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Abstract: Electrical power transformers are the most exorbitant and tactically prominent components
of the South African electrical power grid. In contrast, they are burdened by internal winding
faults predominantly on account of insulation system failure. It is essential that these faults must
be swiftly and precisely uncovered and suitable measures should be adopted to separate the faulty
unit from the entire system. The frequency response analysis (FRA) is a technique for tracking a
transformer’s mechanical integrity. Nevertheless, classifying the category of the fault and its gravity
by benchmarking measured FRA responses is still backbreaking and for the most part, anchored
in personnel proficiency. This work presents a quantum leap to normalize the FRA interpretation
procedure by suggesting an interpretation code criteria based on an empirical survey of transformers
ranging from 315 kVA to 40 MVA. The study then proposes an analysis of variance (ANOVA) based
interpretation tool for diagnosing the statistical significance of FRA fingerprint and measured profiles.
The latter cannot be relied upon by an expert or by the naked eye. Additionally, descriptive FRA
frequency sub-region data statistics are proposed to evaluate the shift in both the magnitude and
measuring frequency characteristics to formulate the recommended interpretation code criteria. To
corroborate the code criteria by incorporating ANOVA and descriptive statistics, the study presents
various case studies with unknown FRA profiles for fault diagnosis. The results constitute proof of the
reliability of the proposed code criteria and a proposed hybrid of ANOVA and descriptive statistics.

Keywords: power transformers; frequency response analysis (FRA); analysis of variance (ANOVA);
descriptive statistics

1. Introduction

Frequency response analysis (FRA) is the most dependable analytical tool for identify-
ing winding and core distortion in power transformers [1–3]. Such distortions influence
the equal, inductive, and capacitive mechanisms of the transformer, in so doing, varying
its frequency response. At present, a professional is essential to examine the acquired re-
sults, which makes the interpretation procedure unreliable and reliant mostly on personnel
proficiency than consistent guidelines. FRA is a relative method that entails a referral signa-
ture (fingerprint) in which potential signatures are associated, to detect several alterations
due to several internal faults, provided that the reference signature is not accessible, a
comparison with the reaction of supplementary stages of the similar transformer or with
the response of a duplicate transformer (sister unit) is carried out. Even though global
standards, in particular, the IEEE standard, the CIGRE standard, the IEC standard, and the
DL/T 911 standard, are accessible, there are still complications in detecting and measuring
transformer winding faults [1–3]. The additional disadvantage of the FRA method as
an analytical device is that standard methods do not thus far outline the calculated data.
For determining and measuring several transformer faults, mathematical indicators are
employed, for instance, the correlation coefficient (CC). Sum square error (SSE) or mean
squared error (MSE), the absolute sum of logarithmic error (ASLE), minimum–maximum
ratio (MM), and spectrum deviation (SD) have similarly been stated in the literature [1–3].
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The CC can determine the variant among two FRA traces. If both responses are alike, the
CC is 1; if they are different, it is 0. The CC is responsive to variations in response resonance
and anti-resonance frequencies, and it is broadly employed for FRA. The SSE can demon-
strate the difference between standard and faulty responses. The ASLE is exceptionally
advised in the most recent analyses and is reported to be more relevant than the SSE. SD
has also been employed to identify differences amongst frequency responses for ordinary
power transformers and winding distortion [1–3]. Usually, SD demonstrates comparable
sensitivity to the ASLE.

On the contrary, several techniques have been projected for a more impartial analysis
of FRA dimensions. Previous research approved a transformer-equivalent high-frequency
circuit by demonstrating the winding employing resistance, inductance, and capacitance
(RLC) ladder circuit [2], considering the complications of staging corporeal faults on
actual transformers. The corresponding circuit permits comprehension of the alterations
in response due to defects that may be impractical to replicate on authentic winding.
Numerous transformer defects can be replicated employing the corresponding circuit,
containing short-circuit turns, inter-disk deformation, axial displacement, buckling faults,
bushing and insulation faults, and clamping pressure loss [3].

