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Abstract: An original multifractal algorithm is proposed for calculating the fractal characteristics
of the cluster texture of biopolymer-inorganic (BIN) composites from microphotographic images
(MPIs) of their texture, which allows one to determine the quantitative dependence of the mechanical
properties of biopolymer–inorganic composites on the characteristics of their cluster texture. As a
result of the studies conducted on the MPI texture of the “chitosan-silicon dioxide” BIN composites
using a multifractal algorithm, it was found that such important indicators as strength and plasticity
can be quantitatively described using generalized fractal pixel dimensions of MPI samples of the
BIN composite. It was established that when the amount of silicon dioxide in the samples of the
BIN composite changes, the mechanical characteristics of the BIN composites, such as strength and
plasticity, can be quantitatively described using generalized fractal pixel dimensions of the MPIs of
the BIN composite samples.

Keywords: chitosan; silicon dioxide; optical microscopy; multifractal dimension; mechanical strength;
plant protection

1. Introduction

Currently, the use of biopolymer-inorganic (BIN) composites has become widespread
in various sectors of the economy: chemical production, oil and gas production, medicine,
and agriculture, among others [1–4]. Microphotographic image (MPI) processing methods
play an important role in the study of BIN composites [3–6].

The developed algorithm is based on the Hölder exponent that uses a specific measures
of local pixels configuration. So, for oriented polymer study, the specific measure should
be elaborated. It should be noted that fractal mechanic properties of Polymeric Materials
were well described in the paper [5] (G. V. Kozlov and Yu. G. Yanovskii. Fractal Mechanics
of Polymers: Chemistry and Physics of Complex Polymeric Materials. Toronto, New Jersy:
Apple Academic Press, 2015. 372p.). Chapter 14 of this monograph is devoted to the fractal
analysis of oriented polymers.

In Refs. [7,8], a new version of fractal dimension was proposed, as it was shown
that the Hausdorf-Besicovitch dimension might be not only positive but also negative.
In case of negative values, the fractal dimension measures the degree of emptiness of
empty sets. So, multifractals may be considered as separated into two sets: the first set
has positive multifractal dimension f (α) > 0, and the second set has negative multifractal
dimension f (α) < 0. The practical usage of negative fractal dimensions found itself in
the quantum field theory for regularization of divergent Feynman integrals. The authors
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of [7,8] use the new fractal dimensions in development of quantum field theory in fractal
spacetime. The future development of multifractal theory and numerical multifractal
calculation algorithms may use both positive and negative dimensions of cluster objects in
microphotographs of composite materials.

This paper is aiming to study cluster formation and its impact on the properties of
BIN composites. Similar problems occur in many other composites and alloys; for example,
one may consider the formation of dendrites in alloys. So, problems of BIN composites and
dendrites in alloys are related on the same cluster and fractal basis. It should be noted that
a new algorithm based on cellular automaton and fractals was used for dendrite formation
modeling in [9–11].

New dimensions discover additional fractal properties of materials, which, in some
cases, play a decisive role in texture analysis. The authors of [12] considered using the
so-called biometric dimension. Podosenov S. A., Foukzon J., and Potapov A. A. [13]
studied the fractal dimension of dynamic systems. Churikov V.A. [14] proposed new
methods of texture classification based on the integration and differentiation of fractals.
Diethelm K. [15] and Anastassiou G. [16] produced a new branch of differential equations,
known now as fractal differential equations. L. Malerba, A. Caro, and J. Wallenius et al. [17]
and Svetukhin V., L’vov P., and Tikonchev et al. [18] proposed new technologies for FeCr
alloy production. Zhu M. F and Hong C.P. [9], Shin Y.H and Hong C.P. [10], and LEE
Kyong-Yee and HONG Chun P. [11] used a new algorithm based on cellular automaton
and fractals for dendrite formation modeling. One of the widely known application fields
of texture classification is image processing, of which the main features were discussed
in [19]. Goodfellow I, Bengio Y, and Courville A. [20] discussed deep learning and its
use for texture modeling. Many other texture classification technologies and algorithms
may be found in [21–26]. Majid Mirmehdi, Xianghua Xie, and Jasjit Suri [25] published a
majority of the most popular texture classification algorithms developed before 2008. In
the books [27,28], clustering algorithms were used to solve data mining problems.

