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Abstract: For propulsion systems using gel fuels, reducing the gel fuel viscosity is essential for achiev-
ing better atomization and combustion. In this paper, we investigate the flow and heat transfer in a
water-gel with a temperature and shear dependent viscosity. We consider several different channels,
mimicking the transport of gelled fuels in propulsion systems, and we also look at corrugation,
which is a way of enhancing fluid mixing and thus improving the heat transfer characteristics. The
rheological parameters in the constitutive model of the gel are fitted with experimental data. The
influence of different corrugation profiles, corrugation configuration parameters and the Reynolds
number on the mean apparent viscosity and the pressure drop are investigated. It was found that the
flow recirculation formed in the valley of the corrugations enhances the heat transfer and thus the
temperature of the main flow. We also noticed an increase in the pressure drop due to the stronger
viscous dissipation. Furthermore, it was observed that the sinusoidal corrugation can achieve lower
viscosity with a lower pressure drop compared with triangular and trapezoidal corrugations. A
shorter wavelength and a deeper wave amplitude of the corrugation seemed to be better for reducing
the gel fuel viscosity, while we must consider the adverse consequence of increased pressure drop.
A larger Reynolds number was helpful for both lowering the pressure drop and for reducing the
viscosity. In addition, compared with a smooth straight pipe, a Y-shape corrugated channel with a
constant inlet velocity reduced the mean apparent viscosity by 70.8%, and this value increased to
72.6% by further applying a pulsed inlet velocity, which can greatly enhance the gel fuel atomization
and thus improve the combustion efficiency.

Keywords: non-Newtonian fluid; gel fuels; viscosity reduction; wall corrugation; CFD; heat
transfer enhancement

1. Introduction

Gel fuel is one of the better options to meet the requirement of high performance
and safety for an aerospace propulsion system [1]. Gel fuel is a new kind of propellant
with special rheological properties, which is formed by adding gellants into the liquid
fuel [2–4]. The network structure formed between the base fuel and the gellant makes the
gel fuel behave like a solid fuel at rest. It can flow like a liquid when subjected to shear
forces. Therefore, the gel fuel combines the advantages of solid fuel and liquid fuel, and
it has promising applications in propulsion system of rocket and ramjet [1,4]. However,
after adding the gellants, the viscosity of the fuel increases, especially at lower shear rates,
and it is known that a higher viscosity will lower the efficiency of fuel atomization and
combustion [5–7]. Finding methods to effectively reduce the viscosity of the gel fuel during
the transport process is an important aspect for propulsion system using gel fuel.

It has been observed that the shear-thinning phenomena, which means that the vis-
cosity of the gel fuel can be reduced with an increase in the shear rate, is one of the most
important mechanical properties of the gel fuel. The power-law model and the Carreau

Energies 2022, 15, 7287. https://doi.org/10.3390/en15197287 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197287
https://doi.org/10.3390/en15197287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-0212-1741
https://orcid.org/0000-0002-8883-8662
https://orcid.org/0000-0003-2854-9129
https://doi.org/10.3390/en15197287
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197287?type=check_update&version=2


Energies 2022, 15, 7287 2 of 19

type model are the most used constitutive relations to describe the shear-thinning aspects
of non-Newtonian fluids [8–10]. Natan et al. [11–13] numerically studied the flow of a
power-law gel in converging pipes. The distributions and the variation of the velocity, the
pressure drop and the viscosity in pipelines with different geometries were investigated.
Yoon et al. [14] fitted their results to a Carreau-Yasuda type model. When the gel flowed
through a plain-orifice atomizer, unsteady conditions were observed due to the high in-
jection velocity. Cao et al. [15] measured the constitutive parameters for a water-HPC gel
and fitted their experimental data with a Carreau-Yasuda model. The results suggested
that the viscosity reduction and the pressure loss competed, and therefore, a balance or an
optimum point must be considered for specific conditions.

Similar to many polymeric and non-Newtonian fluids [16,17], the viscosity of the
gel fuel is also affected by temperature, where a higher temperature can lead to a lower
viscosity. Shin and Cho [18] investigated flow and heat transfer of a temperature and
shear dependent non-Newtonian fluid in a rectangular duct. Their results showed that
the heat transfer was increased by 70–300% due to the increase of the velocity gradient
(shear rate) near the wall, which was attributed to the combined effect of temperature
dependence and shear-thinning effects in the viscosity. Rahimi et al. [19,20] measured gel
fuel’s viscosity under different shear rates and temperatures, and they fitted the parameters
of the power-law model with temperature and gellant fraction. Cao et al. [21] studied the
flow and heat transfer of a gel in straight pipes and typical injectors where the walls of the
channel are heated. They found that when the gel was fully heated in a long pipe, the mean
viscosity and the pressure drop at the outlet were significantly reduced. If the length of
the pipe is ‘shorter,’ which is the case in real propulsion systems, the pressure drop can
still be reduced effectively, while the viscosity reduction can be more complicated as heat
cannot be effectively transferred to the main flow; this causes a high viscosity gel plug to
be formed in the center of the pipe.