In the arithmetical patterns submitted in the narrative (Figure 1), the frequency re-
sponse is demonstrated as a balanced function with authentic quantities. For evaluation
functions, the limits of the model can be stated, however, their sensitivity to several kinds
of faults is not identified [4]. The drawback of employing this mathematical technique is
the labour-intensive nature of solving complicated numerical calculations [5]. The use of
artificial neural networks (ANNs) to detect transformer malfunction is also stated. Funda-
mentally, ANNs are employed to approximate transformer limits over a broad frequency
scale. ANNs are also employed as a corresponding method to arithmetical indexes to
enhance the FRA analysis process’s dependability [5]. The virtual image process has
been employed on 2D and 3D FRA plots to obtain exceptional characteristics for each
fault type [6]. In [6], a three-dimensional-FRA trace in one plot that comprises frequency,
magnitude, and phase is stated. Equated to the current analysis routine, which depends
only on the size plot, additional elements can be obtained from the projected 2D and 3D
FRA signature, thus snowballing the precision of the FRA classification. Preceding efforts
in [7] examine the impact of winding distortion, bushing, and inter-disk faults on the FRA
signature. The properties of tap changer variation as well as the loss of clamping pressure
on the FRA signature have also been examined in [8]. These analyses were following
mathematical indicators and required visual assessment. A comparison among the most
recent recommended techniques for FRA interpretation is provided in Table 1.
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Table 1. FRA profile recommended interpretation code criteria.

Sub-Region 1 Sub-Region 2 Sub-Region 3 Fault Class

M (dB) MF (Hz) M (dB) MF (Hz) M (dB) MF (Hz)

SU or SD SL or SR SU or SD SL or SR SU or SD SL or SR Test reproducibility issues
SD SL SD * NC NC NC Steel core deficiencies

SU * SR * SU SR NC NC Short-circuit occurrence
SD * NC NC NC NC NC Loose core clamps
SD NC NC NC SD * NC Loose core clamps pressure
NC NC NC SL * SU SL Loose windings
NC NC SR NC NC NC Winding bulking
NC NC NC NC SU * SL * Axial winding deformation
NC NC NC NC SU SR Radial winding deformation

NC SL * NC SL * NC SL * Presence of moisture in
oil/Thermal loading

* Minor shift. NC—no change; SU—shift up; SD—shift down; SL—shift left; SR—shift right.

The research contribution: This investigation presents a detailed methodology for
the interpretation of transformer faults using FRA fingerprint and measured profiles. The
following are the manuscript contributions to the research study:

• Recommend an FRA interpretation code criteria based on an empirical survey com-
prising mineral oil-immersed transformers ranging from 315 kVA to 40 MVA.

• Propose an ANOVA-based interpretation tool for diagnosing the statistical significance
of FRA fingerprint and measured profiles.

• Develop descriptive FRA sub-region data statistics to evaluate the magnitude and
measure frequency characteristics.

• Present various case studies with unknown FRA profiles for fault diagnosis.

The novelty of the current research: The fundamental goal of this research investigation
is oriented to broaden the current knowledge on developments in transformer FRA results
for the diagnosis of fault sources. Granted that many research works have been published
on the developing interpretational tool to diagnose transformer faults, no research has
been reported regarding studying the statistical significance between the fingerprint and
measured FRA profile on different frequency sub-regions. Three frequency sub-regions,
which are used in FRA standards, are taken into consideration and the significance of
the deviations found between FRA profiles is not reliable by the naked eye and experts’
knowledge. However, after applying ANOVA, the accurate significance of deviations can be
observed. These data are very critical in the development of the FRA interpretation scheme.

Various studies have compared FRA profiles by plotting graphs in the same plot in
their work. This has shortfalls of not revealing the shifts of the profiles concerning each
other when observed by the naked eye. However, in the present research, the magnitude
and measuring frequency shifts, i.e., no change (NC), shift up (SU), shift down (SD), shift
left (SL), and shift right (SR), are attained by proposing descriptive statistics in addition to
the statistical significance observed by ANOVA to further comprehensively conclude on
the magnitude and, measuring frequency shifts concerning various fault classes have been
studied. As a result, in the current work, an FRA profile interpretation code criteria has
been recommended.

From this examination, the conclusion is made that the proposed interpretation code
criteria is avant-garde with the diagnosis fault classes of unknown measured FRA profiles
concerning their fingerprint.

2. Materials and Methods
2.1. Frequency Response Analysis Method

The primary purpose of the FRA is to identify winding and core distortion. Currently,
the FRA test is advised to be executed before and after transportation or relocation, on pre-
sumed components, and during frequent offline maintenance. The transformer frequency
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response is acquired by inserting a low (<20 V) AC input signal, ‘Vin’, of varying frequency
at one terminal of a transformer winding [9]. The output voltage, ‘Vout’, is calculated at
another terminal of similar winding, as demonstrated in Figure 2. The frequency response,
normally the transmission function, ‘H(f)’, of Vout to Vin, is plotted as phase, ‘(f)’, and
magnitude, ‘K(f)’, in dB, in a frequency range of 2 MHz, as provided by (1) and (2). The
frequently employed plot for evaluating the response is the magnitude plot [9].
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Figure 2. FRA measurement setup.