Metallurgical applications of different clustering algorithms were presented in [29].
The collection of nanoparticle clustering algorithms developed before 2011 may be found
in [30,31]. The application of clustering algorithms in biosciences is discussed in [32]. Many
useful algorithms for clustering may be found in the Proceedings of the Meetings of the
International Federation of Classification Societies (IFCS) [33].

Stochastic and statistic processing algorithms are presented in [34]. The practical appli-
cations of fuzzy clustering algorithms were discussed in [35,36]. Parasuraman Selvam [37]
presented the clustering of nanofilaments and other one-dimensional objects.

The methods of fractal texture analysis of MPIs have been successfully used to classify
polymers and macromolecules [3]. In [3], the theory and fundamentals of the fractal
analysis of the MPI structure of macromolecules are described in detail. From MPI texture
analysis, it was found that cluster sizes reach up to several nanometers.

One of the currently actively developing areas of practical use of polymer films is the
development of biodegradable polymer films. The decomposition of synthetic polymers is
accompanied by the release of harmful substances in the form of reusable waste. For this
reason, a relatively new direction in the synthesis of biodegradable polymer films has great
prospects. To this end, this paper considers the application of fractal analysis methods to
study the texture of chitosan-based bioinorganic polymer films.

Chitosan is an N-deacetylated derivative of chitin (see Figure 1).
On the basis of chitosan, samples of BIN composites were created with the possibility

of a controlled long-term targeted release of nutrients (N-P-K) and bioprotective substances
(for example, the introduction of silicon dioxide as a precursor) for use in an agricultural
complex with no damage to the environment. One of the main directions of BIN composites
application in the agro-industrial complex is the preservation and protection of seeds,
increasing the speed of their germination and providing a targeted delivery of nutrients
to them. The use of BIN composites in the production of complex fertilizers with the
possibility of long-term release of active substances is a promising area of research. Silicon
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dioxide extracted from a BIN composite nourishes seeds and seedlings, which contributes
to their better development. For effective use, the composite must have a certain strength,
depending on the number and location of cluster agglomerates of silicon dioxide.

Energies 2022, 15, 7147 3 of 16 
 

 

 
Figure 1. The structural formula of chitosan. 

On the basis of chitosan, samples of BIN composites were created with the possibility 
of a controlled long-term targeted release of nutrients (N-P-K) and bioprotective sub-
stances (for example, the introduction of silicon dioxide as a precursor) for use in an agri-
cultural complex with no damage to the environment. One of the main directions of BIN 
composites application in the agro-industrial complex is the preservation and protection 
of seeds, increasing the speed of their germination and providing a targeted delivery of 
nutrients to them. The use of BIN composites in the production of complex fertilizers with 
the possibility of long-term release of active substances is a promising area of research. 
Silicon dioxide extracted from a BIN composite nourishes seeds and seedlings, which con-
tributes to their better development. For effective use, the composite must have a certain 
strength, depending on the number and location of cluster agglomerates of silicon diox-
ide. 

The objects of the research presented in this article are the microphotographic images 
(MPIs) of the BIN texture of the “chitosan-silicon dioxide” composite. 

The subject of the research is the quantitative analysis of the influence of the concen-
tration and density of cluster agglomerates of silicon dioxide formed in the texture of BIN 
composites on their mechanical properties (strength and plasticity) using an original mul-
tifractal algorithm for calculating the characteristic values of the MPI texture of BIN com-
posites. 

Research tools: chemical diagnostic devices and microphotographic images (MPIs) 
of the texture of BIN composite samples.  

Studies of the mechanical properties of the BIN composite were carried out on the 
INSTRON 3382 Testing Machine.  

