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Abstract: After the massive integration of distributed energy resources, energy storage systems and
the charging stations of electric vehicles, it has become very difficult to implement an efficient grid
energy management system regarding the unmanageable behavior of the power flow within the grid,
which can cause many critical problems in different grid stages, typically in the substations, such as
failures, blackouts, and power transformer explosions. However, the current digital transition toward
Energy 4.0 in Smart Grids allows the integration of smart solutions to substations by integrating
smart sensors and implementing new control and monitoring techniques. This paper is proposing
a hybrid artificial intelligence multilayer for power transformers, integrating different diagnostic
algorithms, Health Index, and life-loss estimation approaches. After gathering different datasets,
this paper presents an exhaustive algorithm comparative study to select the best fit models. This
developed architecture for prognostic (PHM) health management is a hybrid interaction between
evolutionary support vector machine, random forest, k-nearest neighbor, and linear regression-based
models connected to an online monitoring system of the power transformer; these interactions are
calculating the important key performance indicators which are related to alarms and a smart energy
management system that gives decisions on the load management, the power factor control, and the
maintenance schedule planning.

Keywords: smart grid; power transformer; energy management; PHM; multi-agent; machine learning

1. Introduction

In the current energy transition toward smart grids, increasing the amount of renew-
able energies integration, photovoltaic, wind power, concentrated solar power, new energy
storage systems, and new loads such as electric vehicles which are impacting the energy
demand response [1] and load profile of either production [2] or consumption [3]. These
changes are making the electrical grid unstable due to the variation of the power flows
maintained by power transformers which are representing the most critical component
in the grid where its failures impact directly the grid and cause instability, blackouts, and
deadly incidents with high cost (knowing that a power transformer can cost from USD
600,000.00 to more than USD 4,000,000.00 depending on the power, respectively, from
10 MVA to 100 MVA). Therefore, it is mandatory to think about new ways to protect this
equipment to protect the grid, integrating several technologies and techniques which are
answering the challenges faced by the grid and the power transformers. The main challenge
is maintaining the functionalities and the reliability of the power transformer by a hybrid
monitoring technique focusing on different components and subsystems.
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This hybrid online system diagnoses the power transformer by giving an overall
Health Index score with details on the current failures and state of each component. Based
on this proposed system, the results are directly communicated with a distributed smart
energy management system that gives real time decision-making to improve the quality of
the power flow in the grid and proposing an optimized preventive maintenance scheduling
plan. The Health Index calculation incorporates the insulation paper Health Index based
on top oil temperature, load, ambient temperature, and water temperature; for oil quality
diagnosis, the interfacial tension, moisture, and breakdown voltage determine its Health
Index based on IEC 60422. According to IEEE C57-104-2008, the dissolved gas analysis
Health Index is calculated by monitoring its particles per million for hydrogen, methane,
ethylene, acetylene, ethanol, and other gases. Daniella has proposed a Health Index calcu-
lation [4] which was validated by 204 power transformer datasets and can also calculate
the life loss of the power transformer in real time, the estimation of the Health Index can
be done using Markov chain by retrieving data of the oil monitoring technique, and then
calculating the Health Index; Determining the average and rearranging it by zone or age,
the transition probabilities can be computed, as Muhammad employed this strategy [5] and
confirmed by 3195 datasets obtained from oil samples analyzed from power transformers
aged 1 to 25 years (373 total). The Health Index calculation can be enhanced by introducing
multi-criteria analysis for example fuzzy analytic hierarchy process or fuzzy technique for
order preference by similarities to ideal solution [6,7].

In recent work, Daniella presented an enhanced diagnostic methodology Health Index
estimation based on data of 204 power transformers and their maintenance history as a tool
that can be used for maintenance scheduling and planning integrating dissolved gas analy-
sis (DGA), oil quality factor (OQF), and load history (LH) [4]; however, this methodology
can be enhanced and improved using more diagnostic factors such as the global loss factor
(GLF), the infrared thermography, the Furans content, and other subcomponent indicators,
as described by Bogdan in their proposition of calculating the different Health Indexes
of the power transformers [8]; these propositions are very efficient offline methodologies
which can be used by power transformer maintenance managers and can be integrated in
an online monitoring platform or system.

Jorn proposed a methodology to calculate the Health Index, the risk and estimating
the lifetime of the power transformer by combining three models based on winding degra-
dation, expert judgement, and the statistics of the life cycle of the power transformer [9].
The Health Index calculation has been proposed by Naderian by applying the multi-criteria
approach and combining different monitoring and diagnostic techniques [10]. This article
proposes an online Health Index and lifetime estimation approach based on dissolved
gas analysis (DGA), water content in the oil, dibenzyl disulfide (DBDS), and electrical
measurements such as dielectric rigidity, power factor, and interfacial voltage.

The role of a power transformer in a smart grid is critical, and its failures are impacting
all grid components multidimensionally, causing blackouts, voltage instability, harmonics
and sometimes explosions if the maintenance scheduling is not well managed. Therefore,
many researchers have developed new architectures for smart power transformers inte-
grating different monitoring techniques such as thermal image processing, dissolved gas
analysis, oil preservation, vibration analysis and others in order to look for correlations
between these techniques; these monitoring techniques are connected to a smart energy
management system that gives decisions in different grid components [11,12]. Figure 1
shows the main components of the power transformer architecture. For self-diagnostics and
reliability, which are connected to prognostic and health management proposed in [11,13],
the goal is making the power transformer detect failure and act with the help of a smart
energy management system which is connected to load management and energy demand
and peak load prediction proposed in [14,15].
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Figure 1. Smart power transformer features.

The power transformer is responsible for electrical grid stability in different power
flow levels of production, transmission, and distribution while reporting and communi-
cate all necessary data for the energy management system, such as electrical data from
power meters, dissolved gas analysis from different gas sensors, and the temperature of
different components.

However, the security feature is very vulnerable to attack and to false data injection
due to the very well-known communication protocols of sensors and the data gateway
installed within the transformer; therefore, it is mandatory to use a blockchain approach for
the communication of the power meters and all installed kits in the transformer, and this
concept was developed in recent work in [16–18], where proposing a new communication
architecture for power meters to prevent the false data injection and activate the energy
market, the same approach is proposed for the communication protocols in the different
sensor kits and gateways installed in the power transformer. All acquired data from
different sensors installed directly impact the developed models of diagnostics, prediction,
and life loss estimation; therefore, false information from a kit or a bad communication is
a false input to the models which deliver a bad decision on load management or power
factor adjustment, making it mandatory to develop a false data injection detection [19] in
the proposed architecture in future work.

