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Abstract: In this paper, an improved probabilistic roadmap (IPRM) algorithm is proposed to solve the
energy consumption problem of multi-unmanned aerial vehicle (UAV) path planning with an angle.
Firstly, in order to simulate the real terrain environment, a mathematical model was established;
secondly, an energy consumption model was established; then, the sampling space of the probabilistic
roadmap (PRM) algorithm was optimized to make the obtained path more explicit and improve the
utilization rate in space and time; then, the sampling third-order B-spline curve method was used to
curve the rotation angle to make the path smoother and the distance shorter. Finally, the results of
the improved genetic algorithm (IGA), PRM algorithm and IPRM algorithm were compared through
a simulation. The data analysis shows that the IGA has significant advantages over other algorithms
in some aspects, and can be well applied to the path planning of UAVs.

Keywords: UAV; improved PRM algorithm; energy consumption; path planning; B-spline curve

1. Introduction

In recent years, the UAV has been developed rapidly and has been used in many
industries due to the advantages of being small, light, flexible and cheap to manufacture,
such as disaster rescue, panoramic photography, plant protection operations and wildlife
protection [1]. In plant protection work, the UAV plays a vital role in crop production
to ensure that it can help farmers to more conveniently perform spraying, fertilization,
pollination, etc., due to the fact that it has a high speed, high efficiency, low cost and the
advantage of spraying evenly. Regarding the orientation of national policy, the scale of
planting has become a trend and there is a growing number of plant protection tasks using
UAVs [2]. In addition, UAV technology has been used for archeology [3–5] or for the
mapping of magnetic fields [6,7]. Due to the short endurance time of civil UAVs, different
information acquisition paths require different operation times when using UAVs for
mountain surveillance. Therefore, UAV path planning is the key problem when obtaining
information in mountain forest monitoring.

The path planning of UAVs is a hot topic in the UAV research field [8]. At present,
there has been a large amount of research in this field. The task of path planning is to
find a path from the start point to avoid all obstacles and reach the target point. Common
algorithms include the gray wolf algorithm [9,10], ant colony algorithm [11,12], particle
swarm optimization algorithm [13,14], A* algorithm [15,16], RRT algorithm [17] and ge-
netic algorithm [18,19]. Table 1 shows the UAV path planning methods and algorithms
used in many papers. For this paper, the PRM algorithm was adapted in order to solve
the complex path planning problem in a high-dimensional space. The composition stage
of the PRM algorithm is based on random sampling used to construct a random path
graph, which is the core idea of the algorithm. Compared with other planning prob-
lems, the random sampling method avoids the problem of large computation in a high-
dimensional space, and makes it possible to deal with complex path planning problems in a
high-dimensional space.
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Table 1. UAV path planning methods.

Reference Purpose Method

[20] Optimizing fitness functions Adaptive selection mutation constrained differential
evolution algorithm

[21] Provide Internet connectivity and different network services
to ground users Betweenness centrality heuristic algorithm

[22] Improving network throughput in the UAV-BS signal
coverage area and reducing deployment costs UAV-artificial bee colony (U-ABC) algorithm

[23] Improving the efficiency of multi-UAV and reducing the
loss of multi-UAV during the process of performing tasks

Fusion genetic algorithm based on improved
simulated annealing

[24] Development of a fast, energy-efficient global planner Shortest trajectory planning algorithm
[25] Shortest distance path planning for large-scale target points Parallel ACO algorithm

The applications of UAVs take place in a number of different scenarios. References [20–25]
describe implementation issues of UAV technology in various scenarios. In [20], the UAV is
a very useful and effective tool for improving the capacity of disaster situational awareness
for responders. The UAV path planning is modeled as an optimization problem, where the
fitness function includes the UAV’s flight distance and risk, and three constraints include
the UAV height, UAV angle and limited UAV slope. Reference [21] deals with multi-UAV
systems, forming aerial networks, mainly employed to provide internet connectivity and
different network services to ground users. UAV base station (UAV-BS) development plays
a major part in rescue operations and post-disaster reconstruction. Improving the network
throughput in the UAV-BS signal coverage area and reducing deployment costs while
maintaining effective communication are important issues in [22]. Due to the limited ability
of the UAV itself, it is difficult to complete large-scale combat tasks. The multi-UAV has an
overall combat capability, which is an important way to solve the problem of large-scale
combat tasks in [23]. In [24], UAV technology is used to develop a fast and energy-efficient
multi-rotor UAV global planner to support personnel operations in rescue missions. In [25],
solving the path planning problem of a UAV is a challenging issue, especially if there are
too many checkpoints to visit. The brute force approach is mainly used to find the shortest
path in the mission area, which requires too much time to find a solution. Therefore, the
application scenarios of UAVs are diverse, and the path planning of UAVs is very worthy
of in-depth study.