According to Cao et al. [21], simply heating the pipe walls (applying a constant tem-
perature or a constant heat flux) is not necessarily an effective way of reducing the mean
viscosity of the gel. In thermal engineering, corrugation is a commonly used heat transfer
enhancement configuration [22]. In this scheme, the diameter of the pipe changes, causing
an enhancement in the fluid motion and mixing. Hong et al. [23] designed a wavy corru-
gated tube by employing multi-longitudinal vortices. They found that the wavy corrugated
tube exhibited excellent heat transfer rate and thermal performance evaluation criterion
(PEC) when compared with the smooth tube. Akbarzadeh et al. [24] studied the entropy
production and the thermo-hydraulic performance of wavy channels with three corrugated
profiles. Due to the high performance and low entropy production, a sinusoidal corrugation
was recommended. Wang et al. [25] numerically investigated the effect of swirl and spiral
flow on the pressure drop and the enhanced heat transfer in internal, transversal and helical
corrugated tubes. They found that heat transfer enhancement could be attributed to the
improvements due to convection and the nature of the turbulent flow. Shubham et al. [26]
numerically studied the thermo-hydraulic transport characteristics of non-Newtonian flu-
ids in corrugated channels. Their results indicated that the enhancement in heat transfer
was not significant for a smaller amplitude of the wall waviness. Afrouzi et al. [27] studied
pulsating flow of non-Newtonian fluids in a corrugated channel. It was mentioned that the
skin friction factor was directly proportional to the power-law index and indirectly related
to the Reynolds number Re. Hilo et al. [28] numerically studied the turbulent fluid flow
and heat transfer through backward-facing step channels with various corrugated walls,
and they found that the heat transfer was significantly enhanced.

The corrugated channels have been applied widely for enhancing the heat transfer
efficiency, while according to the best of our knowledge, the viscosity reduction due to
temperature-sensitive gel fuel using corrugated channels has not been reported yet. In this
paper, we use the corrugation configurations, which are able to significantly enhance the
fluid convection and the heat transfer. We use the corrugation coefficient to determine the
effects of viscosity reduction to the temperature and the shear dependent gel fuel viscosity
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when transported in a pipe with a heated wall. In Section 2, we discuss the mathematical
model by presenting the governing equations and the constitutive relations. The fitting
of the experimentally measured constitutive parameters is also mentioned. In Section 3,
we introduce the geometry of the studied problems and the mesh independence study. In
Section 4, we present and discuss the numerical results.

2. Methods
2.1. Mathematical Model

In this work, the gel fuel is considered to be a non-Newtonian fluid, and its apparent
viscosity depends on the shear rate and the temperature. We do not consider any chemical
or electromagnetic effects. The governing equations are the conservation equations for
mass, momentum, and the energy equation, which are shown below [29,30].

2.1.1. Governing Equations

Conservation of mass:
∂ρ

∂t
+ div(ρv) = 0 (1)

where ∂/∂t is the partial derivative with respect to time, div is the divergence operator, v
is the velocity vector and ρ is the density of the fluid. If the fluid is assumed to be incom-
pressible, then it can only undergo isochoric (i.e., volume preserving) motions, div v = 0

Conservation of momentum:

ρ
dv
dt

= div T + ρb (2)

where d/dt is the total time derivative given by d(.)/dt = ∂(.)/∂t + [grad(.)]v and grad
is the gradient operator, T is the Cauchy stress tensor and b is the body force which is
ignored here.

Conservation of energy:

de
dt

= T : L− div q + ρr (3)

where e is the internal energy density, L is the velocity gradient, q is the heat flux vector
and r is the specific radiant energy, which is neglected in this study. T : L represents the
viscous dissipation, and q represents the heat conduction [30].

In this paper, the governing equations are discretized by the finite volume method
with the PISO algorithm for velocity-pressure coupling. The discretization schemes of the
conservation equations are shown in Table 1.

Table 1. Discretization schemes of the conservation.

Conservation Equation Discretization

Gradient Gauss linear
convection bounded Gauss upwind
Diffusion Gauss linear corrected

Time Euler

2.1.2. Constitutive Equations

Looking at the above equations, we can see that we need constitutive relations for the
stress tensor, heat flux vector, radiation and the internal energy. In this problem, we ignore
the effects of radiation, and we assume e = ρε, where ε = Cpθ and Cp is the heat capacity.
For the heat flux vector, we assume the classical theory of Fourier heat conduction [31]:

q = −k grad θ (4)
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where k is the thermal conductivity of the gel fuel. In general, the thermal conductivity can
be a function of temperature, volume fraction, etc. According to the available experimental
data [32], changing the fraction of the gellant in the gel, the thermal conductivity changes
moderately, and therefore, the value of k does not change much. Thus, the value of k can be
assumed to be the same as the thermal conductivity of water.