This paper is proposing a new approach toward smart power transformer following
the energy digital transition, integrating online monitoring systems, machine learning
models, and data management applications. Figure 2 shows the paper structure and the
research methodology, starting with listing the power transformer failures, causes and
effects analysis, and following the ISHIKAWA approach by then listing the Health Index
and life-loss estimation methods. In the second part of the paper, an exhaustive list of
monitoring techniques for each failure is proposed to enhance the hybrid architecture
enabling the prognostic health management, followed by a comparative study of other
developed algorithms from different researchers using machine learning.
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Figure 2. Paper structure.

After these two steps, the paper proposes a hybrid system architecture where different
hardware, software, and human agents are interacting in different connected layers to make
the power transformer smart, and autonomously connected with an energy management
system. Therefore, it is mandatory to test different machine learning algorithms for defect
classification, life loss, and Health Index estimation in order to select the best fit algorithms
and be embedded in the proposed architecture; this step was developed using RapidMiner
software based on dissolved gas analysis datasets [20,21] and the Health Index, and the
life-loss estimation dataset in [22]. After selecting the best fit models, the paper presents a
database, model, KPI, and monitoring interface interactions using Thingsboard platform.

2. Power Transformer Failures

Figure 3 depicts the many forms of failure as defined by the IEEE standard for evalu-
ating and reconditioning liquid immersed power transformers [23]. Specifically, bushing
failures, oil preservation system failures, radiator failures, core failures, winding assembly
failures caused by turn, coil, or ground faults, and lead connection or insulation break-
downs are the most common. The purpose of this study is to identify the flaws of various
power transformer failures [24]. Therefore, it is mandatory to list each failure cause and
effect through inspection in the various components of the immerged oil power transformer
shown in Figure 4 and integrate it into a smart energy management system [25].
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Figure 4. Types of failures inspections in the different components.

Figure 4 describes the inspections of different failures appearing in all power trans-
former components [26] in order to design an intelligent system and automate the failure
categorization process through the use of sensors, data collecting, data preprocessing, and
machine learning as a self-diagnostic and decision-making assistance; displaying the cause
effect analysis also helps to better understand the causes and identify the best maintenance
planning option to follow the online self-diagnostic system findings.

3. Power Transformer Monitoring Techniques

Many strategies are effective for classifying the various sorts of failures stated, as
seen in Figure 5 and established by Lekshmi in the study of monitoring techniques [27];
for example, for thermal analysis, which needs a thermal camera and a data acquisition
device to record the power transformer’s image data, deep learning algorithms are used to
categorize failures, primarily internal winding problems.

The power transformer’s vibration route is caused by winding and core vibration,
which affects the mechanical joints and the cooling oil applied to the tank surface [28].
The accelerometers, which are positioned on the windings and the tank, give data to a
diagnosis system, which classifies the failures as generally core problems. The detection of
winding movement, which aids in the diagnosis of inter-winding faults, the dissolved gas
analysis, and the partial discharge analysis which classifies by monitoring the number of
particles per million of oil in order to predict the oil quality and Health Index in the tank,
are all internal failures. External failures, on the other hand, such as load fault tap changers,
may be found using frequency analysis by wavelet transformer, which commonly uses
the fast Fourier transform and wavelets to find insulation defects and on-load tap changer
monitoring and other computational techniques using support vector machines [29].
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3.1. Temperature-Overheating

Local overheating at temperatures lower than 300 ◦C (also known as low-temperature
overheating) is a common flaw in high-voltage power transformers. The appearance of
such flaws does not result in immediate transformer damage, but it does accelerate the
aging processes of the insulation and shortens its service life [30]. This paper addresses five
labels or inspections of the overheating of the power transformer: the true false, thermal
fault label, basically describing only if there is an existence of thermal fault or not, and in
the second dataset, there are four levels of overhearing (high, middle, middle-low and low
temperature overheating, giving more exact levels of temperatures).

3.2. Discharges

IEC 60270 defines discharges as localized dielectric discharges in a partial portion of a
solid or liquid electrical dielectric insulation system under high-voltage field stress. Partial
discharges in a transformer damage its insulation and can cause the transformer to fail.
Transient surges can cause transformer failure. To maintain good insulation coordination
in such failures, the transformer insulation withstand should be evaluated using arrestor
discharge voltage. Electrical failure mechanisms include lightning, over-excitation, switch-
ing surges, winding resonance, turn-to-turn short circuits, layer-to-layer short circuits,
partial discharges, insulation tracking, static electrification of oil, and flashovers [31]. This
paper proposes a two classification approach, with the first one classifying three types of
discharges (spark, partial and arc discharge based on five gas datasets) and the second
approach classifying two levels of discharge (high intensity and low intensity based on six
gas datasets). Both datasets are the result of dissolved gas analysis and expert comments.
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4. State-of-the-Art Machine Learning-Based Methodologies for Power Transformers

The use of machine learning algorithms has become mandatory to develop diagnostic
and prognostic models, predicting the critical failures in the power transformer while
estimating the overall Health Index and the lifetime loss or the aging. Therefore, many
researchers are exploiting the discussed monitoring techniques in the previous section, for
example, the dissolved gas analysis, to classify internal faults and calculate the general
health of the power transformer using time series, extreme learning machines, linear pro-
gramming boosting, relevance support vector machines, and other algorithms. Others are
using acoustic signals, oil quality, degree of polymerization, and thermal image processing
to predict abnormality within different components of the power transformer or estimating
life loss. Table 1 represents exhaustive, state-of-the-art machine learning-based methodolo-
gies for power transformer diagnostics, mentioning more than 37 researchers who have
practically performed a comparative study of these algorithms in different goals with high
accuracies. This state-of-the-art study has helped to select the main algorithms that can
be introduced in the proposed hybrid artificial intelligence architecture for the prognostic
health management of the power transformer.

Table 1. State-of-the-art machine learning-based methodologies for power transformer diagnostics.