2. Related Works

The PRM algorithm was proposed in 1996 by Latombe people to solve high-dimensional
space such as the complex motion planning problem of the random method [26]. It is
by far the most successful and most popular motion planning method based on random
sampling. One of the PRM algorithms are usually divided into two phases: composition
and query. The phase composition based on a random sampling random path diagram is
the core of the algorithm. Compared with other planning algorithms, the random sampling
method avoids the modeling and description process of high-dimensional space, solves the
problem of an “exponential explosion” and makes it possible to deal with complex motion
planning problems in high-dimensional space. In the query stage, a variety of mature graph
search algorithms can be selected according to the needs. The PRM algorithm has two
application forms: single-query planning and multi-query planning. Single-query planning
regenerates a roadmap every time, including its expansion randomized potential planner
algorithm, etc. [27]. Multi-query planning generates a roadmap for multiple planning. A
single query is used for small-scale dynamic planning, and multiple queries are used for
multi-machine collaborative planning. It can be used for large-range static planning.

In recent years, the research on the sampling strategy of the PRM algorithm has
been greatly developed. In [28], the sampling probabilistic roadmap algorithm is used to
plan the UAV track, and the obstacle boundary points are taken as the sampling points
to reduce the sampling area and improve the sampling efficiency. However, it does not
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consider that the actual UAV needs a reserved distance for the corner. In [29], a genetic
algorithm and PRM algorithm are, respectively, used to plan the path of the map, and the
advantages and disadvantages of the two algorithms are compared. Although the effect
of the genetic algorithm is better, it consumes a greater operation time. In [30], scholars
propose an improved PRM algorithm method used to enhance the sampling by intelligently
detecting which areas of the configuration space are easy and which parts are not. The
algorithm then biases the sampling only to the difficult areas that may contain narrow
passages. In [31], scholars propose a new, simple sampling strategy called the Gaussian
sampler. However, some of the samples obtained through this method have no effect on
improving the connectivity of the roadmap. In [32], scholars propose an improved PRM
algorithm used to increase the effective sampling point density. However, it also has the
disadvantages of a lower efficiency, longer running time and longer planned path.

To sum up, the PRM algorithm is becoming more and more intelligent in terms of
drawing, which mainly considers the strategy of random sampling and the design of the
local planner. At the same time, it also has some problems in improving the traditional
PRM algorithm, such as: the operation efficiency is low, the path is too long and the
obstacles are not reasonably avoided. Therefore, in order to solve the above shortcomings,
this paper presents an IPRM algorithm used to solve the path planning problem of UAVs
with angular energy consumption. Firstly, a three-dimensional map model of a simulated
mountain forest was established and an energy consumption forecast model was proposed
for the angle. Then, an improved PRM algorithm was proposed to optimize the original
sampling space and improve the operation efficiency; then, the third-order B-spline curve
method [33] was used to optimize the angle; and then, the cost function in the PRM
algorithm was improved by considering energy consumption. Finally, the experimental
comparison proves that the proposed improved algorithm is better than other algorithms,
and has good adaptability and a higher efficiency.

3. Establishment of Model

UAV path planning first needs to extract location information from the map. According
to the map model in [34], the position, slope and height of each peak were randomly
generated in this paper. The mathematical model can be expressed as:

Z(x, y) =
n

∑
i=1

hi exp

[
−
(

x − xi
xsi

)2
−
(

y − yi
ysi

)2
]

(1)

where, xi and yi are the central coordinates of the i-th mountain; Z is the height value of
the point corresponding to the horizontal point; xsi and ysi are the attenuation amount
and control slope of the i-th peak along the x-axis and y-axis direction, respectively; and n
represents the total number of peaks. The environment model is shown in Figure 1.