FRA test arrangement relates to the relation of the frequency response analyzer to
the transformer. By CIGRE WG A2/26, IEEE Std. C57.149-2012, and IEC 60076-18, four
distinct configurations can be employed to execute FRA quantity [10]. These are the end-
to-end open-circuit examination, the end-to-end short-circuit examination, the capacitive
inter-winding examination, and the inductive inter-winding examination. The end-to-
end open-circuit arrangement is executed by inserting the signal into one end of the
winding and calculating the transmitted signal at the other end of the similar winding.
This arrangement is frequently employed provided that it can supply more information
concerning the winding and core. An example of a normal frequency response applying
an end-to-end open-circuit arrangement is demonstrated in Figure 3a. On the contrary, in
the end-to-end short-circuit arrangement, the secondary winding of the identical phase is
lowered to eradicate the effect of the core on the measurement, given the low-frequency
response outcomes from the enticing inductance of the iron core [11]. The normal frequency
response of end-to-end short-circuit alignment is demonstrated in Figure 3b. To clarify the
FRA signature, it is required to examine all frequency variables. The frequency response
can be separated into three regions as per IEC 60076-18 [12]: the low frequency (LF) region,
the mid-frequency (MF) region, and the high-frequency (HF) region, as demonstrated in
Figure 3c. These reactions are from proportions applying end-to-end open- and short-circuit
examinations. Despite that, there is no general frequency limit identified for each region
as this primarily relies on the magnitude and rating of the transformer. In the IEEE std.
C57.104 [13], the frequency sub-bands are separated into four regions. The fourth region is
for frequencies higher than 1 MHz, where the impacts of size and grounding guides are
significant. It is essential to examine each frequency region since each frequency region
is impacted by numerous transformer faults. The core leads the LF region, and the MF
region is led by the parallel capacitance and mutual inductances, although the HF region is
affected by the winding capacitance [14].
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The frequency response of a transformer could be created by a complicated circuit
comprising resistances, inductances, capacitances, and mutual inductances. The circuit
components are associated with the physical geometry of the transformer winding [15].

2.2. Proposed Fault Recognition Guideline

The increasingly regular transformer faults and their corresponding effects on differ-
ent frequency sub-regions were conducted. These were predicated on a comprehensive
empirical survey of units removed from service and expected by a local manufacturer
ranging from 315 kVA to 40 MVA transformers. The measuring frequency was discretized
into three frequency sub-regions as follows:

• 20 Hz < Sub-region 1 < 2 kHz;
• 2 kHz < Sub-region 2 < 20 kHz;
• 20 kHz < Sub-region <2 MHz.

The patterns of the FRA profiles and corresponding fault classes were extensively
studied by considering the following critical components:
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• ANOVA—proposed to test the null hypothesis between fingerprint and measured
FRA profile;

• Descriptive statistics—to study the shift of the FRA profile, i.e., no change (NC), shift
up (SU), shift down (SD), shift left (SL), and shift right (SR).

The latter resulted in the crucial development of the FRA profile recommended in-
terpretation code criteria as shown in Table 1. Each sub-region is surveilled on the two
fundamental components, i.e., magnitude (M) in decibels (dB) and the measuring frequency
(MF) in Hertz (Hz).

Respective faults outlined in the FRA profile recommended interpretation code criteria
has a diverse effect on the transformer FRA profile. By way of illustration, loose core clamp
deficiency turns up as a minor shift down at sub-region 1, no change up or down in other
sub-regions, and no shift left or right in all other sub-regions.

2.3. The Fundamental Principle of ANOVA

The ANOVA test is a class of statistical analysis employed to evaluate whether two or
more datasets have been statistically significant by examining the differences of averages
utilizing variance. The presumptions of an ANOVA test can be summarized as follows [16]:

• An ANOVA cannot be carried out provided there is a fragile connection between the
subjects in respective datasets. This suggests that subjects in the first dataset cannot
also be in the second dataset (viz. independent samples between datasets).

• The respective datasets should have equal dimensions.
• An ANOVA cannot be carried out provided the apparent variable is normally dis-

tributed, such that the middling scores are most common and extreme scores are
less common.

To ascertain the difference between an FRA fingerprint and measured FRA pro-
file, averages that were statistically significant, using “p-value”, were observed in this
research study.

2.4. Proposed ANOVA

In the proposed ANOVA application for observing the statistical significance of an
FRA fingerprint and a measured FRA profile, the criteria in Table 2 was proposed.

Table 2. Proposed ANOVA for interpretation of FRA results.

p-Value FRA–ANOVA Results Observation Action

p-value < α (0.05) The null hypothesis is rejected SS Inspection should be conducted
p-value > α (0.05) Fail to reject the null hypothesis NSS No raised concern

SS—statistically significant. NSS—no statistical significance.