For the stress tensor of the gel fuel, we assume that gel is a non-Newtonian fluid.
These fluids often show some special non-linear characteristics. For example, some non-
Newtonian fluids have yield stress or exhibit viscoelasticity, thixotropy, etc., and their
viscosity can depend on shear rate, temperature and even pressure [33]. In this paper, we
assume that the viscosity of the gel depends on both the shear rate and the temperature.
The stress tensor of the gel is given by a non-Newtonian model:

T = −pI + 2η(Ψ)D (5)

where I is the identity tensor and D is the symmetric part of the velocity gradient
D = 1/2

[
grad v + (grad v)T

]
. For a generalized non-Newtonian fluid (GNF) [34], the

shear viscosity η(Ψ) can be a function of one or all of the following: (1) time, (2) shear
rate, (3) concentration, (4) temperature, (5) pressure, (6) electric field, (7) magnetic field, etc.
Thus, in general,

η(Ψ) = η(t, π, θ, ϕ, p, E, B, . . .) (6)

where t is the time. π is some measure of the shear rate (for example,
.
γ =
√

2trD2), where
tr is the trace operator, θ is the temperature, ϕ is the concentration, p is the pressure, E is the
electric field and B is the magnetic field. Of course, in many applications, the dependence
of one or more of these can be dropped. One of the most widely used GNF models is the
Carreau-Yasuda equation. According to [11,35], the gel can be treated as a Carreau-Yasuda
type fluid. Thus, we assume:

η
( .
γ
)
= η∞ + (η0 − η∞)

[
1 +

( .
γλ
)b
] n−1

b (7)

where η0 and η∞ represent the viscosity when the shear rate approaches zero or infinity.
The parameter

.
γ is the shear rate. The parameter b controls the shape of the viscosity versus

the shear rate curve during the initial descent curve. The parameter λ is the relaxation
time, which is the time constant of a fluid in response to a change in the shear rate. The
parameter n is a similar parameter to the exponential term in the power-law model, which
controls the slope of the viscosity during the rapid change with shear rate.

For the temperature dependence of the viscosity, one of the most useful equations is
the Reynolds viscosity model:

η(θ) = η0e−Mθ (8)

where M = α(θ1 − θ0), where α is a constant. This viscosity expression was first proposed
by Reynolds (1866) in his theory of lubrication, where he deduced an empirical formula
based on the experimental results of the viscosity of olive oil at different temperatures; this
expression is oftentimes used in lubrication and other engineering applications [36,37]. In
addition to the Reynolds equation, in certain applications, the Vogel’s model is used [38,39],
where η(θ) = η0e

a
b+θ . In this paper, based on the Andrade-Eyring law [33], the viscosity

relationship usually has an exponential form. Thus, we incorporate a Reynolds type model
into the shear viscosity of the Carreau-Yasuda model and assume the following equation
for the shear rate and the temperature dependent viscosity:

η
(
θ,

.
γ
)
=

{
η∞ + (η0 − η∞)

[
1 +

( .
γλ
)b
] n−1

b
}

expc1θ+c2 (9)

where, c1 and c2 are the temperature indices. Note that the viscosity when the shear rate
approaches zero or infinity at different temperatures should be η0expc1θ+c2 and η∞expc1θ+c2 .
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The material parameters in Equation (9) will be fitted to the experimental measurement
in Section 2.2.

2.1.3. Expanded Form of the Governing Equations

Substituting Equations (5) and (9) into Equation (2), we obtaine a set of partial differ-
ential equations (PDEs), which need to be solved numerically. We built our PDEs solver
using the libraries provided by OpenFOAM [40]. The dimensionless form of these PDEs
are presented below:

div∗ V = 0 (10)

∂V
∂τ

+ V (grad∗ V) = −grad∗ P +
1

Re
div∗

(
η
(
θ,

.
γ
)

ηr
D∗
)

(11)

dΘ

dτ
+ V (grad∗ Θ) = Ds

η
(
θ,

.
γ
)

ηr
D∗ : L + Le(div∗ (grad∗ Θ)) (12)

where the following non-dimensional parameters are defined:

Y =
y
Lr

; X =
x
Lr

; V =
v
v0

; τ =
tv0

Lr
; Θ =

θ − θ0

θ1 − θ0
;

.
Γ =

.
γ
.