Generally, in the research of the energy consumption optimization of UAVs, the dis-
tance of the path is used as the variable of energy consumption, and the energy consumption
of UAVs is estimated by calculating the distance value. However, there are some other
variables that will affect the energy consumption. In this paper, the energy consumption of
UAVs was estimated by the characteristic variable of the fusion angle and distance factors.
As shown in Figure 2, the UAV flies from node A to node C along an arc, where the arc
angle is θ and the radius is r. The angular velocity is calculated by using Equation (2).
The arc length is calculated by using Equation (3). When the UAV is in yaw motion, the
influence of external factors is not considered. It is considered that the UAV is in hovering
state and the rotation angle speed is constant when it rotates. At this time, the external
force and external torque of the UAV are zero. It is assumed that the angular velocity of the
UAV is ω and the power is Pω during yaw; then, the yaw energy efficiency coefficient of the
UAV is shown in Equation (4). Kω is the ratio of the path distance and energy consumption
in the turning process of the UAV. v is the average speed of the UAV in the turning process;
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t1 is the time consumed in the turning process of the UAV; L is the arc length during the
turn of the UAV.
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Figure 2. Corner route.

In order to simulate the movement force model of the UAV, it was assumed that there
is no natural wind in the environment; that is, there is no external force in the horizontal
direction. In order to simplify the force model, the complex movement of the UAV was not
considered, and only the movement force when moving forward and rising was considered
to facilitate the calculation of the overall energy consumption, as shown in Figure 3.

G is the force of gravity received by the UAV as it moves. Gravitational acceleration
g = 9.8 N/kg and the mass of UAV is m. When the UAV flies in a straight line at v f
uniform speed, the angle between the lift direction of the UAV and the weight line is θ, the
lift force generated by the UAV is Ff and the resistance generated by the air is Q f . Since
the UAV moves at a uniform speed, the resultant force on the UAV is zero. According to
Figure 3a, the kinematics equations of a UAV flying in a straight line with uniform speed
can be obtained as shown in Equations (5)–(7).

G = mg (5)

G = Ff cos θ (6)
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Q f = Ff sin θ (7)

Assume that the power of the UAV is Pf at this time, and the energy efficiency
coefficient of the UAV when its horizontal moving speed is v f can be obtained; that is, the
ratio of the energy consumption and flight distance during horizontal flight is shown in
Equation (8). K f is the ratio of the path distance and energy consumption in the forward
process of UAV. t2 is the time consumed by the horizontal movement of the UAV.
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K f =
Pf t2

v f t2
=

Pf

v f
(8)

When the UAV rises in a straight line at vr uniform speed, the air resistance Qr is
opposite to its movement direction, which hinders the lift force Fr of the UAV. According to
Figure 3b, the kinematics equation of the UAV when it is rising at a uniform speed can be
shown in Equation (9).

Fr = G + Qr (9)

Assuming that the power of UAV is Pr at this time, the energy efficiency coefficient
of the UAV with vertical ascending velocity vr can be obtained; that is, the ratio of energy
consumption during the ascending flight to the flight distance is shown in Equation (10).
Kr is the ratio of the path distance and energy consumption in the rise process of UAV. t3 is
the time consumed during the rise of the UAV.

Kr =
Prt3

vrt3
=

Pr

vr
(10)

To sum up, the total energy consumption E of UAV can be calculated when various
parameters and routes of UAV are known, as shown in Equation (10), where n is the number
of corners on the path and i is the serial number of corners. Lf is the distance that the UAV
moves horizontally; Lr is the distance that the UAV rises.

E = K f L f + KrLr +
n

∑
i=1

Kωθi (11)
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4. Approach for Path Planning
4.1. Traditional PRM Algorithm

The traditional PRM algorithm mainly consists of two stages: an offline learning stage
and online planning stage [34].