It has been formulated that if the p-value is lower than the threshold for statistical
significance (α), which is an arbitrary value of 0.05, then the null hypothesis of the ANOVA
is rejected, and it is determined that there is a statistically significant difference between
the means of FRA profiles. Conversely, suppose that the p-value is not lower than α = 0.05,
then the FRA profile comparison of the fingerprint and measured data fails to reject the
null hypothesis and it can be determined that there is no sufficient proof to recognize that
there is a statistically significant difference between the means of the FRA fingerprint and
measured FRA profile. Three frequency sub-regions which are used in FRA standards were
taken into consideration and the significance of the deviations between FRA profiles were
found to not be reliable by the naked eye and experts’ knowledge. However, after applying
ANOVA, the accurate significance of deviations could be observed. This data are very
critical in the development of the FRA interpretation scheme.
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2.5. Proposed Descriptive Statistics

Table 2 furnishes supporting information that was proposed for interpreting the shift
of two FRA profiles about each other concerning their magnitudes (dB) and measuring
frequency (Hz). This supplemental information is based on the descriptive statistics
of respective FRA profiles to conclusively identify their characteristics for diagnosing
respective fault classes. Interpretation of FRA profiles by the proposed Table 2 will illustrate
the changes in the frequency response resulting from varying fault conditions [17].

The maximum and minimum statistics were beneficial in determining the SU or SD
of the magnitude component of the FRA profile. Similarly, the largest (1) and smallest
(1) were beneficial in determining the SL or SR of the FRA profile. The latter is critical given
that these shifts are not always visible to the naked eye.

3. Case Studies

The FRA measurement was conducted by utilizing a commercial FRA analyzer and
was tested under open-circuit and short-circuit configurations. The effect of the short-circuit
test on the results was circumvented by carrying out the open-circuit test first before the
short-circuit test.

3.1. Case Study 1: 6600/420 V, 500 kVA Transformer

In this case study, a 6600/420 V, 500 kVA transformer filled with mineral oil was
examined using FRA data of the fingerprint in comparison to the measured FRA profile. The
FRA characteristic of overlaying the fingerprint and measured FRA profiles is demonstrated
in Figure 4. The test was carried out over a measuring frequency of 20 Hz and 2 MHz.
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Figure 4. Case study 1: FRA Measurement.

In Table 3, the ANOVA results of the FRA data are presented and interpreted using
the proposed criterion in Section 2.4.

In Table 4, the ANOVA results for case study 1 are presented. The R2 value, observation
of the FRA characteristic, p-value and observation of the null hypothesis are highlighted.
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Table 3. Descriptive statistics interpretation for developing an FRA profile interpretation code criteria.

Statistic Fingerprint

Mean The mean value of the FRA profile

Standard Error The measure of the accuracy whereby the FRA sample distribution constitutes an FRA population
mean. This statistic is proportionate to variability

Median Reveals the middle number of each compared FRA profile
Standard Deviation The measure of the standard deviation of the FRA profile

Sample Variance Illustrate the FRA profile square of Standard Deviation
Kurtosis Indicate how much the tails of a distribution are different from the tails of a normal distribution.

Skewness Measures the asymmetry of the FRA profile, where zero shows a perfectly symmetrical distribution.
Range Indicate the difference between the largest and smallest values FRA profile

Minimum Indicate the minimum value in the FRA profile
Maximum Indicate the maximum value in the FRA profile

Sum Indicate the arithmetic sum of the FRA profile in a sub-region
Count Counts the number of data points in the FRA profile

Largest (1) Indicate the largest number in each FRA profiles
Smallest (1) Indicates the smallest “n” of the FRA profile

Table 4. Case study 1 ANOVA results.

Frequency R2 Value Observation p-Value Null Hypothesis

Sub-region 1 0.984 NSS 0.249304516 Fail to reject the null hypothesis
Sub-region 2 0.993 NSS 0.535582016 Fail to reject the null hypothesis
Sub-region 3 0.981 NSS 0.355507322 Fail to reject the null hypothesis

The corresponding descriptive statistics comparison between fingerprint and mea-
sured FRA profiles is presented in Table 5. These results reveal the shift of the magnitude
and the measuring frequency and interpretation, concluded based on Section 2.5.

Table 5. Sub-region 1: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −6.559 −6.887
Standard Error 0.196 0.206

Median −5.696 −5.981
Standard Deviation 4.026 4.227

Sample Variance 16.205 17.866
Kurtosis −0.995 −0.995

Skewness −0.406 −0.406
Range 13.942 14.639

Minimum −14.432 −15.154
Maximum −0.4904 −0.515

Sum −2761.406 −2899.476
Count 421 421

Largest (1) −0.490 −0.515
Smallest (1) −14.432 −15.154

It should be noted that for this study, the descriptive statistics parameters that will
be considered in the application of FRA interpretation will be the central tendency (mean
and median) and minimum and maximum values. The latter is significant in ascertain-
ing the characteristics between compared FRA profiles concerning the horizontal and
vertical direction.