Team Date Goal Methodology Algorithm Accuracy

Hao [32] 2021 General Health Temperature and
Dissolved Gas Analysis Timeseries 98%

Maulik [33] 2020 Internal fault Discrete wavelets
transform

Hierarchical Ensemble
Extreme Learning
Machine

99.91%

Xiaoxing [34] 2021 General Diagnosis Dissolved Gas Analysis
Improved Firefly
Algorithm Linear
Programming Boosting

95.172%

Lijing [35] 2021 Insulation Condition
Assessment Dissolved Gas Analysis Deep Belief Network 91.59%

Zahra [36] 2021 Internal faults Faults history Extended Kalman Filter-
Support vector Machine 98.42%

Rengaraj [37] 2020 State Determination Insulation condition

Analytical Hierarchy
Process-Technique for
Order Preference by
Similarity to ideal Solution

90%

Dharmesh [38] 2018

Magnetising Inrush,
CT saturation and
high resistance
internal fault

Simulation
PSCAD/EMTDCT Relevance Vector Machine 99.97%

Giovanni [39] 2022 Insulation Dielectric
Response Model Modelling Frequency domain

spectroscopy 99%

Mintai [40] 2021 Voltages classification Acoustic signal acquisition Convolutional Neural
Network 94%

George [41] 2021 Incipient Fault
Detection

Multinomial Dissolved
Gas Analysis

KosaNet (Based on
Decision Trees) 95%

Mohammed [42] 2021 Oil Quality assessment Oil Quality dataset J48 Decision tree and
Random Forest 83%

Sherif [43] 2021 Insulating paper state Degree of polymerization Decision Tree 96.2%

Chin-Tan [44] 2020 Cast-resin
Abnormality detection Failure History Fuzzy Logic Clustering

Decision Tree 87.75%

Jingxin [45] 2016
Ageing Stage
Assessment of oil
paper insulation

Raman Spectral
characteristics

Principal Component
Analysis-Support Vector
machine

99.73%

Oussama [46] 2022 Failures Classification Dissolved Gas Analysis Artificial Neural Network 94.76%

Almas [47] 2008 Fault Classification Dissolved Gas Analysis
Bootstrap-Genetic
Algorithm-Support Vector
Machine

92.11%

Xiong [48] 2007 Fault Diagnosis Dissolved Gas Analysis Artificial Immune
Network 93.2%
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Table 1. Cont.

Team Date Goal Methodology Algorithm Accuracy

Mengda [49] 2021 Fault prediction Dissolved Gas
Chromatography

Mish-SN Temporal
Convolutional Network 99%

Ali [50] 2021 Fault classification Dissolved Gas Analysis C-Set Fuzzy C-Means 88.9%

Alireza [51] 2021 Winding deformation
classification

Time-Frequency Response
Analysis

Hilbert-Huang
transform-evidence theory 80%

Tadeja [52] 2002 Fault Classification Protection signal Bayes theory-Norms
Generating 76.4%

Sudha [53] 2022 Fault Classification Short circuit resistance
testing K-Nearest Neighbour 62%

Ricardo [54] 2021 Oil and Kraft
Degradation Dissolved Gas Analysis Support Vector Machine 97.55%

Jian [55] 2021 Discharge and
overheating faults Infrared Image Processing Generative Adversarial

Network 86.2%

Rucconi [56] 2021
Deformation, Shift,
Loss of clamping
pressure

Vibration Data Artificial Neural network 91.63%

Sofia [57] 2021 Incipient fault
diagnosis Dissolved Gas Analysis

Synthetic minority
oversampling technique
Deep learning

85%

Bing Zeng [58] 2019 Health Index Dissolved Gas Analysis Least Square Support
Vector Machine 98.9%

Rahman [59] 2020 Faults severity Dissolved Gas Analysis
Support vector
machine-based Duval
Pentagon Method

97%

Wei zhang [60] 2020 Power transformer
health Dissolved Gas Analysis Neural Network Whale

Optimization 91%

Ali kirkbas [61] 2020 Heath index Dissolved Gas Analysis Support Vector Machine
Particle Swarm Optimizer 94.67%

Hasmat malik [62] 2020 Energy discharge,
Partial discharge Dissolved Gas Analysis Fuzzy Reinforcement

learning 99.7%

Ricardo [63] 2020 Health Index Dissolved Gas Analysis Artificial Neural Network 84.45%

Yousuf [64] 2021 Aging, sparking,
Overheating Dissolved Gas Analysis Logistic Regression 85.6%

Aciu [65] 2021 Overheating Dissolved Gas Analysis Artificial Neural Network 93.5%
Nitchamon [66] 2021 Failure Index Dissolved Gas Analysis Fuzzy logic 75.73%

Zhanhong [67] 2021 Partial Discharge Dissolved Gas Analysis Imroved Genitic algorithm
and XGBoost 99.2%

Weiyun [68] 2021 Multiple Fault
Diagnosis Dissolved Gas Analysis Semi supervised Transfer

learning 95%

Yichen [69] 2021 Health Index Dissolved Gas Analysis Artificial Neural Network 99.71%

5. Hybrid Artificial Intelligence System Architecture

After developing different algorithms used in power transformer diagnostics using
multiple inputs and inspection methodologies, it is shown that there are some monitoring
techniques which are online-based on automated data collection from sensors installed in
the transformer, while other monitoring techniques are offline-based on laboratory testing
on samples or offline inspections by maintenance agents.

The goal of this architecture is to provide a smart system that diagnoses the power
transformer and communicates with a decision system that manages loads, adjusts the
power factor, and gives a maintenance plan to maximize the lifetime of the power trans-
former, enabling prognostic health management. This system is connected to a platform
visualizing all measurements and key performance indicators combining different interac-
tions between each layer and agent, as presented in Figure 6.
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5.1. Online Monitoring Based Layers

As described in the monitoring techniques presentation in the previous sections, the
architecture is composed by multiple layers, the online monitoring-based layers which are
encircling the sensors installed in the power transformer, the data acquisition, management,
hybrid artificial intelligence models Health Index calculation, and the KPI monitoring;
these layers are connected to the smart energy management system for processing and
decision-making, and this approach can be used to develop a digital twin for the power
transformer [70,71].

5.1.1. Field

In the field layer, a set of sensors and kits are installed, typically power meters,
thermal cameras, vibration sensors, for measuring temperature in all power transformer
components. Mainly the dissolved gas analysis kit which is measuring the particles per
million of the different gases in the oil. These sensors are treated and pre-processed using
the sensor fusion methodology.

5.1.2. Data Acquisition

The field layer is connected to the data acquisition layer, where all sensors are com-
municating with servers through gateways and communication protocols. In order to
optimize the solution, it is mandatory to unify the communication protocol of the different
sensors for example using Modbus TCP/IP protocol for the power meter, the gas sensor
gateway, and the camera; this way it is very easy for the maintenance agent to manage
communication problem and to find the change parts because all gateways are connected
in the same protocol.