In the offline learning stage, undirected path map M = (V, E) is established. N
random points are generated in space M to form node set V in the map. Then, the adjacent
nodes are found for each node. The two points with obstacles on the straight path cannot
be regarded as adjacent nodes. Finally, the set E of all edges is established. The undirected
path map is shown in Figure 4a.
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The task of the online planning stage is to connect the starting node with the target
node by the edge generated from the first stage, and then to use the A* algorithm or other
algorithms to find the shortest path on the path map, as shown in Figure 4b. Among them,
the greater the number of sampling points N, the more accurate the final optimization
result, and the greater the amount of calculations is.

4.2. Improved GA

Huang et al. [35] proposed an IGA to solve problems such as a slow convergence speed,
falling into the local optimum easily, an unsmooth planning path and the high cost of the
traditional genetic algorithm. The hybrid non-multi-string selection operator was proposed
to expand the distribution range of the population and to avoid a premature convergence of
the algorithm to some extent. An asymmetric mapping crossover operator and a heuristic
multiple mutation operator were also proposed, which can accelerate convergence. Finally,
a cubic B-spline curve was used to smooth the track. The specific effects are shown in
Figure 5.

4.3. Improved PRM
4.3.1. Optimize Sampling Space

This paper proposes a method for improving the PRM algorithm by reducing the
space generated by random nodes while maintaining the number of random nodes, so as
to improve the space utilization of the proposed IPRM algorithm. The specific operation
is as follows: the range generated by the random node is reduced to an ellipse focusing
on the starting node and the ending node, as shown in Figure 6. The obstacle shadows
represent mountains, the sampling space represents the entire map and IPRM randomly
generates small nodes.
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The effect after sampling space optimization is shown in Figure 7. The IPRM algorithm
adjusts the size and position of the ellipsoid according to the starting point and ending
point, which improves the efficiency and space utilization while keeping the number of
sampling points unchanged and overcomes the problem of the efficiency of the traditional
PRM algorithm being reduced when the path needs to pass through dense obstacles or
narrow channels.

4.3.2. Optimizing Corner Path

In order to simulate the flight path of a UAV in the actual flight corner, this paper
adopted the third-order B-spline curve method to optimize the trajectory path of the UAV.
In order to ensure a certain distance between the B-spline and the obstacle, the radius of
the fillet should be enlarged as far as possible, and the distance between the control points
used by the B-spline should be self-adjusted, as shown in Figure 8. Obstacles represent
the transverse section of the mountain. Figure 8 is the horizontal plane of the map. The
red dotted line is obtained before B-spline processing, and the black curve is the path after
B-spline processing.
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Set the path nodes obtained by PRM algorithm as P0, P1, P2, . . . , Pn; these nodes are
used to define the trend and boundary range of spline curve. The B-spline curves of k-order
are defined as follows:

P(u) = [P0P1 . . . Pn]


B0,k(u)
B1,k(u)

...
Bn,k(u)

 =
n

∑
i=0

PiBi,k(u) (12)

Bi,k(u) is the k-order basis function of the ith B-spline, corresponding to node Pi, k ≥ 1; u is
the independent variable. The basis function has the following Debour–Cox recursive equation:

Bi,k(u) =


{

1, ui ≤ u ≤ ui+1
0, other

k = 1
u−ui

ui+k−1−ui
Bi,k−1(u) +

ui+k−u
ui+k−ui+1

Bi+1,k−1(u), k ≥ 2
(13)

In this paper, the third-order quasi-uniform B-spline curve was adopted. The quasi-
uniform B-spline curve retains the properties of the Bezier curve at the two endpoints;
the tangent of the spline curve at the endpoint is the connecting line of the reciprocal two
endpoints. The final effect is shown in Figure 9.
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In order to determine the position of two points around the corner, first determine the
radius of the fillet. The purpose is to reduce the path length and avoid contacting obstacles,
so the position of the two points is very important. The following is the pseudo code used
to simplify the implementation of an adaptive fillet radius:

R = a; %R is a parameter in function B; let us set the radius of the fillet to an initial value.
R’ = b;%Adjust by increasing or decreasing b meters each time; avoid path contact with obstacles.
%If the height of the processed path is completely higher than the height of the obstacle, the radius of
the rounded corner is reduced until it is close to the obstacle
while B(path) > map %The function B is to B-spline the resulting path.
R = R − R’;
if B(path) < map
R = R + R’;
end
end
%If the height of the processed path is not exactly higher than the height of the obstacle, increase the
radius of the fillet until it just exceeds the obstacle
while B(path) < map
R = R + R’;
end
path’ = function B(path); %path’ is the path that we need to get to.