In Table 5, the fingerprint has a mean and median of −6.559 and −5.696, respectively.
Given that the mean is more than the median, it signifies that the FRA distribution is right
skewed. Half of the FRA data points fall above the median, i.e., −5.696, and another half
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fall below. It follows that for the measured FRA, the mean and median are −6.887 and
−5.981, respectively. The mean can be observed to be greater than the median, which
illustrates that the measured FRA distribution is also right skewed and hence half of the
measured FRA data points fall above −5.981, and half fall below. It can be concluded that
there is NC in the horizontal direction for sub-region 1.

The minimum and maximum FRA data values in the FRA profiles can facilitate insight
into where the magnitude data fall in the horizontal direction. In Table 5, the fingerprint
falls between −14.432 and −0.490, while the measured FRA fall between −15.154 and
−0.515. This constitutes proof that there is NC in the vertical direction for the fingerprint
and measured FRA in sub-region 1.

The corresponding descriptive statistics comparison between fingerprint and mea-
sured FRA profiles is presented in Table 6. These results reveal the shift of the magnitude
and the measuring frequency and interpretation, concluded based on Section 2.5.

Table 6. Sub-region 2: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −0.561 −0.588
Standard Error 0.031 0.033

Median −0.354 −0.371
Standard Deviation 0.451 0.473

Sample Variance 0.203 0.224
Kurtosis 1.147 1.147

Skewness −1.329 −1.329
Range 1.887 1.981

Minimum −2.056 −2.159
Maximum −0.169 −0.177

Sum −116.103 −121.909
Count 207 207

Largest (1) −0.169 −0.177
Smallest (1) −2.056 −2.159

In Table 6, the fingerprint has a mean and median of −0.561 and −0.354, respectively.
Given that the mean is more than the median, it signifies that the FRA distribution is right
skewed. Half of the FRA data points fall above the median, i.e., −0.561, and another half
fall below. It follows that for the measured FRA, the mean and median are −0.588 and
−0.371, respectively. The mean can be observed to be greater than the median, which
illustrates that the measured FRA distribution is also right skewed and hence half the
measured FRA data points fall above −0.588, and half fall below. It can be concluded that
there is NC in the horizontal direction for sub-region 2.

The minimum and maximum FRA data values in the FRA profiles can facilitate insight
into where the magnitude data fall in the horizontal direction. In Table 6 the fingerprint
falls between −2.056 and −0.169, while the measured FRA fall between −2.159 and −0.177.
This constitutes proof that there is NC in the vertical direction for the fingerprint and
measured FRA in sub-region 2.

The corresponding descriptive statistics comparison between fingerprint and mea-
sured FRA profiles is presented in Table 7. These results reveal the shift of the magnitude
and the measuring frequency and interpretation, concluded based on Section 2.5.

In Table 7, the fingerprint has a mean and median of −11.679 and −9.811, respectively.
Given that the mean is more than the median, it signifies that the FRA distribution is right
skewed. Half of the FRA data points fall above the median, i.e., −11.679, and another half
fall below. It follows that for the measured FRA, the mean and median are −12.264 and
−10.301, respectively. The mean can be observed to be greater than the median, which
illustrates that the measured FRA distribution is also right skewed and hence half the
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measured FRA data points fall above −12.264, and half fall below. It can be concluded that
there is NC in the horizontal direction for sub-region 3.

Table 7. Sub-region 3: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −11.679 −12.264
Standard Error 0.435 0.457

Median −9.811 −10.301
Standard Deviation 8.819 9.260

Sample Variance 77.782 85.754
Kurtosis −0.343 −0.343

Skewness −0.814 −0.814
Range 34.024 35.725

Minimum −35.281 −37.045
Maximum −1.257 −1.319

Sum −4800.463 −5040.486
Count 411 411

Largest (1) −1.257 −1.319
Smallest (1) −35.281 −37.045

The minimum and maximum FRA data values in the FRA profiles can facilitate insight
into where the magnitude data fall in the horizontal direction. In Table 7, the fingerprint
falls between −35.281 and −1.257, while the measured FRA fall between −37.045 and
−1.319. This constitutes proof that there is NC in the vertical direction for the fingerprint
and measured FRA in sub-region 3. The aforementioned results indicate the code NC, NC,
and NC on sub-region1, sub-region 2, and sub-region 3, respectively, on the FRA magnitude
and measuring frequency, which constitutes proof that this unit has no fault condition.
The conclusions which were drawn from physical surveillance of the unit corroborate the
conclusions drawn by the proposed FRA–ANOVA-Descriptive statistics method. The unit
was observed to have no fault condition.