γr
; Π =

η

ηr

P =
p

ρv2
0

; Re =
ρLrv0

ηr
; Ds =

ηrv0

ρCp(θ1 − θ0)Lr
; Le =

k
ρCpv0Lr

(13)

div∗(·) = Lrdiv(·); grad∗(·) = Lrgrad(·); D∗ = grad∗V + (grad∗V)T ;

where Lr is the reference length, v0 is the reference velocity, θ1 and θ0 are the reference
temperatures and are set as 372 K and 298 K, and

.
γr the reference shear rate, which is the

mean shear rate of the cross-section. In this paper, ηr is the reference viscosity and Re is
the Reynolds number. To determine whether the flow is laminar or turbulent, we further
define a generalized Reynolds number as in Ref. [14]:

Regen,CY =
ρu[[

1 +
{

λ
(

3n+1
4n

)
4u
R

}b
](n−1)/b

(η0 − η∞) + η∞

](
expc1θ+c2

)( 3n+1
8nR

) (14)

where u is the mean velocity and R is radius of the pipe in the study.

2.2. Parameters in the Constitutive Equation

The shear rate and the temperature are two independent parameters which can affect
the viscosity. A variable-controlling approach is adopted when obtaining experimental
data: obtaining the viscosity at different shear rates with the temperature kept constant
or obtaining the viscosity at different temperatures with the shear rate kept constant.
The experimental data from Ref. [41] are used to fit the parameters in the constitutive
model. It should be noticed that in the present paper, a water-gel is used to mimic the
fuel gel. The experimental data and the curves predicted by the model are shown in
Figure 1. The parameters in Equation (9) are η0 = 71.2713 Pa·s, η∞ = 0.0271 Pa·s,
λ = 0.1582, b = 1.3814, n = 0.3964, c1 = −0.011 (1/K), c2 = 0.0611.
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Figure 1. Experimental measurements and the model prediction of the viscosity of the water gel. The
experimental data are from Ref. [41].

3. Problem Descriptions

There are several different types of corrugations which are used in real applications.
Figure 2 shows the geometries of a channel with wall corrugation. The gel flows from left
to right. The channel has three sections: the fully developed section, the test section and
the exit section. The height of the channel is H. The lengths of three sections are 8H, 12H
and 4H, respectively. In the test section, three different corrugation profiles are studied:
sinusoidal, triangular, and trapezoidal. The triangular corrugation has the same spatial
points to the sinusoidal corrugation at kπ and kπ + π/2, and the trapezoidal corrugation
is tangent to the sinusoidal corrugation at these points. These three corrugation profiles
share the same wavelength (Lw) and wave amplitude (a).
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Figure 2. Geometries of the channel with wall corrugation. H is the channel height. The compu-
tational domain was divided in the fully developed section, the test section and the exit section,
respectively. The lengths of these three sections were 8H, 12H and 4H. Lw is the wavelength, and a is
the wave amplitude.

There are four boundary types used in this study: inlet, outlet, cold (unheated) wall
and heated wall. The boundary condition at the inlet is a constant velocity with room
temperature, which is 298 K. The walls of the fully developed section are cold (unheated)
walls. The walls of the test section and the exit section are heated walls. The zero gradient
condition is applied for the velocity and the temperature at the outlet. For the details of
the boundary conditions, see Table 2. In addition, Table 3 lists the geometry and the flow
parameters for the cases studied in this paper.



Energies 2022, 15, 7287 7 of 19

Table 2. Boundary conditions for the numerical simulation.

Boundary Type Pressure Velocity Temperature

Cold Wall Zero gradient Fixed value (0) Fixed value (298 K)
Heat wall Zero gradient Fixed value (0) Fixed value (372 K)

Inlet Zero gradient Fixed value Fixed value (298 K)
Outlet Fixed value (0) Zero gradient Zero gradient

Table 3. Simulation conditions in this study.

Research Points a Lw Regen,CY

Corrugation profile 1/5H 2H 130
Wavelength 1/5H 2H, 2.4H, 3H, 4H, 6H 130

Wave amplitude 1/20H, 1/10H, 3/20H, 1/5H 2H 130
Reynolds number 1/5H 2H 43, 130, 247, 390, 555

In this paper, we use sinusoidal bellows to verify mesh independence, where a = 1/10H,
Lw = 2H and Regen,CY = 130. The outlet average viscosity and the viscosity distribution
are used as the determining criteria. The average viscosity at the outlet under different
mesh numbers is shown in Table 4, and the viscosity distribution at the outlet is shown
in Figure 3.

Table 4. Average viscosity at the outlet under different mesh numbers.

Mesh Numbers Average Viscosity (Pa·s)

Case1 12,000 0.18208
Case2 24,000 0.18559
Case3 48,000 0.18474
Case4 96,000 0.18768
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It can be seen that for different mesh numbers, the error between the calculated results
is small. The maximum relative error of the average viscosity of the four tests is about 3%.
Therefore, it can be seen that the results are independent of the grid size. A mesh number
of 12,000 is used in the paper.

