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Abstract: Due to the rapidly increasing power demand worldwide, the development of power sys-
tems occupies a significant position in modern society. Furthermore, a high proportion of renewable
energy resources (RESs) is an inevitable trend in further power system planning, due to traditional
energy shortages and environmental pollution problems. However, as RESs are variable, intermittent,
and uncontrollable, more challenges will be introduced in transmission expansion planning (TEP).
Therefore, in order to guarantee the security and reliability of the power system, research related to
TEP with the integration of RESs is of great significance. In this paper, to solve the TEP problem con-
sidering load and wind power uncertainties, an AC TEP model solved by a mixed integer non-linear
programming (MINLP) is proposed, the high-quality optimal solutions of which demonstrate the
accuracy and efficiency of the method. Latin hypercube sampling (LHS) is employed for the scenario
generation, while a simultaneous backward reduction algorithm is applied for the scenario reduction,
thus reducing the computational burden. Through this method, the reserved scenarios can effectively
reflect the overall trends of the original distributions. Based on a novel worst-case scenario analysis
method, the obtained optimal solutions are shown to be more robust and effective.

Keywords: transmission expansion planning; AC model; Latin hypercube sampling; scenario
reduction; mixed integer non-linear programming

1. Introduction
1.1. Background

With the rapid development of technology and modern society, the power demands
have been dramatically increasing all over the world. Therefore, power system planning
has attracted significant attention in recent years and has become a popular topic among
researchers. The transmission network occupies a necessary position in a power system,
which is responsible for the delivery of power between the generation network and dis-
tribution network. Therefore, transmission expansion planning (TEP) has also become an
attractive research field in recent years, and many papers have summarized the achieve-
ments of related studies. However, it must be mentioned that TEP is a decision-making
process with a high complexity and different objectives, including many uncertainties
such as load fluctuations and equipment faults that need to be considered in the planning
process. Furthermore, a series of constraints, such as those in technical, economic, and
environmental aspects, should be satisfied to guarantee the security, stability, and reliability
of the power system [1].

Along with rapid economic growth, energy supply has become an important fac-
tor in determining the sustainable development of an economy. However, the massive
consumption of traditional energy resources has brought obvious energy shortages and
environmental problems [2,3]. As a result, renewable energy resource (RES) strategies have
gained worldwide consensus, which involve increasing the employment of RESs (e.g., solar,
wind) in power systems, making them cleaner, more secure, and sustainable [4–6].
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A high proportion of RESs in a power system will make the network planning more
complex, due to the intermittence, randomness, and uncontrollability of RESs [7]. As more
uncertainties and fluctuations are added to the power system with the integration of RESs,
there should be higher requirements for flexibility, reliability, and other aspects in TEP
methods [8]. Therefore, research on TEP based on the characteristics of RESs are of great
significance, in order to guarantee the security and stability of power systems.

1.2. Literature Review

TEP is a process of determining the time, position, and number of new devices that
need to be re-built in a power system in order to provide a sufficient available capacity
of the transmission network during the planning horizon [9]. TEP problems are discrete,
dynamic, non-linear, multi-objective, and complex, and some technical assumptions and
simplifications need to be made. According to different simplification methods, many
planning models with their own characteristics have been formulated.

The main models to present simplified TEP problems are DC models, hybrid models,
transportation models, and disjunctive models; for a comparison among these models,
see [10–12]. When using a DC model, the non-linear equations considered in the TEP
problems can be transformed into linear ones. In this way, the computational efficiency
can be significantly improved [11]. However, some disadvantages still exist when a DC
model is adopted. During the DC modeling process, the reactive power is ignored, such
that the obtained optimal solution still needs to be followed by a separate reactive power
compensation plan. Besides, the power losses are difficult to take into consideration initially
and the terminal voltage magnitudes are assumed to be fixed; all of these simplifications
will lead to a gap between the obtained DC model and a real operation of the AC system [13].
As a result, AC models have been developed in many studies, which take reactive power,
real power losses, voltage magnitude, and phase angles into consideration [9,14–18]. An AC
model has been proposed in [9], in which a high-quality optimal solution was obtained and
the reactive power allocation was taken into consideration. In [14], the authors reported
an ACTEP problem, which was solved through the relaxation of binary variables and
determined the local optimal result. A less relaxed model has been presented in [15], which
aims to yield a more realistic TEP result. In this paper, an N-1 criterion was presented in
an effective method, and variables such as reactive power, terminal voltage, and power
losses were presented in a linear way. It has been reported, in [16], that the non-linear
ACTEP problem can be transferred into a linear one, guaranteeing the achievement of a
global optimal result. In [17], a TEP problem was solved in two stages: a DC model was
employed in the first stage, while an AC model was applied in the next stage, which aims
to obtain an optimal solution for reactive power planning (RPP). A similar procedure has
been employed in [18], with a combination of TEP followed by a RPP problem solved to
provide high-quality results. In conclusion, an AC model can present a real AC grid more
accurately and completely; however, there are still exist many difficulties in developing an
effective solution technique to solve such a non-linear and non-convex problem.