5.1.3. Data Management

After acquiring the data and communicated to the database, there is a set of programs
to clean, process, and split the data in order to supply the different developed models. This
layer is connected parallelly to the expert comments and labeling layer by experts, and that
way all data will be labeled and have meaning in order to be exploitable to classify the data
by the hybrid artificial intelligence layer.
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5.1.4. Hybrid Artificial Intelligence

The hybrid artificial intelligence layer integrates all acquired data in the field, data
acquisition data management, laboratory, and expert analysis layers. This layer is exploiting
these data to classify the failures inspected by the experts and look for correlations between
the data collected from sensors, laboratory, and expert inspections, thereby optimizing the
models afterward.

5.1.5. Health Index

Based on the output of the previous hybrid layer, the system is calculating or estimating
the overall Health Index of the power transformer, taking into consideration the failures,
the maintenance history, and the quality of oil, power factors, and all necessary inputs.

This layer is parallelly connected to prognostic layer in order to find a way to estimate
the life loss or the lifetime of the power transformer, which is easy to implement; however,
estimating or predicting a future failure in the power transformer stays very complicated
and theoretically unpredictable, so this architecture will enable a real-time data recording
system from both sensors and human providing a big data to analyze, looking for correla-
tion and to re-study the feasibility to predict a future failures in a power transformer and
enable the prognostic Health Index.

5.1.6. Monitoring

All layers are directly connected to the monitoring layer, which consists of developing
an interface using supervisory, control, and data acquisition (SCADA) software such
as CitectScada, WinCC, Factorytalk, or other Internet of Things (IoT) platforms such as
NodeRed, Graffana, and Thingsboard. This developed interface allows users to monitor
brute data directly from sensors, calculate alarms and results from developed models
and as an input for experts to label the data and inspections. In this paper, a proof-of-
concept interface of Thingsboard is proposed to better describe the functionalities of the
hybrid architecture.

5.2. Offline Monitoring Based Layers

As discussed in the previous section, the online monitoring layers are related to
the offline-based layers through the interactions of human agents to complete the data
statements and give labels to these acquired data and analysis.

5.2.1. Laboratory

In the laboratory layer, the human agent is analyzing the oil samples from the tank
of the power transformer, based on dissolved gas analysis, and communicating the daily
maintenance history with the smart system by adding the reports to the database to be
preprocessed in higher layers looking for correlations and correcting the data in case of a
false data communication.

5.2.2. Expert Analysis

In this layer, an expert human agent is interacting with the system by labeling the
data and inspecting the health of the power transformer. The expert analysis is the most
mandatory layer in the architecture because all decisions, results, models, learning, and
correlations are highly impacted by the expert because the ultimate goal of this architecture
is providing a big dataset integrating different monitoring techniques and expert analysis
to make the power transformer autonomous and make decisions directly with the smart
energy management system.

5.2.3. Prognostic

This layer, as discussed before, integrates expert speculations about the future failures
which are theoretically unpredictable; however, based on the human interactions, experi-
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ences, and more data scenarios, it could be possible to develop new prognostic models for
power transformers only if a big dataset is smartly managed.

5.2.4. Smart Energy Management System Decisions

All previously discussed layers are connected to the smart energy management system
to make decisions in the grid in order to maximize the lifetime of the power transformer
by controlling the load connected in the grid, adjusting the power factor and proposing
maintenance scheduling of the power transformer. this smart energy management system
is connected to other power transformers in the grid, making the learning and the decisions
distributed, and the system is also predicting the load and the power flow behavior within
the grid using different algorithms developed in recent papers in different applications,
for example, in the mining industry [14,15] and hotel building [72] and also predicting the
defects of loads, for example, squirrel cage induction motors [25]. Therefore, the smart
energy management system is a distributed system connected to different smart grid
components [69].

6. Methodology

The main objective of this section is to find the best machine learning algorithms, to
classify the featured failures discussed in the previous section and to estimate the life loss
and the overall Health Index of the power transformer. Therefore, two main objectives
have been identified, classification and regression problems. So, using the RapidMiner
Studio software, a set of different well-known algorithms discussed in the state-of-the-ary
section have been tested.

6.1. Classification Approach (RapidMiner Approach)

The goal is to test different algorithms, mainly k-nearest neighbor, decision tree,
random forest, decision stump, support vector machine (SVM) optimized using particle
swarm optimizer (PSO) as well as evolutionarily modifying the kernels, mainly, of radial,
multiquadric, epachnenikov, and anova. To find the optimal parameters of the model, the
grid optimizer was mandatory. Figure 7 shows the schematic used to find the best fit model
to classify the featured failures.
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6.2. Life Loss and Health Index Estimation Approach (RapidMiner Approach)

After identifying testing, the classification models to classify the discussed failures
in the power transformer, the goal is to estimate the overall Health Index and the life loss
or the aging; therefore, using the same approach on Rapid Miner, a set of models have
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been tested on this regression problem, mainly neural network, k-nearest neighbor, linear
regression and basic support vector machine by applying different kernels, for example,
dot, radial, neural, anova, and epachnenikov. Figure 8 represents the flowsheet of the
methodology used on Rapidminer to compare the different mentioned algorithms.
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7. Results and Discussion

Based on the developed state of the art, the most used algorithms in power transformer
failures classification, the best selected algorithms are tested on three dissolved gas analysis
datasets with different inspections. This section describes the datasets used to validate the
selected models, to be embedded in the hybrid artificial intelligence architectures. Then
discussing the results of each model applied on the three discussed datasets. The best
selected models are introduced and explained in detail. In order to present the results of
these selected models, it is mandatory to describe the datasets, the model architecture, and
the hybrid interactions.

7.1. Datasets Description

The goal of this section is to well describe the used dataset used to develop the
models and discuss the advantages and limitations, including the best practices that
should be taken into consideration in the online monitoring and the data recording while
imbedding the hybrid artificial intelligence architecture, all datasets are shared in the
Supplementary Materials.

7.1.1. Classification Failures Dataset and Labels

These two datasets contain the dissolved gas analysis data in the transformer’s fault
state and the related fault type or label; in each dataset, various inspections were performed.
Because the oil-paper insulation system in power transformers operates under the effects of
high temperature and strong electromagnetic environment, and the insulation medium can
slowly decompose into gases dissolved in oil, primarily H2, CH4, C2H6, C2H4, C2H2, and
CO, when a failure occurs, the insulation breaks down more quickly and the decomposition
products differ depending on the type and severity of the fault. The first dataset contains
five gases and was examined in seven failures, resulting in five inputs and seven labels [20].
However, the second dataset has six gases and four inspections, therefore six inputs and
four labels [21].