The following cases are used to verify the accuracy of the model:
First, we simplify the Carreau-Yasuda model (shown in Equation (9)) to a Newtonian

fluid and ignore the temperature effects. That is, we assume n = 1, η∞ = 0, c1 = 0, c2 = 0.
Then, the Carreau-Yasuda model is simplified to the Newtonian fluid model, as shown in
Equation (15):

η
(
θ,

.
γ
)
= η0 (15)
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We then use the simplified model to obtain an analytical solution to the Poiseuille flow.
The analytical solution is shown in Equation (16):

ux =
1

2η

∆p
L

y(d− y) (16)

where ux is the velocity in the x-direction, η is the dynamic viscosity, ∆p
L is the pressure

gradient, L is the pipe length and d is the pipe diameter. The values in the verification
process are: η = 1 Pa·s, ∆p = 105 Pa, L = 120 mm, d = 5 mm. Both the numerical and the
analytical solutions are plotted in Figure 4.
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Figure 4. Comparison of the numerical and the analytical solutions of the Poiseuille flow.

As shown in Figure 4, the numerical results are very close to the analytical values.
For the second case, we use the back-step flow geometry and the results in [42] to

validate our model. The geometry is shown in Figure 5. The parameters of the Carreau-
Yasuda model are η∞ = 0.056 Pa·s, η∞ = 0.0035 Pa·s, λ = 3.313 n = 0.0.3568, b = 2,
c1 = 0, c1 = 0. The initial conditions are consistent with those in [42]. For more details,
please refer to [42]. Figure 6 shows the comparison of the numerical simulations for the
velocity distribution at the outlet with the reference values in [42].
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As shown in Figure 6, the numerical results are very close to the values in [42]. Based
on the observations shown in Figures 4 and 6, it can be assumed that the proposed numerical
scheme is an accurate one.

4. Results and Discussion

For the transport systems using gel fuel, the main issues are pressure drop and viscosity.
Our goal is to study the possibility of lowering the viscosity with a smaller pressure drop
at the outlet of the transport pipe. In this study, we mainly focus on the results at the
exit section. The position is located at x/H = 20. The dimensionless pressure drop is
defined as:

∆P =
∆p
ρv2

0
(17)

which has been mentioned in Equation (13). To obtain a better understanding of the effects
of the corrugation configuration and the flow conditions, a mean apparent viscosity in a 2D
channel is defined as in [15]:

η =
1
H

∫
ηdh (18)

For the 3D pipe case, the mean apparent viscosity has the form:

η =
1
S

∫
ηds (19)

where S is the area of the cross section of the channel. The mean velocity, mean shear rate
and mean temperature share the similar forms. In this section, the effect of corrugation
profiles is investigated first, further determining the best corrugation for the further study.
Then, we parametrically study the wavelength, the wave amplitude, and the Reynolds
number. Finally, we investigate the viscosity reduction of the gel in a Y-shape channel
formed by two corrugated channels with pulsed inlet velocity.

To evaluate the enhanced heat transfer characteristics of different pipes, the PEC
evaluation method in [42] is used here. The specific definitions are:

Nu =
∂T
∂n

∣∣∣∣
w
· D

Tw − Tf
(20)

Nu =
1

Lw

∫ Lw

0
Nuds (21)

f = 2D · ∆p/
(

Lρu2
)

(22)

PEC =
(

Nu/NuP
)
/( f / fP)

1/3 (23)

where n is the unit outward normal to the boundary surface, D is the diameter of the
pipe, Tw is the wall temperature of the test section, Tf is the fluid temperature, Nu is the
local Nusselt number, Lw is the wall length of the test section, Nu is the spatially averaged
Nusselt number, ∆p is the pressure drop of the test section. f is the friction factor, NuP and
fP are the corresponding values for the smooth pipe.

4.1. Effect of Corrugation Profiles

In this study, the mean velocity, the mean shear rate and the mean apparent viscosity
of the cross section at the entrance of the test section of each corrugation are selected as
the reference parameters and used to calculate the dimensionless numbers. The geometry
and the flow conditions are listed in Table 3. The streamlines in the channels with different
corrugation profiles in the last wave are shown in Figure 7. In all concavities, we can see
some recirculation regions, which can enhance the mixing of the high-temperature fluid
near the wall and the low-temperature fluid in the main flow. Furthermore, the sinusoidal
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corrugation has a similar size of recirculation region to triangular corrugation, and the
trapezoidal corrugation has the biggest recirculation region.
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Figure 7. Streamlines in the last corrugation wave with (a) sinusoidal, (b) triangular and (c) trape-
zoidal profiles when Regen,CY = 130.