The practical significance of the research is to assess the possibility of delivering sili-
con dioxide particles using a BIN composite to protect plants from harmful bacteria.  

There are many methods for applying chemical diagnostics to the study of the texture 
of composites, such as Auger spectroscopy, Fourier spectroscopy, Mesbauer spectros-
copy, Raman spectroscopy, ultraviolet, and infrared spectroscopy. Other methods include 
the use of atomic force microscopes (AFM), scanning electron microscopes (SEM), trans-
mission electron microscope (TEM), X-ray computed tomography (CT), and metallo-
graphic microscopes (MM), all of which allow one to obtain MPIs of composite textures. 

The gap in the study is the absence of knowledge about the strength of correlation 
between mechanical properties and the multifractal dimension of the BIN “chitosan-sili-
con dioxide” composite with different amounts of silicon dioxide in samples. 

Segmentation, pattern recognition, and feature extraction are widely used in various 
scientific fields [38–43]. Some of the most informative means of segmentation are edge 
and contour detection. Segmentation combines image pixels into homogenous fragments, 
which represent the structural features of an image. The feature fragments may be shown 
in different colors. In some cases, fragments are shown only in black and white. In such a 
case, fragments are called binary objects, and images are called binary images [44]. 
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The objects of the research presented in this article are the microphotographic images
(MPIs) of the BIN texture of the “chitosan-silicon dioxide” composite.

The subject of the research is the quantitative analysis of the influence of the con-
centration and density of cluster agglomerates of silicon dioxide formed in the texture of
BIN composites on their mechanical properties (strength and plasticity) using an origi-
nal multifractal algorithm for calculating the characteristic values of the MPI texture of
BIN composites.

Research tools: chemical diagnostic devices and microphotographic images (MPIs) of
the texture of BIN composite samples.

Studies of the mechanical properties of the BIN composite were carried out on the
INSTRON 3382 Testing Machine.

The practical significance of the research is to assess the possibility of delivering silicon
dioxide particles using a BIN composite to protect plants from harmful bacteria.

There are many methods for applying chemical diagnostics to the study of the texture
of composites, such as Auger spectroscopy, Fourier spectroscopy, Mesbauer spectroscopy,
Raman spectroscopy, ultraviolet, and infrared spectroscopy. Other methods include the
use of atomic force microscopes (AFM), scanning electron microscopes (SEM), transmis-
sion electron microscope (TEM), X-ray computed tomography (CT), and metallographic
microscopes (MM), all of which allow one to obtain MPIs of composite textures.

The gap in the study is the absence of knowledge about the strength of correlation
between mechanical properties and the multifractal dimension of the BIN “chitosan-silicon
dioxide” composite with different amounts of silicon dioxide in samples.

Segmentation, pattern recognition, and feature extraction are widely used in various
scientific fields [38–43]. Some of the most informative means of segmentation are edge
and contour detection. Segmentation combines image pixels into homogenous fragments,
which represent the structural features of an image. The feature fragments may be shown in
different colors. In some cases, fragments are shown only in black and white. In such a case,
fragments are called binary objects, and images are called binary images [44]. Sometimes, a
fractal dimension is used for segmentation [42–44]. It should be noted that in composite
study features may be stored not only as area objects but also as linear objects. These
linear objects are called skeletons [45,46]. Various objects in image may be singled out by
segmentation. The procedure is called feature extraction. So, the objects in the image can
be presented as homogeneous pixel regions or as edge contours. Contours may be closed
or unclosed. Unclosed contours are called skeletons. Sometimes, skeletons can be parts of
unclosed contours (incomplete contours) or can be true linear objects. To make skeletons
more distinct, different morphological thinning algorithms are used [6,47]. For example,
thinning algorithms may be used for pattern recognition purposes in composite fillers
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cluster analysis. Other names for the skeletons include the one-pixel wide object or the
quasi one-dimensional object [39]. A one-pixel wide binary skeleton may be produced from
a quasi skeleton using a simple morphological operation (for example, “binary erosion”).
Of course, a quasi skeleton’s definition is not so strict, but it allows one to use simpler and
not as time-consuming algorithms.