Figure 9 represents the correlations between the inputs (gases) of both datasets using
the scattering graph. As represented in the six gas dataset, the failures can be visually
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clustered for easy classification because the number of inputs is higher than the number of
labels. However, in the five gas dataset, it is hard to cluster the data visually, which will
make it hard to implement a machine learning model. Both scatter graphs are showing that
there is not a high correlation between the inputs, which means that each input is impacting
the labels in different behaviors, so no input elimination would be needed. Figure 10
describes the different labels of both datasets; the failures are mentioned previously in the
power transformer monitoring techniques section. The six gas dataset has four labels, based
on the number of particles per million (ppm) of each gas. High and low intensity discharge
with 32 records each, totaling 64 records, thermal fault with 36 records, and 100 records of
no-fault mean the dataset is clearly clean and requires no changes. In the five gas dataset,
seven labels are inspected, with 82 records of four levels of temperature overheating after
analyzing the four temperature levels and three levels of discharges (spark, partial, and arc
discharge). It is recommended to use fuzzy logic-based algorithms to predict the level of
temperature; however, with the set of input, it is very difficult to find a fit pattern.
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7.1.2. Health Index and Life-Loss Estimation Dataset

The used dataset is the result of a root cause analysis improved by machine learning
presented by Ricardo [63], integrating nine gas dissolved gas analysis including hydrogen,
oxygen, nitrogen, methane, CO, CO2, ethylene, ethane, acetylene, dibenzyl disulfide and
electrical data integrating power factors, interfacial voltage, dielectric rigidity and the water
content. The main outputs of this dataset are life loss and the overall Health Index of the
power transformer; therefore, the goal of this section is to find the best two-fit models to
estimate separately the Health Index and the life loss.

Figure 11 shows two 3D scattering graphs of the DGA dataset and the two targeted
outputs and the other inputs separately because the goal is to only use dissolved gas
analysis in the hybrid architecture; however, no correlations have been found and therefore
it is mandatory to enter all inputs in both models.
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7.2. Algorithms Performance of 5 Gas Dataset

In this section, a comparison of the tested algorithms based on the model accuracy,
relative error, root mean squared error, root relative squared error, and the squared error
because these are the best indicators for the classification problem.

7.2.1. Results and Discussion

After testing, random tree, random forest, decision strum, and decision tree, which
are showing very low accuracies from 29.77% to 46.43%, are applied to the grid optimizer
bloc to find the best set of parameters, number of trees, number of leaves, number of depth
of the results that stay always very low and unsatisfying; however, optimizing the random
forest the accuracy has been up to 73.17%, but the relative error stays very high comparing
to the k-nearest neighbor (KNN). The KNN algorithm shows better results, from 53.66% to
70.73%, and Table 2 shows the comparative study between the algorithms revealing the
accuracy and all error metrics.

In the second step of testing the particle swarm optimized support vector machine
(PSO-SVM) has shown far better results from the previous models. Therefore, it was
necessary to test other kernels and optimizer, and all kernels have shown good results
except for the multiquadric kernel, the best are the radial and epachnenikov kernels with
slight differences in accuracy. The result has shown the evolutionary optimized SVM
with radial kernel has the best accuracy of 85.95% with acceptable errors, which is very
understandable because of the quality of the dataset, i.e., the number of inputs was lower
than the number of labels and the dataset is quite small. However, with this accuracy, it is
good to integrate in the hybrid architecture to validate the proposed system knowing that
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the model based on the six gas four label dataset will correct and enhance the decisions
made by this model. The interactions with the human agent which are the inspectors the
maintenance technicians and the laboratory testing agent will criticize the result and correct
the label, entering it in the system in the offline layers, and after gathering more data the
model shall be improved.

Table 2. 5 Gas dataset comparative results.

Tested Algorithms 5GAS-7Labels Accuracy Relative Error Root Mean
Squared Error

Root Relative
Squared Error

Squared
Error

Random Tree 43.90% 67.82% 0.701 0.471 0.492
Random forest 48.78% 66.62% 0.699 0.47 0.489
Decision stump 29.27% 78.86% 0.803 0.54 0.644
Decision tree 46.43% 62.84% 0.715 0.481 0.512
KNN 53.66% 56.34% 0.681 0.458 0.463
K-Grid-Optimized-KNN 70.73% 55.74% 0.588 0.395 0.346
K-Grid-Optimized-Random Forest 73.17% 63.56% 0.65 0.437 0.423
SVM-PSO Radial Kernel 85.71% 37.12% 0.39 0.9 0.15
SVM-PSO Multiquadric Kernel 21.67% 78.33% 0.88 2.21 0.73
SVM-PSO Epachnenikov Kernel 75.24% 50.00% 0.5 1.22 0.25
SVM-PSO Anova Kernel 69.29% 46.34% 0.48 1.14 0.22

SVM-Evolutionary Radial Kernel 85.95% 48.20% 0.48 1.17 0.23

SVM-Evolutionary Multiquadric Kernel 28.81% 71.19% 0.84 2.11 0.71
SVM-Evolutionary Epachnenikov Kernel 85.71% 48.53% 0.49 1.18 0.24
SVM-Evolutionary Anova Kernel 85.48% 44.51% 0.45 1.09 0.2

7.2.2. Selected Algorithm: SVM Evolutionary Radial Kernel

The support vector machine (evolutionary), which uses an evolutionary strategy
for optimization, is the best fit algorithm. This operator is an SVM implementation that
solves the dual optimization issue of an SVM using an evolutionary method. On many
datasets, this basic approach turns out to be as quick and accurate as traditional SVM
implementations. Using the radial kernel described in Equation (1), where g is the gamma,
it is specified by the kernel gamma parameter. The adjustable parameter gamma plays a
major role in the performance of the kernel and should be carefully tuned to the problem
at hand.

K(x, y) = e−η ∑
p
j=1 (xijyij)

d
(1)

where η here is a tuning parameter which accounts for the smoothness of the decision
boundary and controls the variance of the model. If η is very large, then we get quiet fluc-
tuating and wiggly decision boundaries, which accounts for high variance and overfitting.
If η is small, the decision line or boundary is smoother and has low variance. So now the
equation of the support vector classifier becomes (2), where S are the support vectors and α
is simply a weight value which is non-zero for all support vectors and otherwise 0.

f (x) = β0 + ∑
i∈S

αiK(xi, yi) (2)

Figure 12 represents the results of the selected model, showing the scatters between the
labels, the counter, the function value, the alpha value, and the support vector. Therefore,
no variable has high impact on the label, meaning that all inputs have different impacts on
the label. However, it is mandatory to test the same algorithm on the six gas dataset with
fewer labels and restudy the accuracy of the model.