Figure 8 shows the dimensionless velocity, the temperature, the shear rate and the
viscosity in the transverse direction at the outlet of the test section for channels with
different corrugation profiles and smooth channel. Figure 8a indicates that there is a large
difference in the velocity profiles between the smooth and the corrugated channels. The
velocity profile of the smooth channel is blunter, indicating a plug-type flow. For the
corrugated channels, a velocity fluctuation near the wall is detected, which indicates the
presence of a recirculation region. From Figure 8b, it can be observed that for the smooth
channel, the temperature near the centerline is almost unaffected, while for the corrugated
channels, the temperature of the main flow is higher than the temperature of the incoming
flow. This implies that the corrugations have a significant effect on the heat convection
enhancement. Among the three corrugation profiles, the trapezoidal corrugation performs
the best because of the larger heating wall and the larger recirculation region. Figure 8c,d
show the profiles of the dimensionless shear rate and the viscosity. For the smooth channel,
near the wall, a lubrication layer with high temperature, high shear rate and low viscosity
is formed. Near the center, a plug-type flow with a high viscosity can be observed. For
the corrugated channel, due to the flow disturbance caused by the corrugation, the higher
temperature fluid near the walls is transported to the main flow region and, as a result, the
high viscosity plug flow near the channel center is diminished.

Table 5 lists the dimensionless pressure drop (∆P) and the mean apparent viscosity
(Π) at the outlet of the test section for the corrugated channel and the smooth channel
and the thermal performance evaluation criterion. Recall that ∆P is a measure of the
dimensionless pressure drop between the two sides of the test section and Π is calculated
based on the data shown in Figure 8d. The values of ∆P for the corrugated channels are
more than three times larger when compared to the smooth channel, which is consistent
with the conclusion of [24]. For different corrugation profiles, the trapezoidal corrugation
has the highest ∆P because it has the largest recirculation region. The sharp corner of the
triangular corrugation is a factor which can increase ∆P. Therefore, although the sinusoidal
corrugation and the triangular have a similar size recirculation region, the sinusoidal
corrugation has a lower ∆P. For the Π, the corrugated channels have much lower values,
and the sinusoidal corrugation performs the best. Taking both ∆P and Π into consideration,
we choose the sinusoidal corrugation for the remainder of this study.

Table 5. The dimensionless pressure drop of the test section and the dimensionless mean apparent
viscosity of the cross section at the outlet of the test section of the corrugated and smooth channels
and thermal performance evaluation criterion.

Sinusoidal Triangular Trapezoidal Smooth

∆P 3.34 4.24 5.65 1.03
Π 0.31 0.49 0.34 1.72

PEC 1.19 1.04 1.13 1
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Figure 8. Profiles of the dimensionless (a) velocity, (b) temperature, (c) shear rate and (d) viscosity in
the transverse direction at the outlet of the test section for smooth channel and channel with different
corrugation profiles. The geometry and the flow conditions are listed in Table 3.

4.2. Effect of Wavelength Lw

In this section, five different wavelengths are chosen to investigate their effects on the
gel flow. The length of the test section remains constant at 12H. The number of the waves
vary from 2 to 6. Thus, the wavelengths are 6H, 5H, 4H, 3H, 2.4H and 2H, respectively.
The simulation conditions are listed in Table 3.

The dimensionless velocity, temperature, shear rate and viscosity in the transverse
direction at the outlet of the test section for different wavelengths are shown in Figure 9.
From Figure 9a, it can be observed that a longer wavelength, Lw, leads to a blunter velocity
profile. Figure 9b indicates that the temperature of the main flow is higher for a shorter
length, Lw, because in the corrugation with shorter wavelengths, the flow recirculation
is stronger. Thus, the heat convection is also stronger. Figure 9c indicates that overall, a
shorter wavelength corresponds to a greater shear rate, except in the recirculation region.
From Figure 9d, we can see that in the main flow, the viscosity of the gel is lower due to the
higher temperatures when the wavelength is shorter. In the recirculation region, the pattern
is not clear as the viscosity is determined by both the temperature and the shear rate.

Figure 10 shows the mean apparent viscosity at the outlet of the test section (Π) and
the dimensionless pressure drop of the test section (∆P) for different Lw. It can be seen
that the ∆P decreases as Lw increases, and the ∆P for Lw = 2H is almost twice the value
for the case of Lw = 6H. In the last section of the channel, we find that in the smooth
channel, which can be treated as the situation of infinite Lw, ∆P is approximately 1. The
viscous dissipation caused by the flow recirculation in the corrugations leads to an increase
in the pressure drop. Despite the disadvantage of the increased ∆P, the existence of the
recirculation regions not only enhances the heat transfer but also strengthens the shear
stress, both of which are beneficial for the viscosity reduction. Figure 10 indicates that Π
increases significantly with an increase in Lw.
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Figure 9. Profiles of the dimensionless (a) velocity, (b) temperature, (c) shear rate and (d) viscosity in
the transverse direction at the outlet of test section for different wavelengths. The amplitude of the
wave is 1/5H, and Regen,CY is 130.
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Figure 10. Mean apparent viscosity at the outlet of the test section (Π) and dimensionless pressure
drop of the test section (∆P ) for different Lw. The amplitude of the wave is 1/5H, and Regen,CY

is 130.