The theory of fractals well reflects the specifics of the structure of clusters and is
promising for describing the properties of strongly inhomogeneous materials [48]. In its
initial formulation, it is similar to the theory of percolation, which is intended to describe
the behavior of systems near topological phase transitions. Usually, the percolation model
is considered for a lattice system in which nodes or bonds are distinguished with the
probability P [49,50]. For a small P, the selected nodes are mostly isolated, but as their con-
centration increases, clusters appear—groups of connected isolated particles. With a further
increase in P, aggregation takes on an avalanche-like character and will occur simultane-
ously according to several schemes: particle-particle, particle-cluster, and cluster-cluster.
The most important characteristic of a percolation system is the percolation threshold Pc, by
passing through which, the quantity turns into quality. In a system of selected nodes, the
connectivity caused by the appearance of a percolation hypercluster extending through the
entire system becomes global [49,50]. The topological phase transition that has taken place
means that the resulting structure begins to play the role of a formed independent phase

2. Laboratory Method for Obtaining a Biopolymer-Inorganic Composite
“Chitosan-silicon Dioxide”

Chitosan, obtained from the industrial processing of crustacean waste in orthophos-
phoric acid, is dissolved. To obtain the BIN of the composite, a solution of “chitosan-
orthophosphoric acid–water” is used in the ratio of 3.2 g to 3.2 mL and 50 mL. The solution
is prepared in a measuring cup (100 mL), which is then placed on a tiled lab bench, where
the process of chitosan dissolution takes place with continuous stirring by an automatic agi-
tator at T 40 ◦C for 40~60 min. The resulting solution is a viscous transparent honey-colored
liquid. Next, SiO2 filler is added to this solution in various volumes with stirring for 10 min
and an average particle size of 177 microns. The obtained solution is gradually filled into a
glass vessel after which a fixing solution (ammonia (150 mL) and ethyl alcohol (50 mL)) is
added to “stitch” chitosan. The exposure time in the fixing solution is 20 min. Subsequently,
the fixing solution is removed and rinsed with distillate. The “stitched” chitosan is placed
in a drying cabinet at T 40 ◦C for 2 h. The thickness of the manufactured samples of the
BIN composites ranges from 8 to 10 mm, depending on the amount of silicon dioxide.

3. The Main Prerequisites for the Development of a Multifractal Algorithm

The proposed multifractal algorithm is based on the use of the iterative procedure
of “box-counting” (BC-methods) that sequentially reduces the size of a specially created
square grid covering a cluster binary-pixel MPI by a specified number of times.

At the first stage of the BC-method, pixel binarization of the original MPI is carried out
in order to isolate the studied elements of the landscape of the original image into binary
pixels. A binarization threshold is set to detect pixel objects.

At the next stage of the BC-method, the pixel image is uniformly covered with a special
square grid of a given initial size.

Next, the number of squares into which at least one of the binary pixels falls is
calculated. At each subsequent iteration, the grid size is reduced by a specified number of
times, after which the calculations are repeated.

4. The Goal and Main Stages of the Multifractal Algorithm for Calculating
Generalized Fractal Dimensions on the MPIs of the Textures of BIN Composites

The original multifractal algorithm proposed by the authors for calculating fractal
characteristics of the cluster texture of BIN composites according to the MPIs of their textures
is distinguished by its use of the statistical probabilistic model for the processing of binary
pixels from the original MPIs previously converted into skeletons. The algorithm includes
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special median filters for calculating cluster texture indicators, which are generalized
fractal dimensions for the detection of areas of various configurations and densities in the
texture of the MPIs. Detecting these clusters of inorganic materials allows one to determine
the quantitative dependence of the mechanical properties of the BIN composite on the
characteristics of the composite texture and the content of silicon dioxide.