In the implementation phase of the proposed architecture, it would be perfect to design
a return system that records all the results of the algorithm while comparing it to the other
dissolved gas-based models in order to look for correlations in the first place and to correct
the labels integrating the human agent interactions with the system. With more data from
both software and human agents, it would be the time to develop a reinforcement learning
model to enhance the current proposed SVM model [73].
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7.3. Algorithms Performance of 6 Gas Dataset

The goal of this section is to select the best model to classify three general power
transformer faults, high discharge intensity, low discharge intensity, and thermal fault,
based on a six gas. Following the same approach in the previous section, to select the best
fit model, the comparison is based on accuracy, relative error, root mean squared error, root
relative squared error, and the squared error.
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7.3.1. Results and Discussion

As represented in the Rapidminer flowchart shown in Figure 9, the goal is to compare
the main classification algorithms, using the grid optimizer in order to find the best set of
the model parameters to oversee the best performance of each algorithm. Table 3 shows
the results where the support vector machine used in the previous classification problem
has accuracies between 73.75% and 97.50% for all kernel in both particle swarm optimizer
and evolutionary optimization, except for the multiquadric function, which shows very
bad results from 23% to 36%.

Table 3. 6 Gas dataset comparative results.

Tested Algorithms 6Gas-4Labels Accuracy Relative Error Root Mean
Squared Error

Root Relative
Squared Error

Squared
Error

Random Tree 89.74% 10.81% 0.381 0.302 0.101

Random forest 100.00% 4.57% 0.093 0.088 0.009

Decision stump 66.67% 47.41% 0.544 0.518 0.296
Decision tree 100.00% 0.00% 0 0 0
KNN 100.00% 0.00% 0 0 0
Neural Network 94.87% 7.02% 0.222 0.211 0.049
SVM-PSO Radial Kernel 73.75% 44.89% 0.45 1.25 0.21
SVM-PSO Multiquadric Kernel 36.88% 63.13% 0.77 2.43 0.63
SVM-PSO Epachnenikov Kernel 76.25% 47.56% 0.48 1.33 0.23
SVM-PSO Anova Kernel 97.50% 38.31% 0.39 1.09 0.15
SVM-Evolutionary Radial Kernel 83.13% 45.13% 0.46 1.25 0.21
SVM-Evolutionary Multiquadric Kernel 23.75% 76.25% 0.87 2.57 0.76
SVM-Evolutionary Epachnenikov Kernel 78.13% 46.99% 0.47 1.31 0.23
SVM-Evolutionary Anova Kernel 97.50% 37.57% 0.38 1.06 0.15

The neural network is showing a good accuracy of 94.87% with a very satisfying
relative error of 7.02%, and the random tree shows good results of 89.74% accuracy but
stays not the best comparing to the neural network. However, the neural network could
be very useful to test in future datasets gathered by the proposed architecture the only
constraint is to find the optimal hyperparameters set using either metaheuristic algorithms
or other optimizers.

The decision tree and the k-nearest neighbor are showing 100% accuracy with 0 errors,
and these two algorithms are over-fitted, However the random forest which was optimized
using the grid optimizer shows the best results accuracy of 100% with the best relative error
of 4.57% and squared error of 0.009.

7.3.2. Model Description: Random Forest

As shown in the previous section, the best selected algorithm is the random forest,
which is a concurrency-based algorithm; random forest is an ensemble of a certain number
of random trees, specified by the number of trees parameter. These trees are built/trained
using bootstrapped subsets of the example set supplied at the input port.

A tree node represents a splitting rule for a single attribute. To apply this model, the
grid optimizer was used to choose the optimal set of parameters for the parameters number
of trees, maximal depth, and leaf size. Using the apply model operator, the random forest
model may be applied to new examples once it has been generated. Each random tree
makes a forecast for each example by following the branches of the tree and assessing the
leaf in accordance with the splitting criteria.

Class predictions are based on the majority of examples, whereas estimations are
based on the average of values reaching a leaf. The resultant model is a voting model
of all randomly generated trees. Because all single forecasts are treated identically and
are based on subsets of examples, the resultant prediction tends to vary less than the
single predictions.

A concept called pruning can be leveraged to reduce complexity of the model by
replacing subtrees, that only provide little predictive power with leave. Figure 13 represents
the graph of the random forest, classification decisions, shown the threshold of each gas to
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make the decision about the intensity of the discharge, with the existence of the thermal
fault or the no fault.
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7.4. Life Loss Estimation

After selecting the classification algorithms, to determine the degrees of thermal or the
discharge failures, which is the diagnostic part of the hybrid artificial intelligence layer, it is
mandatory to calculate or to estimate the life loss of the power transformer. Therefore, this
section gives an overview of the performance of multiple regression algorithms, based on
the dataset presentation in Figure 10, and the goal is a regression problem with one target
and 14 inputs.

7.4.1. Results and Discussion

The used algorithms are mainly neural network, linear regression, and support vector
machine, with no optimization, and k-nearest neighbor, which are all showing good results
with practically close errors. The best selected algorithm is the k-nearest neighbor, with
relatively low errors and better accuracy compared to other algorithms. Table 4 shows the
different errors mainly, root mean squared error, where in the regression problem it is not
possible to calculate the accuracy of the model. The estimation of the life loss of the power
transformer stays debatable.
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Table 4. Life loss algorithms comparative results.

Tested Algorithms Life Loss Root Mean Squared Error Absolute Error Normalized Absolute Error Squared Error

Neural Network 116.039 50.719 0.737 13,465.07

KNN 111.728 71.048 1.033 12,483.2

Linear Regression 114.833 72.274 1.05 13,186.68
dot kernel SVM 114.571 49.665 0.722 13,126.6
Radial kernel SVM 115.495 50.23 0.73 13,339.08
Neural Kernal SVM 116.527 56.437 0.82 13,578.48
Anova Kernel SVM 114.719 49.653 0.722 13,160.44
Epachnenikov Kernel SVM 115.659 50.454 0.733 13,376.93

Therefore, the results shown in this paper are basically based on other estimations
performed by power transformer experts, where the goal of the proposed architecture is to
correct these estimations through the integration of the expert comments in all different
layers, to enhance the learning models, and to improve the metrics of the life loss. This
proposed estimation model is not the best, but it needs to be reinforced by experts labeling
in a real case data driven model.