3.2. Case Study 2: 6600/420 V, 630 kVA Transformer

In this case study, a 6600/420 V, 630 kVA transformer filled with mineral oil is examined
using FRA data of the fingerprint in comparison to the measured FRA profile. The FRA
characteristic of overlaying the fingerprint and measured FRA profiles is demonstrated in
Figure 5. The test was carried out over a measuring frequency of 20 Hz and 2 MHz.

In Table 8, the ANOVA results of the FRA data are presented and interpreted using
the proposed criterion in Section 2.4.

The corresponding descriptive statistics comparison between fingerprint and mea-
sured FRA profiles is presented in Table 9. These results reveal the shift of the magnitude
and the measuring frequency and interpretation, concluded based on Section 2.5.

In Table 9, the fingerprint has a mean and median of −8.554 and −8.108, respectively.
Given that the mean is more than the median, it signifies that the FRA distribution is right
skewed. Half of the FRA data points fall above the median, i.e., −8.554, and another half
fall below. It follows that for the measured FRA, the mean and median are −9.068 and
−8.594, respectively. The mean can be observed to be greater than the median, which
illustrates that the measured FRA distribution is also right skewed and hence half of the
measured FRA data points fall above −9.068, and half fall below. It can be concluded that
there is NC in the horizontal direction for sub-region 1.
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Figure 5. Case study 2: FRA measurement.

Table 8. Case study 2 ANOVA results.

Frequency R2 Value Observation p-Value Null
Hypothesis

Sub-region 1 0.991 NSS 0.150323025 Fail to reject the
null hypothesis

Sub-region 2 0.983 NSS 0.185878945 Fail to reject the
null hypothesis

Sub-region 3 0.981 NSS 0. 219513 Fail to reject the
null hypothesis

Table 9. Sub-region 1: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −8.554 −9.068
Standard Error 0.24464065 0.259

Median −8.108 −8.594
Standard Deviation 5.019 5.321

Sample Variance 25.196 28.311
Kurtosis −0.822 −0.822

Skewness −0.257 −0.257
Range 17.430 18.476

Minimum −18.373 −19.476
Maximum −0.943 −0.999

Sum −3601.387 −3817.47
Count 421 421

Largest (1) −0.943 −0.999
Smallest (1) −18.373 −19.476

The minimum and maximum FRA data values in the FRA profiles can facilitate insight
into where the magnitude data fall in the horizontal direction. In Table 9, the fingerprint
falls between −18.373 and −0.943, while the measured FRA fall between −19.476 and
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−0.999. This constitutes proof that there is NC in the vertical direction for the fingerprint
and measured FRA in sub-region 1.

The corresponding descriptive statistics comparison between fingerprint and mea-
sured FRA profiles is presented in Table 10. These results reveal the shift of the magnitude
and the measuring frequency and interpretation, concluded based on Section 2.5.

Table 10. Sub-region 2: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −11.481 −12.170
Standard Error 0.355 0.376

Median −11.542 −12.234
Standard Deviation 5.103 5.409

Sample Variance 26.045 29.264
Kurtosis −0.937 −0.937

Skewness −0.089 −0.089
Range 19.202 20.354

Minimum −22.078 −23.402
Maximum −2.876 −3.048

Sum −2376.641 −2519.24
Count 207 207

Largest (1) −2.876 −3.048
Smallest (1) −22.078 −23.402

In Table 10, the fingerprint has a mean and median of −11.481 and −11.542, respec-
tively. Given that the mean and the median are almost similar, it signifies that the FRA
distribution is symmetrical. It follows that for the measured FRA, the mean and median
are −12.170 and −12.234, respectively. The mean can be observed to also be the same as
the median, which illustrates that the measured FRA distribution is also symmetrical. It
can be concluded that there is NC in the horizontal direction for sub-region 2.

The minimum and maximum FRA data values in the FRA profiles can facilitate insight
into where the magnitude data fall in the horizontal direction. In Table 10, the fingerprint
falls between −22.078 and −2.876, while the measured FRA falls between −23.402 and
−3.048. This constitutes proof that there is NC in the vertical direction for the fingerprint
and measured FRA in sub-region 2.

In Table 11, the fingerprint has a mean and median of −28.203 and −27.268, respec-
tively. Given that the mean is more than the median, it signifies that the FRA distribution is
right skewed. Half of the FRA data points fall above the median, i.e., −28.203, and another
half fall below. It follows that for the measured FRA, the mean and median are −23.203
and −22.268, respectively. The mean can be observed to be greater than the median, which
illustrates that the measured FRA distribution is also right skewed and hence half the
measured FRA data points fall above −23.203, and half fall below. Comparing −28.203 and
−23.203, it can be concluded that there is SR in the horizontal direction for sub-region 3.