4.3.3. Path Planning Considering Energy Consumption

In order to find a path with a shorter distance and lower energy consumption, this
paper improves the traditional PRM by adding an energy consumption cost in the online
planning stage, as shown in Equation (14):

f (n) = g(n) + h(n) + k × e(n) (14)

g(n) is the cost of moving from the starting point to the node; h(n) is the estimated cost
of moving from the node to the end point; k(n) is the coefficient of energy consumption,
where, the higher it is, the higher the priority proportion of energy consumption is; e(n) is
the energy consumption cost at the corner of moving from the starting point to the node.

4.4. Flowchart of IPRM

The flowchart of IPRM is shown in Figure 10.
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5. Simulation Experiment and Result

In order to verify the effectiveness of the improved algorithm, this paper used MAT-
LAB 2021b to carry out simulation experiments. The experimental environment was:
Windows 10 family Chinese version; Processor AMD ryzen7 5700u with Radeon graphics
1.80 GHz and 16 GB memory. AMD ryzen7 5700u is a product of AMD Inc., a global
semiconductor company headquartered in Santa Clara, California, USA. The map size
was 100 × 100 × 100, the starting node was (1,1,1), the target node was (99,99,99) and the
number of peaks was 20. The number of sampling points was 50. In this paper, a hexacopter
with a 1.2 kg weight, 10,000 mAh battery capacity and 11.1 V voltage was selected for
the simulation experiment. The average speed of the UAV was assumed to be 4.5 m/s,
P = 429.87 W.

Since the sampling points are randomly generated, the path obtained is uncertain.
In order to verify the excellence of the improved algorithm, the IPRM algorithm in this
paper was compared with the IGA in [35] and the PRM algorithm for multiple groups
of experiments.

In Tables 2–4, “No.” represents the number of the experiment; for example, “No. 1”
represents the first experiment, “No. 2” represents the second experiment, and so on.

Figure 11 shows the first group of experimental results in Table 2. It can be seen
that the path obtained by using IGA is the smoothest with no corner; there is a corner
on the path obtained by using the traditional PRM algorithm; the improved PRM makes
the path smoother and closer to the real UAV track route by adding the turning angle
curve processing.
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Table 2. The experimental results using different algorithms.

No.
Distance/m Energy/J

IGA PRM IPRM IGA PRM IPRM

1 196.5 180.1 173.6 5773 5056 4777
2 198.9 179.0 175.1 5833 5003 4832
3 202.2 187.2 173.7 5930 5360 4775
4 200.6 179.8 174.6 5944 5018 4816
5 196.8 181.6 178.9 5746 5113 4996
6 193.8 183.3 176.5 5546 5194 4874
7 198.3 180.8 174.3 5846 5050 4807
8 202.3 180.5 173.5 5908 5028 4774
9 198.7 187.7 177.4 5813 5355 4942

10 193.1 184.5 172.8 5557 5187 4738

Average 198.1 182.5 175.0 5790 5137 4833

Table 3. Path distance using PRM.

No.
Number of Sampling Points

20 40 60 80 100

1 199.02 183.42 196.65 181.18 188.54
2 182.46 189.69 180.64 174.70 184.61
3 200.09 179.91 185.60 190.36 185.02
4 200.50 187.20 181.54 185.00 184.57
5 187.80 197.33 190.17 187.16 189.24
6 186.66 187.03 188.08 182.16 176.74
7 191.26 188.44 192.85 182.28 188.11
8 190.17 198.13 189.54 185.72 178.62
9 188.07 187.80 191.21 191.00 179.59

10 201.47 182.97 179.62 184.10 173.90

mean 192.75 188.19 187.59 184.37 182.89

Table 4. Path distance using IPRM.