The multifractal algorithm allows the use of MPIs to detect silicon dioxide clusters
in the texture of BIN “chitosan-silicon dioxide” composites of various configurations and
densities affecting its mechanical properties.

The proposed multifractal algorithm consists of the following stages and steps:
Stage 1. Preprocessing of the initial MPIs to obtain a binary pixel structure of BIN

composites, which includes procedures for converting the original three-channel color
image into a single-channel image and procedures for constructing contours of black-and-
white pixel skeletons.

Step 1.1. Converting the original three-channel color MPIs into single-channel black-
and-white pixel images.

This step is necessary when using microscopes with pseudo-color-effects, in which the
microscope creates three-channel pseudo-signals instead of single-channel signals.

1.1.1. Conversion of the original MPIs from three-channel to single-channel by calcu-
lating the arithmetic mean values of pixel brightness in each of the three channels.

1.1.2. Conversion of the original MPI from a three-channel to a single-channel image
using a median filter that increases the contrast of the MPI.

Step 1.2. Converting MPIs using gradient filters to highlight skeleton pixels and
identify areas of pixels with a large brightness ripple.

Step 1.3. Binarization of the transformed single-channel black-and-white pixel MPI to
select skeletons and configure a multitude of binary pixels.

Step 1.4. Construction of connected skeleton contours using the procedure of linking
(combining) skeleton pixels into connected contours.

Stage 2. Calculation of the Helder exponent for each pixel of the transformed MPI. The
Helder exponent is a fractal dimension calculated for a specific form of a fractal measure
and for each pixel of the MPI.

The fractal dimension is an exponent of the power-law of self-similarity that deter-
mines the fractal structure.

Fractal measure is a method of numerically representing the features of the fractal
structure of an MPI using a sequential chain of square windows used to model the power-
law of self-similarity. For example, as a fractal measure, the arithmetic mean or median of
the number of pixels of the original MPI can be used for each of the square windows of
the chain.

For instance, the fractal “iso measure”, which characterizes the correlation of pixel
values, is calculated by the formula:

µ(i, j, d) =
i+d/2

∑
r=i−d/2

j+d/2

∑
p=j−d/2

(
|b(i, j)− b(r, p)|

b(i, j)
< ε

)
(1)

where b(i, j) is the brightness of the pixel, |b(i,j)−b(r,p)|
b(i,j) < ε ∈ {0, 1}, ε—the specified

threshold (algorithm parameter), and (r, p) are the coordinates of the central pixel.
Step 2.1. Choosing a fractal measure for calculating Helder exponents, which charac-

terizes the local configuration of pixel clusters. As a fractal measure, an arithmetic mean,
a correlation measure called an “iso measure”, or other types of statistical measures (for
example, a median measure) can be used.

Step 2.2. Transformation of a binary pixel image using the sliding window (SW)
method, which is a square fragment of an image, the side of which has an odd number of
pixels, and the center moves sequentially along the pixels of the original image.

For each new position of the SW, that is, for each pixel of the original image, a square
chain (SC) is formed with the side size increasing from one pixel to the size of the SW. In
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this case, two one-dimensional arrays are formed: an array of SC sizes and an array of
fractal measures calculated for each new SC square.

Step 2.3. Calculation of the local Helder exponent for each MPI pixel using linear-
logarithmic regression and two one-dimensional arrays of SC sizes and fractal measures
modeled in Step 2.2.

Step 2.4. Constructing images of Helder exponents as a set of exponents previously
calculated for each MPI pixel in Step 2.3

Step 2.5. Calculating the range of values of the Helder exponent as the interval from
the minimum to the maximum value of the exponents calculated in Steps 2.3 and 2.4.

Stage 3. Calculation of the multifractal spectrum in the form of the function f (α) that
describes the dependence of the fractal dimension of MPI pixel clusters on the value of the
Helder exponent.

Step 3.1. Dividing the interval of values of the Helder exponent obtained in Step 2.5
by a given number of equidistant layers, for example, by 50 or 100 layers.