4.3. Effect of Wave Amplitude a

In this part, we look at the influence of different wave amplitudes, a, on the gel flow.
Five different amplitudes varying from a = 0 to 1/5H are studied, where a = 0 represents
a smooth channel. The geometric properties of these five different configurations are
presented in Table 3.

Figure 11 shows the dimensionless velocity, temperature, shear rate and viscosity
in the transverse direction at the outlet of the test section for different wave amplitudes.
Figure 11a indicates that a small amplitude leads to a blunter velocity profile, and near the
wall, the recirculation region appears only when a = 1/5H. In terms of heat transfer, from
Figure 11b, we can see that a larger amplitude produces a stronger heat exchange with flow.
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Figure 11c shows that the corrugation changes the distribution of the shear rate where the
variation of the shear rate profile becomes more moderate. In Figure 11d, we can see that a
larger amplitude tends to reduce the viscosity of the gel in the main flow.
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Figure 11. Profiles of the dimensionless (a) velocity, (b) temperature, (c) shear rate and (d) viscosity
in the transverse direction at the outlet of test section for different wave amplitudes. The length of
the wave is 2H, and Regen,CY is 130.

Figure 12 shows the mean apparent viscosity (Π) at the outlet of the test section and
the dimensionless pressure drop of the test section (∆P) for different wave amplitudes. We
can see that ∆P increases with increasing wave amplitudes. The larger the wave amplitude,
the faster the ∆P increases. In terms of the mean apparent viscosity, the difference between
the smooth channel and the corrugated channels varied significantly. We notice that Π
for a = 1/20H is only half of that in the smooth channel. Among the corrugations with
different amplitudes, the decrease in Π seems to have a linear relationship when the
amplitude increases.
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Figure 12. Mean apparent viscosity at the outlet of the test section (Π) and dimensionless pressure
drop of the test section (∆P ) for different wave amplitudes. The length of the wave is 2H, and
Regen,CY is 130.
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4.4. Effect of the Reynolds Number Regen,CY

Here, we investigate the effect of the Reynolds number. The values used for the
Regen,CY (see Equation (14) for the definition) range from 43 to 555. The wavelength of the
sinusoidal corrugation is 2H, and the wave amplitude is 1/5H.

Figure 13 shows the profiles for the dimensionless velocity, temperature, shear rate
and viscosity for different values of Regen,CY. From Figure 13a, it can be seen that when
the Reynolds number increases, the size of the recirculation regions grow. Interestingly, a
larger Reynolds number and thus a larger recirculation region leads to a weaker thermal
penetration into the main flow (see Figure 13b). Due to the change of the recirculation
region, as seen in Figure 13c, the pattern of the shear rate near the wall also changes
dramatically. From Figure 13d, we can see that the viscosity decreases as the Regen,CY
increases; this may be attributed to the enhanced effect of shear thinning. Figure 14 shows
the mean apparent viscosity (Π) at the outlet of the test section and the dimensionless
pressure drop of the test section (∆P) for different Regen,CY. As shown in Figure 14, both
∆P and Π decrease when the Reynolds number increases.
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Figure 13. Profiles of the dimensionless (a) velocity, (b) temperature, (c) shear rate and (d) viscosity
for different Regen,CY. The wavelength of the sinusoidal corrugation is 2H, and the wave amplitude
is 1/5H.

4.5. Flow and Heat Transfer in a Y-Shape Corrugated Pipe

The purpose of introducing corrugation is to enhance the mixing of the flow and thus
improving the heat convection in the pipe. A Y-shape channel, which is able to cause
flow disturbance and mixing, has a similar function [43]. Therefore, we propose using
a Y-shape corrugated pipe for investigating the viscosity reduction due to temperature
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changes, see Figure 15a. The Y-shape corrugated pipe has two inlets with a diameter H.
The corrugation part has a similar configuration as the case in Section 4.4. The diameter
of the outlet is

√
2H. Two inlet velocity conditions are studied: a constant inlet velocity

condition, Vin1 = Vin2 = V0, and a pulsed inlet velocity condition, which is defined by the
following equations:

Vin1 = V0
(
1 + Mpsin(2π f t)

)
Vin2 = V0

(
1 + Mp sin(2π f t + π)

) (24)

where Vin1 and Vin2 are the applied velocities at the two inlets, V0 is the mean inlet velocity,
f is the pulsation frequency, and Mp is the amplitude. From the above equations, it can be
seen that for the pulsed case, the outlet velocity is constant. In this case, we choose Mp = 1,
f = 10 Hz, and the Reynolds number (using V0 as the reference velocity) is 130.
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Figure 14. Mean apparent viscosity at the outlet of the test section (Π) and the dimensionless pressure
drop of the test section (∆P ) for different Regen,CY. The length of the wave is 2H, and the amplitude
of the wave is 1/5H.
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Figure 15. (a) Geometry of the 3D Y-shape corrugated pipe, (b) streamlines near the intersection of
the two corrugated pipes and (c) the velocity vector in cross section A when Vin1 = Vin2.