No.
Number of Sampling Points

20 40 60 80 100

1 191.14 174.53 178.58 177.49 168.98
2 173.70 191.33 179.37 176.89 179.15
3 None 182.67 183.45 181.37 179.38
4 184.59 190.68 193.39 184.58 180.07
5 203.08 174.15 177.18 181.43 169.07
6 179.76 187.14 175.05 173.16 174.90
7 198.05 185.28 179.36 171.86 162.78
8 173.71 173.23 173.11 177.15 187.29
9 188.83 178.24 173.49 174.57 173.06

10 None 182.69 180.96 177.16 173.14

Mean 186.61 182.00 179.39 177.56 174.78

Table 2 shows the results obtained by using the IGA, PRM algorithm and IPRM
algorithm, respectively, in the same map. The results show that, compared with the
IGA algorithm, the IPRM algorithm reduces the track distance by 11.7% and the energy
consumption by 16.5%. Compared with the PRM algorithm, the IPRM algorithm reduces
the track distance by 4.1% and the energy consumption by 5.9%. The IPRM algorithm is
better than the IGA and PRM algorithm in terms of distance and energy consumption.
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In order to verify the adaptability of the improved algorithm in different environ-
ments, the number of mountains in the environment was changed to 40, the number of
sampling points of the IPRM algorithm was set to 20, 40, 60, 80 and 100, respectively, and
10 experiments were conducted. The results are shown in Tables 3 and 4.

In order to observe the changes in the data in the table more intuitively, a bar chart is
shown in Figure 12. It is clear that the IPRM has a significant advantage over PRM in the
obtained results.
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In Table 3, when the number of sampling point is 20, in the ten experiments of IPRM,
there are two cases of no solution. On the one hand, there are too many obstacles near the
center in the environment, and, after the optimization of the sampling space, the position
of the sampling point is relatively limited. On the other hand, there are few cases of no
solution, as shown in Figure 13a,b. When the number of obstacles is reduced, it is obvious
that IPRM has more advantages than PRM in generating an undirected road map, and the
obtained solution is better, as shown in Figure 13c,d.

In order to verify the impact of the number of obstacles on the results, experiments
with a different number of obstacles were tested. When the number of sampling points was
20, the PRM and IPRM were tested 50 times under the number of obstacles of 30, 35 and 40,
and the number of unsolved cases was obtained. PRM blue at point 30 is zero, indicating
that the solution effect of IPRM is not as good as that of PRM under the influence of an
increasing number of obstacles. It can be concluded from Figure 14 that, in the case of a
low number of sampling points, the number of multiple obstacles will limit the solution of
the IPRM. It also shows that IPRM is more suitable for other situations.

In the further improvement of the algorithm, a parameter setting that adaptively
adjusts the sampling space can be added. When the algorithm has no solution, the sampling
space or the number of sampling points can be appropriately increased until a better
solution is found, or an adaptive parameter can be added in order to adjust them properly,
decreasing as the distance between the starting point and the ending point decreases, and
increasing as the distance between the starting point and the ending point increases. For
example, in this paper, the sampling space was an ellipsoid, with the starting point and the
end point as the focus. The length of the major axis of the ellipsoid was twice the length
of the minor axis, which was a fixed value. We can increase an adaptive value to adjust
the multiple. When the distance between the starting point and the end point is long, the
multiple will increase appropriately, and when the distance between the starting point and
the end point is short, the multiple will decrease appropriately.
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6. Conclusions

Aiming at the path planning problem of UAVs with a corner energy consumption
model, this paper proposes an improved PRM algorithm. Firstly, in order to simulate
the real terrain environment, a mathematical model was established; secondly, an energy
consumption model was established; then, the sampling space of the PRM algorithm was
optimized to make the obtained path more explicit and improve the utilization rate in
space and time; then, the sampling third-order B-spline curve method was used to curve
the rotation angle to make the path smoother and the distance shorter. Finally, the IGA,
PRM and IPRM were compared through several simulation experiments. Through the
analysis of the data results, it can be concluded that the IPRM has significant advantages
over other algorithms, mainly in track distance; most importantly, it is superior to other
algorithms in terms of energy consumption. In addition, it also has good adaptability in
terms of environmental adaptation, but, at the same time, it has a small limitation. When
there are too many obstacles, it will limit the algorithm in finding solutions. To sum up,
IPRM can be applied to the path planning of UAVs when they are operating in simulated
mountains and forests.
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