Step 3.2. Application of the BC-method of fractal dimension of clusters of MPI pixels
on each of the layers of the Helder exponent obtained in Step 3.1.

Step 3.3. Representation of the multifractal spectrum function in tabular or graphi-
cal form.

Stage 4. Calculation of the multifractal dimension indicators characterizing the location
of pixel cluster configuration using the multifractal spectrum f (α) calculated in at Stage 3.

Step 4.1. Calculation of the scaling exponent τ(q), which then allows one to calculate
generalized fractal dimensions (Renyi dimensions). The scaling exponent is calculated
using the BC-method.

Step 4.2. Calculation of generalized fractal dimensions Dq:

Dq =
τ(q)
q− 1

(2)

where τ(q) is the scaling exponent, and q is the parameter (the Renyi exponent).
Stage 5. Calculation from several generalized fractal dimensions—for example, the first

three
(
q, Dq

)
= {(0, D0), (1, D1), (2, D2)} dimensions of the value of complex multifractal

factor (CMF) account for several generalized fractal dimensions.
For example, various statistical characteristics can be used as a CMF: the arithmetic

mean, the length of a three-dimensional vector composed of several generalized fractal
dimensions, or the median.

Stage 6. Construction of tables and graphs of generalized fractal dimensions of Di and
calculation of the CMF values that allow one to quantify the location of configurations and
density of particle clusters of inorganic silicon dioxide material in the texture of the BIN
“chitosan-silicon dioxide” composite.

When calculating the local Hölder exponent (α-image), square windows are used with
a successive increase of size. The half-size of each window should not be greater than the
distance from the central point to the edge pixels. As a result, each processing image has a
frame of unused pixels. The frame width can be considered as a boundary condition. It is
reasonable to use a frame size (boundary condition) of approximately ten percent of the
size of the entire image.

Another boundary condition is related to the calculation of the fractal dimension by
the box-counting method. The α-image is covered by a square grid, with the cell size
halving to one pixel. This implies the second boundary condition: p ≤ log N

log 2 , where p is the
number of steps required to reduce cell size to one pixel, and N is the image size.

The proposed multifractal algorithm is developed in the M language of the Matlab
package using a special library of image processing (IP) procedures.



Energies 2022, 15, 7147 7 of 15

5. Results of the Application of the Multifractal Algorithm to Texture Analysis of
BIN-Chitosan Film Samples

In this work, the authors conducted a multifractal analysis of microphotographic
images (MPIs) of the texture of a BIN composite obtained using the ALTAMI optical micro-
scope. The samples were examined at magnifications of ×10, ×20, ×40 and resolutions for
light and lumen.

Let us consider the results of the conducted studies in which the effect of the concen-
tration of silicon dioxide addition on the generalized fractal dimensions of chitosan films
forming the BIN “chitosan-silicon dioxide” composite was studied. The following five
sequentially increasing concentrations of silicon dioxide in the BIN composite were used in
the experiments: 0.5 g; 0.75 g; 1.0 g, 1.25 g; 1.5 g. We will also consider the results of the
application of a complex multifractal algorithm (CMA) to the extreme points of a given
sequence of concentrations of silicon dioxide.

Figure 2 shows the initial MPI textures of BIN composite samples. We denote the MPI
of the sample with 0.5 g of SiO2 as MPI-1, and the sample with 1.5 g of SiO2—as MPI-2. A
three-channel median filter was used to convert the original three-channel color MPIs into
single-channel pixel ones. The results of the transformation are shown in Figure 3. On MPI
(see Figures 2 and 3), there are areas consisting of pixels of maximum brightness that do
not have an internal fractal structure. These regions appear on histograms in the form of
singularities (see Figure 4).
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In the pertinent figures, SiO2 particles, the structure of chitosan, and its distribution
are considered altogether. So, certain areas of the figure are shown less clearly.

The results of the MPI conversion using a three-channel median filter (Algorithm
Step 1.1) are shown in Figure 3. Histograms of median filters (Algorithm Step 1.1) are
shown in Figure 4.