Many different algorithms have been developed, which can be mainly divided into
two types—mathematical optimization algorithms and heuristic algorithms—as well as
tools named meta-heuristics, which have the characteristics of both kinds of algorithms.
The basic idea of a mathematical optimization method is to transform the TEP problem into
a general mathematical model, then solve it using a certain algorithm. The most common
ones include linear programming (LP) [19,20], dynamic programming [21,22], nonlinear
programming (NLP) [23], and mixed integer programming [20,24,25]. A technique named
the Benders decomposition method has been employed in many papers [26,27], which is
an effective method for small- and medium-scale power systems; however, for the large-
scale systems, the huge computational burden can be a problem. Heuristic algorithms are
proposed according to intuition and experience, which can provide a feasible solution for
every instance of an optimization problem within the acceptable computational time. The
basic idea of a heuristic method used in transmission network planning is to establish a
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sensitivity relationship between the decision variables and a certain validity index, then
to form a new planned power network by adding and deleting candidate lines in the
initial network.

In recent years, there has been greater employment of RESs in power systems, due
to energy shortages and environmental pollution problems. Many methods have been
proposed to deal with the uncertainties of RESs. In [28], a chance-constrained method
was presented to address the TEP problem, and the wind turbine PDF was combined
with a power flow analysis to obtain an optimal solution with less computational burden.
A stochastic programming method has been proposed in [11], in order to express the
uncertainties, and an FSA method was improved to reduce the computational burden.
Another popular technology, named the scenario generation, has been widely used to
obtain large numbers of scenarios [29,30]. The principle of the scenario generation is to
sample known random variables which conform to a certain probability distribution. In
this way, the continuous probability model can be discretized to generate a finite number
of scenarios which can approximately reflect its own probability density. There are many
methods for the scenario generation, such as the Monte Carlo method [28], Latin hypercube
sampling [11,31,32], the scenario tree [33], and so on.

The generation of many scenarios based on uncertain parameters can lead to the
significant computational burden and increase the complexity of the problem. Therefore, it
is desirable to sample a subset of scenarios as the best approximation of the original ones,
in order to release some of the computational burden while guaranteeing the quality of the
optimal solution. This is known as an important method: the scenario reduction [34,35].
In [36], the fast forward selection (FFS) has been treated as an efficient method. It was also
used to make a comparison with other methods detailed in [37], and the results indicated
that the FFS can offer the optimal solution with relatively low cost and computational
burden. In [38], a multi-stage model has been used for the short-term TEP problem when
considering various load uncertainties. To obtain an effective and high-quality result, a
Monte Carlo (MC) simulation method was employed for the scenario generation, and
the GAMS/SCENRED technique was used to complete the scenario reduction process.
In [11], an improved forward selection algorithm (IFSA) has been proposed for solving
the stochastic TEP problem, which can save computational time while guaranteeing the
accuracy of the solution.

As the scenario-based methods depend on an approximation of the real wind power
and load distribution, the optimal results can be heavily affected by the representativeness
of the selected scenarios. In this way, the accuracy and reliability of the planning results
cannot be guaranteed [39]. Normally, to overcome the drawbacks of the scenario-based
methods, the chance-constrained method is widely employed, which adds one or more
constraints to be satisfied with a high probability of dealing with the uncertainties [28,40,41].
In this paper, the core idea of robust TEP is employed, which maximizes the performance
of the power system under the worst-case scenario, thus ensuring the robustness and
reliability of the power system [42]. Furthermore, a novel robust method is proposed to
present the worst-case scenario of the power demands. Traditionally, to guarantee the safety
of the power system operation, the optimal solution of TEP problems is proposed under
the peak load situation, which can be considered as the worst-case scenario. When taking
the integration of RESs into account, the peak load cannot be treated as the worst situation
anymore, as the power generation by RESs fluctuates over time. A normal method to
process the fluctuations is to average the performance of power system under all scenarios,
weighted by their probabilities of appearance [43–45]. In this paper, the idea of ‘net peak’
is proposed in the demand analysis, which denotes the highest value of the difference
between the power demands and renewable energy generation. As a result, with the
additional consideration of net peak values, the security and reliability of the power system
can be better guaranteed.
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1.3. Contributions to the Research

The main contributions of this paper are listed as follows:

• An AC TEP model considering wind power and load uncertainties is solved using the
MINLP method. High-quality optimal results are achieved with high efficiency.

• To express the uncertainties more accurately, the scenario analysis method is em-
ployed. The LHS method is used to finish the scenario generation process, where the
advantages of this method include high sampling efficiency and high accuracy.

• A simultaneous backward reduction algorithm is applied for scenario reduction, which
proves that the reversed scenarios can well-describe the changing characteristics of
wind power generation and load fluctuations. The computational burden can be
lowered, to a large extent.

• Finally, a novel method to present the worst-case scenario of power demand is pro-
posed, which can better guarantee the security of the power system.