The minimum and maximum FRA data values in the FRA profiles can facilitate insight
into where the magnitude data fall in the horizontal direction. In Table 11, the fingerprint
falls between −56.317 and −6.856, while the measured FRA fall between −51.317 and
−1.856. This constitutes proof that there is an SU in the vertical direction for the fingerprint
and measured FRA in sub-region 3.

The aforementioned results indicate the code NC, NC, and SU on sub-region1, sub-
region 2, and sub-region 3 on the FRA magnitude and indicate the code NC, NC, and SR
measuring frequency which constitutes proof that this unit has a radial winding deforma-
tion. The conclusions which were drawn from physical surveillance of the unit corroborate
the conclusions drawn by the proposed FRA–ANOVA-Descriptive statistics method. The
unit was observed to have a radial winding deformation.
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Table 11. Sub-region 3: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −28.203 −23.203
Standard Error 0.474 0.474

Median −27.268 −22.268
Standard Deviation 9.618 9.618

Sample Variance 92.504 92.504
Kurtosis 0.163 0.163

Skewness −0.372 −0.372
Range 49.462 49.462

Minimum −56.317 −51.317
Maximum −6.856 −1.856

Sum −11591.237 −9536.237
Count 411 411

Largest (1) −6.856 −1.856
Smallest (1) −56.317 −51.317

3.3. Case Study 3: 11,000/420 V, 315 kVA Transformer

In this case study, an 11,000/420 V, 315 kVA transformer filled with mineral oil is
examined using FRA data of the fingerprint in comparison to the measured FRA profile. The
FRA characteristic of overlaying the fingerprint and measured FRA profiles is demonstrated
in Figure 6. The test was carried out over a measuring frequency of 20 Hz and 2 MHz.
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Figure 6. Case study 3: FRA Measurement.

In Table 12, the ANOVA results of the FRA data are presented and interpreted using
the proposed criterion in Section 2.4.

The corresponding descriptive statistics comparison between fingerprint and mea-
sured FRA profiles is presented in Table 13. These results reveal the shift of the magnitude
and the measuring frequency and interpretation, concluded based on Section 2.5.



Energies 2022, 15, 7224 14 of 17

Table 12. Case study 3 ANOVA results.

Frequency R2 Value Observation p-Value Null Hypothesis

Sub-region 1 0.973 NSS 0.178532915 Fail to reject the null hypothesis
Sub-region 2 0.983 NSS 0.207852102 Fail to reject the null hypothesis
Sub-region 3 0.801 SS 0.000487522 The null hypothesis is rejected

Table 13. Sub-region 1: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −8.554 −9.033
Standard Error 0.245 0.258

Median −8.107 −8.561
Standard Deviation 5.019 5.301

Sample Variance 25.196 28.097
Kurtosis −0.822 −0.822

Skewness −0.257 −0.257
Range 17.430 18.407

Minimum −18.373 −19.402
Maximum −0.943 −0.996

Sum −3601.387 −3803.065
Count 421 421

Largest (1) −0.943 −0.996
Smallest (1) −18.373 −19.402

In Table 13, the fingerprint has a mean and median of −8.554 and −8.107, respectively.
Given that the mean is more than the median, it signifies that the FRA distribution is right
skewed. Half of the FRA data points fall above the median, i.e., −8.554, and another half
fall below. It follows that for the measured FRA, the mean and median are −9.033 and
−8.561, respectively. The mean can be observed to be greater than the median, which
illustrates that the measured FRA distribution is also right skewed and hence half of the
measured FRA data points fall above −9.033, and half fall below. It can be concluded that
there is NC in the horizontal direction for sub-region 1.

The minimum and maximum FRA data values in the FRA profiles can facilitate
insight into where the magnitude data fall in the horizontal direction. In Table 13, the
fingerprint falls between −18.373 and −0.943, while the measured FRA falls between
−19.402 and −0.996. This constitutes proof that there is an SU in the vertical direction for
the fingerprint and measured FRA in sub-region 1. The corresponding descriptive statistics
comparison between fingerprint and measured FRA profiles is presented in Table 14. These
results reveal the shift of the magnitude and the measuring frequency and interpretation,
concluded based on Section 2.5.

In Table 14, the fingerprint has a mean and median of −11.481 and −11.542 respectively.
Given that the mean is the same as the median, it signifies that the FRA distribution is
symmetrical. It follows that for the measured FRA, the mean and median are −12.132
and −16.196 respectively. The mean can be observed to be less than the median, which
illustrates that the measured FRA distribution is skewed to the left. Comparing −11.542
and −16.196, it can be concluded that there is SR in the horizontal direction for sub-region 2.