Figure 5 shows images of pixel brightness displayed by Helder exponents (Algorithm
Step 2.4), and Figure 6 shows histograms corresponding to these images. The Helder
exponents are calculated using the sliding window method and using the fractal measure
“iso” (see formula (1)). As follows, from Figure 6, the pixel brightness distribution displayed
by the Helder exponents has the form of a normal distribution, which corresponds to the
theoretical understanding of the parabolic shape of the histogram near the maximum.
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Figure 7 shows the multifractal spectra (Algorithm Steps 3.2 and 3.3). As follows, from
Figure 7, the multifractal spectra of the samples have a parabolic shape, which is probably
due to the choice of the “iso measure” as an indicator of multifractality (see Formula (1)).
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The multifractal spectra of Figure 7 are used to calculate generalized fractal dimensions
(Algorithm Step 4.2 and Stage 6): D0, D1, D2, the graphs of which are shown in Figure 8.

A distinctive feature of the graphs shown in Figure 8 is their obvious and signifi-
cant correlation.

Based on these results, it can be concluded that the silicon dioxide clusters formed in
the texture of the BIN “chitosan-silicon dioxide” composite have the same effect on the
generalized fractal dimensions of the MPI biopolymer of the inorganic composite.

As follows, from Figure 8, the fractal generalized dimension D0 is close to unity,
which coincides with the topological dimension of the line. The correlative dimension
D2 has the lowest value. At the same time, the criterion σ/x for the fractal dimension
D2 is the largest at about 50%. Considering that the generalized fractal dimension D2
describes the magnitude of correlations between clusters of silicon dioxide particles in the
structure of the BIN composite, it can be assumed that this dimension can be used as a
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measure for the formation of cluster agglomerates of silicon dioxide in the texture of the
BIN “chitosan-silicon dioxide” composite.
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The application of the developed original multifractal algorithm for quantitative eval-
uation of the results of mechanical tests on samples of the BIN “chitosan-silicon dioxide”
composite with different amounts of silicon dioxide allowed to establish that such impor-
tant indicators as strength and plasticity can be quantitatively described in the form of
generalized fractal dimensions of pixel clusters on MPIs.

6. Practical Results of Experimental Studies of the Mechanical Properties of the BIN
“Chitosan-Silicon Dioxide” Composite

Following mechanical tests of BIN composite samples, a statistical relationship was
established between the strength of the samples and the amount of silicon dioxide in the
BIN “chitosan-silicon dioxide” composite.

Following the initial analysis using an ALTAMI microscope, the manufactured samples
of the BIN composite were subjected to mechanical tests conducted using the INSTRON
3382 Universal Testing Machine at the speed of 2 mm/min. Next, INSTRON Bluehill 2.0
software was used for numerical processing of these results.

Table 1 shows the results of measuring the strength of a BIN composite depending on
the amount of silicon dioxide in its texture.

Table 2 presents the data used in the regression analysis of tensile strength of BIN
composite samples.

Figure 9 shows the results of calculations of linear regression dependence of the
strength index on the amount of silicon dioxide in the samples. The criteria used are the an-
gular coefficient of linear regression k ≈ 0.0323 MPa/g and the coefficient of determination
R2 ≈ 0.0506. Based on the analysis of the regression model, it was found that the tensile
strength of the samples of the BIN “chitosan-silicon dioxide” composite decreases initially
and then increases depending on the increase in silicon dioxide, while the plasticity of the
samples decreases.

When silicon oxide is added, the strength properties decrease due to the resulting
non-uniformity stresses and development of defects. When more SiO2 particles are added,
hardening occurs in matrices with an increase in strength characteristics and a decrease in
ductility characteristics.

Further addition of SiO2 particles leads to the appearance of their agglomerates in the
matrix, an increase in porosity, and hence a decrease in strength.
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Table 1. The results of mechanical tests of BIN composite samples.

