 440 kW, located at positions 12, 14, and 16,
and WT candidate buses located at positions 3, 6, 9, and 1,1 with a nominal generation of
660 kW [15]. The 200 kW energy storage system is installed at their chosen candidate bus
at position 15. The upper and lower voltage values are regarded as Vmax = 1.06 p.u. and
Vmin = 0.94 p.u [10]. The active power cost of the DR program is assumed to be 10 $/kW,
which is paid to consumers in order to lower load demand at each bus.

All the relevant data presented in [15,18] have been used with modest modifications for
our suggested model. In this study, we looked at the operational planning problem of VPPs
within the power market. A VPP operational planning problem in the energy environment
is approached in a novel way that maximizes SW while respecting the constraints of the
problem. In order to reduce the computational load and increase the efficiency and accuracy
of solving the problem, the number of scenarios in this study was restricted to 24. The
problem was formulated as a mixed-integer linear programming (MILP) problem using
a general algebraic modeling simulation (GAMS), optimization software [35,36], and the
CPLEX solver to produce the best outcomes.
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Figure 6. Single-line diagram of 16-bus UKGDS.

6.3. Simulation Results
Busbars with the highest power dispatch for each energy system is shown in Table 2.

Table 2. Two scenarios without and with DR.

Scenario
A Without demand response
B With demand response

This study considered two different scenarios to assess the influence of the DR scheme
on the VPP’s aggregated WT and PV dispatched active power, SW, and the energy storage
system, as indicated in Table 1. The total quantity of active power dispatched by WT, PV,
and the energy storage system were investigated and compared for scenarios A and B. The
total quantity of active power dispatched by WT and PV for scenarios A and B at each
candidate bus is shown in Figures 7 and 8. The total quantity of active power delivered by
WTs and PV is evidently higher in scenario B, with DR scheme integration, than in scenario
A. The justification of busbars with the highest power dispatch for each energy system is
shown in Table 3. The energy storage unit has two modes of operation: when energy price
is low, it operates as a load and stores energy, and when energy price is high, it operates as
a producer of energy and sells it on the market at a profit. Figures 9 and 10 illustrate that
scenario B, which employs a demand response strategy, had more charging and discharging
of the energy storage unit than in scenario A. This was because the DR scheme allowed for
the shifting of some loads to other low-demand periods. Furthermore, according to Figure 9,
the ES unit was scheduled to charge at times 1-6 and 12-17 h (off-peak hours). During these
hours, the ES unit was charged with a total of 49.3 kW of power. According to Figure 10,
the ES unit was scheduled to discharge during times 7-11 and 18-24 h (peak hours). The ES
unit discharged a total of 49.2 kW of power. The ESS performed well in terms of flattening
the load curve and improving grid stability. This mitigated the dependency of VPP on the
utility grid and also lowered its overall energy cost. The social welfare for both scenarios is
shown in Figure 11. As can be observed, the SW is greater in scenario B than in scenario
A. This is primarily attributed to DR scheme integration and the increased active power
dispatched in scenario B, which allowed for a higher SW.
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Figure 7. Total active power dispatched by WTs in all scenarios at candidate buses.
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Figure 8. Total active power dispatched by PVs in all scenarios at candidate buses.

Table 3. Busbars with highest power dispatch with justification.

Energy Busbar with Highest Active Busbar with Lowest Active

System Power Dispatch Power Dispatch Justification

Quantity of power dispatched by WTs at each
WTs Bus 6 Bus 9 bus was constrained by WT offer and bid prices,
as well as the thermal limits of the lines

Amount of power dispatched by PVs at each bus
PVs Bus 16 Bus 12 was restricted by the offer and bid prices of PVs,
as well as voltage limits at each bus
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Figure 9. Energy storage unit charging times.
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Figure 11. Social welfare for each scenario.

7. Conclusions

In this study, a new MB-VPP energy trading model was presented. It was composed
of RESs, controllable loads participating in the DR program, and ESS operating in the
day-ahead energy market. The proposed approach examined two different scenarios, one
with and one without controllable loads participating in the DR program. The impact of
both approaches on SW, WT, PV, and ESS active power dispatch and delivery capacity
to load was analyzed. A scenario-based method was applied to model the uncertainties
related to WTs, PVs, and load demand. The optimization problem was solved using a
CPLEX solver in the GAMS environment. The numerical simulation of the proposed model
demonstrated the effectiveness of the MB-VPP in supplying power to loads.

1. Theactive power dispatch capacity of WT and PV at each candidate bus was improved
by 3% in scenario B over the planning horizon, owing to the integration of the DR
program in the proposed model.

2. Similarly, the controllable loads participating in the DR program used in scenario B
also improved social welfare of the VPP by 3%.

3. The proposed approach could persuade end users to engage in the electricity mar-
ket to ease peak-period load on the power grid; therefore, contributing to power
system reliability.

Further research of environmental goals could be incorporated into the VPP configu-

ration in addition to pure economic optimization.
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