7.4.2. Model Description: K-NN

The k-nearest neighbor method compares an unknown example to the k training
examples that are the unknown example’s nearest neighbors. Finding the k nearest training
Examples is the first step in applying the k-nearest neighbor algorithm to a new example.
“Closeness” is defined as a distance in n-dimensional space, as described by the n attributes
in the training examples. To determine the distance between the unknown example and the
training examples, many metrics, such as the Euclidean distance, can be utilized. Because
distances frequently depend on absolute values, it is advised that data be normalized
before training and implementing the k-nearest neighbor method. In order to optimize the
parameters of this model, a grid optimization was used to find the optimal k combined
applying the Euclidean distance for this example.

7.5. Health Index Estimation

After classifying the failures and estimating the life loss of the power transformer, the
proposed hybrid intelligence system must systematically estimate the Health Index based
on all different acquired data; in this case and in order to validate the proof of concept of
the architecture, this paper proposes a comparison between machine learning algorithms
based on the same dataset used in the life loss section.

7.5.1. Results and Discussion

Table 5 shows the results of the tested algorithms, which are all showing good results,
testing neural networks, k-nearest neighbor, support vector machine with different kernel,
and linear regression, which shows the least root mean squared error.

Table 5. Health Index algorithms comparative results.

Tested Algorithms Health Index Root Mean Squared Error Absolute Error Normalized Absolute Error Squared Error

Neural Network 223.431 131.808 0.863 49,921.43
KNN 176.039 125.643 0.822 30,989.86

Linear Regression 173.713 112.349 0.735 30,176.4

dot kernel SVM 201.438 122.225 0.8 40,577.39
Radial kernel SVM 221.328 131.114 0.858 48,986.25
Neural Kernal SVM 175.728 114.246 0.748 30,880.36
Anova Kernel SVM 213.16 128.1 0.838 45,437.39
Epachnenikov Kernel SVM 223.362 131.686 0.862 49,890.74
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7.5.2. Model Description: Linear Regression

The best method examined with the lowest error is the linear regression algorithm,
which is a technique used for numerical prediction. Linear regression attempts to model
the relationship between a scalar variable and one or more explanatory variables by fitting
a linear equation to observed data. Regression is a statistical measure that attempts to
determine the strength of the relationship between one dependent variable and a series of
other changing variables known as independent variables. Applying this model, a grid
optimizer was used to identify the best parameters of the model, mainly alpha parameters,
while the feature was set to greedy, and optimizing the max iterations in order to decrease
the time of learning. However, the calculation of the Health Index stays debatable and
not exact, based only on the dissolved gas analysis, power factor, water content, and
interfacial voltages. Therefore, all developed models cannot estimate the exact Health
Index of the power transformer, so the hybrid architecture proposed an online recording
system from different agents, hardware agents which are the pure unprocessed data from
sensors, software agents which are all developed estimation models.

8. Hybrid System Proposition

This section describes the interactions between the hardware, software, and human
agent in order to keep the power transformer in a healthy condition, improve the accuracy
of failure detection, improve the Health Index and life loss estimation and to supervise
the principal factors and key performance indicators. To summarize the results of the
developed models which stay very dependable on the exploited datasets but are not exact,
the developed models are only for validating a proof-of-concept of the hybrid artificial
intelligence. As presented in Figure 14, all tested algorithms are practically close to fit
the problem, either the Health Index, life loss estimation, or the failure classification, the
results are shared in the Supplementary Materials with the project file of the RapidMiner
software. There is never a problem of what model should be used to estimate or to classify
because it is very dependable on the used dataset, and it is a problem of how experts can
use the presented model in an easy and effective way to enhance the health of the power
transformer and to maintain it in the best conditions. So, to validate a proof of concept of
the call in the architecture, i.e., the software agents, it is preferrable to imbed these four
algorithms and integrate a reinforcement learning method [74] into the system to correct
the models considering the experts or the human agent comments.

8.1. Power Transformer KPI and Monitoring Dashboard

In this section a set of key performance indicators of the smart power transformer are
introduced in order to develop an example of interactive dashboard so the users or the
supervisors can monitor the state of the power transformer.

Figure 15 presents an example of power transformer monitoring dashboard, devel-
oped using the Thingsboard platform, which is an open source Internet of Things platform
for device management, data collection, processing, and visualization. The platform is con-
nected to PostrgreSQL Database, where all acquired data from hardware agents are found,
meaning sensors, power meters and all installed kits on the power transformer and also
data resulting from the software agents, meaning the developed machine learning models.
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Integrating tables in the database, adding more fields in the monitoring dashboard for
experts commenting and labeling, and also for the maintenance planning, scheduling and
alarms. In the developed dashboard, it is necessary to add all different KPI discussed in
this section, for example:

8.1.1. Health Index

The Health Index (HI) is a measure that could be used to assess the overall condition
of a power transformer. This value is derived using some of the most representative
variables of state or diagnostic that describe the activity and status of the transformer,
and it is converted into a quantitative index that gives insight about its health status [75].
The necessity to assess the influence of individual findings from tests performed on the
technical state of the transformer and the aging process progression is the motivation for
developing a Health Index.

The process entails combining findings from operational inspections, examinations,
and field and laboratory testing as well as assigning an objective and quantitative score to
each result in order to determine the asset’s overall health [7].

8.1.2. Life Loss

Transformer life expectancy mostly depends on the insulation that is put in place
to protect it from heat losses. Throughout the lifespan of the transformer, a number of
abnormal circumstances, such as insulation defects, overloading, and winding shorting,
will happen, which alters the transformer’s typical life span [27]. The life loss is a very
informative indicator of the power transformer since it gives an obvious view of the power
transformer state.

8.1.3. Voltage

Relying on the different power system operating circumstances, load variations cause
transformer voltage fluctuations. The efficient operation of the transformer is ensured
by properly monitoring the load status with regard to the transformer, which may be
accounted for by the voltage monitoring.

8.1.4. Current

By creating a reference wave signal and using various frequency analysis techniques
on it, it is possible to analyze the signal and find flaws in the power transformer. The signal
is examined to look for flaws in the transformer, with a focus on the current waveforms
that are most susceptible to defects. The two main types of frequency analysis techniques
are Fourier analysis and Wavelet analysis.

8.1.5. Power Factor

The power factor is utilized to identify the transformer bushing modes of failure of
short circuit across bushing layers caused by moisture, carbonization of insulation, faulty
bushings, and pollution of oil by dissolved substances or conducting particles [26].

The power factor is an important indicator of the operations of the power transformer,
and it could be considered among the key performance indicators to be monitored perma-
nently, with the aim to corelate its behaviors with the power, voltage, temperature, and
current graphs to have an informative analysis.