The minimum and maximum FRA data values in the FRA profiles can facilitate
insight into where the magnitude data fall in the horizontal direction. In Table 14, the
fingerprint falls between −22.078 and −2.876, while the measured FRA fall between
−23.329 and −3.039. This constitutes proof that there is an SU in the vertical direction for
the fingerprint and measured FRA in sub-region 2. The corresponding descriptive statistics
comparison between fingerprint and measured FRA profiles is presented in Table 15. These
results reveal the shift of the magnitude and the measuring frequency and interpretation,
concluded based on Section 2.5.
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Table 14. Sub-region 2: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −11.481 −12.132
Standard Error 0.354 0.375

Median −11.542 −16.196
Standard Deviation 5.103 5.393

Sample Variance 26.045 29.082
Kurtosis −0.937 −0.937

Skewness −0.089 −0.089
Range 19.202 22.291

Minimum −22.078 −23.329
Maximum −2.876 −3.039

Sum −2376.642 −2511.397
Count 207 207

Largest (1) −2.876 −3.039
Smallest (1) −22.078 −23.329

Table 15. Sub-region 3: Descriptive statistics comparison between fingerprint and measured
FRA profiles.

Statistic Fingerprint Measured

Mean −28.203 −30.656
Standard Error 0.4744 0.516

Median −27.268 −29.639
Standard Deviation 9.6179 10.455

Sample Variance 92.504 109.300
Kurtosis 0.1634 0.163

Skewness −0.372 −0.372
Range 49.462 53.765

Minimum −56.317 −57.217
Maximum −6.856 −7.052

Sum −11591.237 −12599.674
Count 411 411

Largest (1) −6.856 −7.052
Smallest (1) −56.317 −57.217

In Table 15, the fingerprint has a mean and median of −28.203 and −27.268, respec-
tively. Given that the mean is more than the median, it signifies that the FRA distribution is
right skewed. Half of the FRA data points fall above the median, i.e., −28.203, and another
half fall below. It follows that for the measured FRA, the mean and median are −30.656
and −29.639, respectively. The mean can be observed to be greater than the median, which
illustrates that the measured FRA distribution is also right skewed and hence half the
measured FRA data points fall above −30.656, and half fall below. It can be concluded that
there is NC in the horizontal direction for sub-region 3.

The minimum and maximum FRA data values in the FRA profiles can facilitate insight
into where the magnitude data fall in the horizontal direction. In Table 15, the fingerprint
falls between −56.317 and −6.856, while the measured FRA fall between −57.217 and
−7.052. This constitutes proof that there is a NC in the vertical direction for the fingerprint
and measured FRA in sub-region 3.

The aforementioned results indicate the code NC, NC, and NC on sub-region1, sub-
region 2, and sub-region 3 on the FRA magnitude and NC, SR, and NC on the measuring
frequency, respectively, which constitutes proof that this unit has Bulk winding deformation.
The conclusions which were drawn from physical surveillance of the unit corroborate the
conclusions drawn by the proposed FRA–ANOVA-Descriptive statistics method. The unit
was observed to have a bulk winding deformation.
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4. Conclusions

FRA is a valid instrument for the valuation of electrical transformer mechanical
coherence. Nonetheless, the exposition of FRA results is still grueling as a result of the
deficit of simple and unsophisticated guidelines. This work proposes a comprehensive
schema chart and arrow method as a guide to lubricating the specification and assessment
of FRA results. The proposed FRA interpretation code criteria are achieved through an
empirical survey based data supplied by a local transformer manufacturer.

• Additionally, ANOVA was proposed to evaluate the statistical significance of the FRA
fingerprint and the measured FRA profile. The null hypothesis was employed to
evaluate any discrepancies using the p-value of individual datasets on each sub-region.
If the p-value is no more than 0.05, then the null hypothesis is rejected signifying
that the latest FRA data and the fingerprint are sampled from datasets with the same
mean and vice versa. Consequently, descriptive statistics was proposed to gain new
insights about the horizontal and vertical shifts on the measured profile in relation to
its fingerprint.

• Further, three experiential case studies were performed on 6600/420 V, 500 kVA,
630 kVA, and 11,000/420 V, and 315 kVA transformers with known faults to corrobo-
rate the practicality of the recommended procedures.

• The practical case study results constitute proof that the disparities within the frequency
sub-regions of the measured FRA responses are persistent with the proposed strategies.

Additional practicality studies should be performed to explore the precision of using
the proposed method in various oil-immersed transformers in the field. Moreover, proposed
strategies ought to be investigated and tested on a diverse fleet of transformers of assorted
power ratings and winding conductor arrangements.
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