SiO2 Amount, g Relative
Lengthening, %

Tensile
Strength, MPa Length, mm Thickness, mm Width, mm Area, mm2

0.1 77.00 0.394 25.00 8.26 1.890 15.611

0.5 65.4 0.273 25.00 9.52 2.200 20.944

0.75 36.10 0.222 25.00 9.10 2.790 25.389

1 38.20 0.329 25.00 9.60 2.130 20.448

1.25 33.00 0.407 25.00 9.45 2.490 23.530

1.5 42.20 0.374 25.00 8.31 2.570 21.357

Table 2. Data used in the regression analysis of tensile strength of BIN composite samples.

SiO2 Amount, g Tensile Strength, MPa

0.1 0.394

0.5 0.273

0.75 0.222

1 0.329

1.25 0.407

1.5 0.374
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7. Conclusions

1. As a result of studies conducted using the original multifractal algorithm of the
MPI texture of the BIN “chitosan—silicon dioxide” composite, it was found that important
characteristics of the BIN composite such as strength and plasticity can be quantitatively
described using generalized fractal pixel dimensions of MPI samples.

2. The analysis of microphotographic images of BIN composite samples using the
original multifractal texture algorithm showed that the criterion (σ is the standard deviation,
x is the arithmetic mean) characterizing the amount, concentration and density of silicon
dioxide in the clusters formed at different amounts of SiO2 (0.5; 0.75; 1.0; 1.25; 1.5 g) has
the following values of generalized fractal dimensions: D0 approximately 5%; D1—10%;
D2—50%.
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3. The generalized fractal dimension of Di pixels of microphotographic images of the
BIN composite D2 can be used to evaluate both intra-cluster formations of silicon dioxide
and inter-cluster correlations in the texture of the BIN composite, which quantitatively
characterize the mechanical and physico-chemical properties of the composite.

4. The proposed multifractal algorithm for analyzing microphotographic images of
the biopolymer texture of the inorganic “chitosan-silicon dioxide” composite was used
to analyze the results of the study of mechanical properties of numerous samples of the
BIN composite with different amounts of silicon dioxide. As a result, it was found that
the tensile strength of samples of the BIN “chitosan-silicon dioxide” composite decreases
initially and then increases depending on the increase in silicon dioxide, while the plasticity
of the samples decreases.
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Glossary of Terms

Term Meaning
Agglomeration of particles (derived from the Latin word agglomero—meaning “I attach”, “I accumulate”) the process

of joining, aggregation, integration of disparate particles (grains, crystals, molecules, etc.)
into clusters or other larger and complex objects.

Lacunarity (mathematics) a measure of the inhomogeneity with which objects fill space.
Multifractal object an object whose texture consists of self-similar sets with different values of fractal dimension.
System a structure that accounts for various types of interactions between its constituent elements.
Skeleton (derived from the Latin percōlāre, it translates as “to strain” or “to filter through”) a linear

object consisting of an unbroken sequence of pixels of binary images obtained as a result
of morphological (pixel) transformations of the original single-channel image, for example,
by using potential transformations.

Texture a sequence of configurations that determine the properties of elements (amorphous grains,
crystalline elements, etc.)—for example, self-similar fractal formations.

Fractal a structure with an approximately self-similar configuration of constituent elements, the
self-similarity of which is subject to power-laws.

Fractal dimension a special indicator of texture properties in the form of an exponent of the power-law of
self-similarity describing the fractal structure.

Fractal measure a method of numerical representation of the features of microphotographic images using
a sequential chain of square windows used to model the power-law of self-similarity. For
example, the value of the arithmetic mean or the median of the pixels of each of the square
windows of the chain can be used as a fractal measure.

Helder Exponent a fractal dimension calculated for a specific shape of the fractal measure and each pixel
of the MPI.

Pixel brightness For a single-byte image, it is the physical brightness of pixels normalized by an interval
(0–255). For a two-byte image, it is the physical brightness of pixels normalized by an
interval (0–65535).

“iso measure” a measure equal to the normalized sum of deviations of the pixel brightness in the square
window from the brightness of the central pixel.
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