8.1.6. DGA Graph

Due to the melting of insulation winding into the transformer’s cooling oil, the pres-
ence of various gasses can be seen in the oil tank of the transformer at an early stage.
Different types of faults happening in the transformer can be represented by the ratio of
these various gasses present [27] because of the conversion of winding material into wind-
ing oil determines the sort of gas recovered and its nature. The faults could be determined
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by the conventional ratio methods or by applying the artificial intelligence algorithms,
where the necessity to monitor and acquire DGA exists.

8.1.7. Water Content Graph

Transformer oil may unintentionally contain water throughout any step of production,
from design to commissioning. Additionally, despite the transformer cabinet’s airtight
construction, moisture may enter during transit, operating, and overhaul because the covers
and bushings are not properly closed. Free water in transformer oil will negatively impact
the oil-paper insulation system’s shielding effectiveness, speed up aging, and significantly
reduce insulation life, including processes such as vacuum drying, vacuum oil injection,
and hot oil flow, and must be used to remove water from the transformer oil in order to
reduce its water content [76]. To keep an eye on this critical indicator, a graph of water
content in the power transformer must be added to the dashboard.

8.1.8. Temperature Graph

Overvoltage is correlated with an elevation in the windings’ demand for dielectric
insulation and a rise in temperature. Short-lived overvoltages, which happen at intervals
on the order of microseconds, are challenging to identify, and their harms are brought on
by high voltage arcs. Therefore, temperature rises are the outcome of long-term overvolt-
age [77]. On an other hand, temperature monitoring of the power transformer is primordial,
while it is a key indicator of the instantaneous state and reflects an image of a wide range
of defects.

8.1.9. Alarms

The alarms are to bring to the front of the monitoring system since they are the first
trigger of the urgent procedures for preventing serious failures, and, on the other hand, to
inform about any abnormal behavior of the power transformer or the exceeding of normal
functioning values of its parameters.

8.1.10. Maintenance Schedule

The Health Index (HI) output can serve as the primary input for maintenance schedul-
ing since it offers categories of HI values that connect the current state of the transformer to
the needed maintenance operation [26], and it places an emphasis on identifying power
transformer in-service problems and inadequacies that require effective maintenance or
rehabilitation to keep the asset in continuously operational condition.

8.2. Agents Interactions in the Proposed Architecture

This section discusses the interactions between, software, hardware, and human
agents in the different in the developed hybrid layered architecture used in other smart
grid applications [78]. Figure 16 describes these interactions where hardware agents are
collecting data from the online sensors (for example, the installed gas sensors, temperature,
vibration, thermal cameras, and others). Many power transformer components can be
introduced as hardware agents (for example, winding, tank) and therefore any inspection
or monitoring added to the power transformer is a hardware agent for the architecture. The
software agent interacts in many layers discussed previously in the general architecture
shown in Figure 6, for example in estimating the Health Index and the life loss, predicting
or diagnosing the power transformer, and also the software agent is recording or modeling
results while taking into account the comments of the human agent in a reinforcement
learning model to improve the accuracy of the discussed model or others.
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The software agent, with the help of the human agent, is taking decisions on the
load priority management within the smart energy management system after obtaining
inputs from the database. While managing the load priority the power factor is changing,
therefore, the model is estimating new values of the Health Index and the life loss [79]
with the supervision of the human agents in the monitoring station and in the electrical
measurements stage, meaning that in order to obtain the best value, the software agent
proposes new sets of power factor adjustment for the human agent to validate.

Based on this proposed architecture, the human agent interferes in practically all levels
from measuring, labeling, monitoring, and decision-making; however, all the decisions and
inspection behaviors of human agents are being recorded in a database and can be processed
in future deep learning models to standardize their interventions and hopefully minimize it
in order to make the power transformer fully autonomous, which is theoretically impossible
for now.

9. Conclusions

After the latest changes in the demand response or the load profile in the grid, inte-
grating massive renewables, electric vehicles, and energy storge systems, followed by the
energy digital transition and the use of smart sensors in smart grids, the main critical equip-
ment, the power transformer, must become smarter and be enhanced by smart features,
for example, auto-diagnostics, failure prediction, communication, and others in order to
answer the demand response of the grid and increase the availability preventing critical
failures, blackouts, and explosions. Therefore, the paper presented a novel hybrid artificial
intelligence-layered multi-agent architecture [80] by firstly analyzing the features needed
in the power transformer and listing the main critical failures, causes, and inspection using
the ISHIKAWA methodology. The next step was discussing the different monitoring and
inspection techniques of the power transformer in order to be integrated in the proposed
architecture. After the analysis complete, the state of the art was proposed about the
use of machine learning algorithms in power transformer case studies based on different
monitoring techniques, and it was clear that the dissolved gas analysis was the best base to
detect the failures and to estimate the life loss and the Health Index.

By proposing a general layered architecture which integrates online and offline moni-
toring techniques, each layer is communicating with the higher layer by a human, hardware,
or software agent in order to record, analyze, pre-process, label data, then classifying the
different failures and giving prognostics, with alarms showing a monitoring dashboard.
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This architecture is communicating with a smart energy management system distributed in
the grid that decide on loads scheduling, with power factors adjusting and maintenance
planning with the help of human agents [81]. In order to validate this architecture for
prognostic health management, especially the software agents, an exhaustive list of al-
gorithms testing the classification of general failures, such as thermal fault or discharges
in different levels, have shown results indicating that the use of five gas dissolved gas
analysis can classify four levels of temperature overheating and three levels of discharges
with an accuracy of 85.95% using the support vector machine optimized by evolutionary
algorithms with the radial kernel, followed by the six gas dissolved gas analysis can classify
two levels of discharge and detect the thermal fault using the random forest with accuracy
of 100%. However, these algorithms are not the best because they stay very dependable on
the dataset.

The same goes for estimating the Health Index and the life loss using k-nearest neigh-
bor and the linear regression algorithms, which were the best comparing to other regression
machine learning algorithms with slight differences in the error metrics. Although it is very
dependable on the dataset and it was never a question of which model should be used,
it was rather a question of how experts can use models in an easy and effective manner
to keep the power transformer healthy, which is why the interactions between the soft-
ware, hardware, and human agents in the architecture for prognostic health management
are mandatory in order to make the power transformer smarter and gather more data
which can be used to make the transformer fully autonomous after improving the deep
reinforcement learning model that replaces or mimic the human agent decisions which will
be developed in future work enhancing also the estimation of the Health Index and the life
loss of the power transformer.
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