Figure 15b shows the streamlines near the intersection of the two corrugated pipes
when Vin1 = Vin2. Clearly, flow recirculations can be noticed in the corrugations, and a
strong mixing can be observed in the intersection region of the two corrugated pipes, which
is indicated by the velocity vector field shown in Figure 15c. Figure 16 shows the evolution
of the dimensionless velocity fields in one pulse period. The inlet velocity is controlled
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by Equation (24). We can see an obvious disturbance on the velocity fields, which can
cause the gel in the pipe (after the intersection) be mixed adequately (see Figure 17 for
the dimensionless temperature field as the indication of the well mixing). Comparing the
temperature fields before and after the intersection, as shown in Figure 17, we can see that
in the corrugated channel, the temperature difference between the main flow and near the
wall region is much more noticeable than the region after the intersection.
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Figure 16. Evolution of the velocity field during one pulse period.
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Figure 17. Evolution of temperature field during one pulse period.

Figure 18 shows the dimensionless mean and the transient apparent viscosity in one
pulse period. The apparent viscosity of water at Θ = 0 is considered as the reference viscos-
ity in this case. In Figure 18, the red dash line represents the dimensionless mean apparent
viscosity which is constant (Π = 81), when the applied inlet velocity is Vin1 = Vin2 = V0.
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For the pulse inlet velocity, the mean apparent viscosity changes semi-periodically, and
the time-averaged dimensionless mean apparent viscosity is Π = 76. For comparison,
the mean apparent viscosity in a smooth pipe is calculated, and the resulting dimension-
less mean apparent viscosity is Π = 277.5. Therefore, compared with a smooth straight
pipe, the Y-shape corrugated pipe provides a decrease of 70.8% for the mean apparent
viscosity, and the viscosity reduction percentage becomes 72.6% when a pulse inlet velocity
is applied.
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Figure 18. Mean apparent viscosity at cross section A in the Y-shape corrugated channel with pulsed
and constant inlet velocity conditions.

5. Conclusions

In this paper, we investigate the heat transfer and flow of a gel fuel (mimicked by water-
gel) in corrugated channels. We focus on the effect of the corrugation and temperature
on the viscosity reduction of the gel, which is essential for the spray atomization and
combustion for a propulsion system using gel fuel. The Carreau-Yasuda (shear-thinning)
equation combined with the Andrade-Eyring (temperature-sensitive) viscosity model is
used to describe the temperature and the shear sensitive viscosity of the gel. The constitutive
parameters are fitted with the available experimental data. We also perform parametric
studies for different corrugation configurations and flow conditions to investigate the
impact on the pressure drop and the viscosity reduction. According to the numerical
results, we can draw the following conclusions:

1. The recirculation regions generated by the corrugations enhance the heat convection
and are beneficial for reducing the viscosity, while simultaneously the pressure drop
seems to increase due to the viscous dissipation caused by the circulation. For different
corrugation profiles, the sinusoidal corrugation can achieve lower viscosity with a
lower pressure drop compared with the triangular and the trapezoidal corrugations.

2. For the sinusoidal corrugation, a shorter wavelength and a deeper wave amplitude
seem to be better for reducing the viscosity, but it also has the adverse consequence of
the increased pressure drop. Furthermore, in the range of the parameters studied in
this paper, a larger Reynolds number is more desirable for both lowering the pressure
drop and reducing the viscosity.

3. Compared with a smooth straight pipe, a Y-shape corrugated pipe with a constant
inlet velocity can reduce the mean apparent viscosity by 70.8%, going up to 72.6% if a
pulse inlet velocity is applied; this can significantly enhance the gel fuel atomization
and thus improve the combustion efficiency.

4. In terms of practical significance, compared with straight pipes, corrugated pipes with
heated walls can effectively reduce the apparent viscosity of the gel at the outlet of
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the pipe, which will further facilitate the atomization of the gel. This has significant
application prospects in propulsion processes using kerosene gel as fuel.

5. For future work, we mention that the current paper mainly studies the viscosity reduc-
tion in gels due to temperature variations. From the conclusion, it can be seen that the
effect is very significant. The working conditions and the overall composition of the
pipeline are also different from the actual propulsion systems. The next step should
be to carry out research on the actual engineering conditions and pipeline structure
and explore the effects of viscosity reduction at the engineering application level.
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