The remainder of this paper is organized as follows: Section 2 details the proposed
AC TEP model incorporating wind power. Section 3 presents the wind uncertainties, load
uncertainties, and scenario analysis. Section 4 analyses a case study using Garver’s six-bus
system. Section 5 highlights the conclusions and achievements of this study.

2. AC-TEP Model Incorporating Wind Power
2.1. Objective Functions

The objective of TEP is to satisfy the power demand under the most optimal transmis-
sion network structure with a minimum investment cost. The objective function can be
given as follows:

Min. f (v) = ∑(i,j) Cij × nij, (1)

where f (v) is the total investment cost of adding transmission lines, Cij is the cost of
adding one transmission line between bus i and bus j, and nij denotes the number of new
transmission lines which should be built between bus i and bus j. The specific data are
provided in Table 1.

Table 1. Branch data.

Bus i Bus j rij, pu xij, pu Capacity
(MVA)

Cost
(USD M) n0 nmax

1 5 0.020 0.200 120 20 1 5
1 6 0.068 0.680 90 68 0 5
2 3 0.020 0.200 120 20 1 5
2 4 0.040 0.400 120 40 1 5
2 5 0.031 0.310 120 31 0 5
2 6 0.030 0.300 120 30 0 5
3 4 0.059 0.590 120 59 0 5
3 5 0.020 0.200 120 20 1 5
3 6 0.048 0.480 120 48 0 5
4 5 0.063 0.630 95 63 0 5
4 6 0.030 0.300 120 30 0 5
5 6 0.061 0.610 98 61 0 5

The proposed model is solved using the Yalmip optimization toolbox of MATLAB,
and the MINLP method is employed to obtain the optimal solutions.

2.2. Contraints
2.2.1. Equality Constraints

Power balance equations:
For the active power:

Pi − PGi − PWTi + PDi = 0, (2)
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where Pi stands for the total active power flows out of bus i, PGi stands for the active power
generated at bus i, PDi stands for the demand of active power at bus i, and PWTi stands for
the wind power generation at bus i.

For the reactive power:
Qi −QGi + QDi = 0, (3)

where Qi stands for the total reactive power flows out of bus i, QGi stands for the reactive
power generated at bus i, and QDi stands for the demand of reactive power at bus i.

Following this, Pi and Qi can be expressed as functions of the phase angle, terminal
voltage, and the number of transmission lines, written as follows:

Pi = Vi ∑
j∈N

Vj
[
Gijcosθij + Bijsinθij

]
, (4)

Qi = Vi ∑
j∈N

Vj
[
Gijsinθij − Bijcosθij

]
, (5)

where Vi and Vj denote the magnitude of terminal voltage at bus i and bus j, respectively;
N stands for the total number of buses; and θij stands for the voltage phase angle difference
between bus i and bus j. To divide admittance elements into diagonal and non-diagonal
elements, the matrices G and B can be presented as follows:

G =


Gij = −

(
nij × gij + n0

ij × g0
ij

)
Gii = ∑

j∈Nci

(
nij × gij + n0

ij × g0
ij

) , (6)

B =


Bij = −

(
nij × bij + n0

ij × b0
ij

)
Bii = ∑

j∈Nci

(
nij × bij + n0

ij × b0
ij

) , (7)

where gij and bij denote the conductance and susceptance, respectively, of the transmission
line between bus i and bus j; nij stands for the number of new transmission lines built
between bus i and bus j; n0

ij stands for the number of original transmission lines con-
nected between bus i and bus j; and Nci stands for the total number of buses connected to
bus i directly.

2.2.2. Inequality Constraints

According to the requirement that the power flow in each transmission line cannot
exceed its capacity, we obtain the following inequalities:

(nij + no
ij)× Sij ≤ (nij + no

ij)× Scapacity, (8)

(nij + no
ij)× Sji ≤ (nij + no

ij)× Scapacity, (9)

where Sij stands for the apparent power flows from bus i to bus j on each transmission
line and Sji stands for the apparent power flows to bus j from bus i on each transmission
line. The difference between these two values is the power loss. Furthermore, the apparent
power flows Sij and Sji can be calculated as follows:

Sij =
√(

Pij
)2

+
(
Qij
)2, (10)

Pij = V2
i × gij −ViVj ×

(
gijcosθij + bijsinθij

)
, (11)

Qij = −V2
i × bij −ViVj ×

(
gijsinθij − bijcosθij

)
, (12)

Sji =
√(

Pji
)2

+
(
Qji
)2, (13)
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Pji = V2
j × gij −ViVj ×

(
gijcosθij − bijsinθij

)
, (14)

Qji = −V2
j × bij + ViVj ×

(
gijsinθij + bijcosθij

)
, (15)

where Pij stands for the active power flows from bus i to bus j on each transmission line, Pji
stands for the active power flows to bus j from bus i on each transmission line, Qij stands
for the reactive power flows from bus i to bus j on each transmission line, and Qji stands
for the reactive power flows to bus j from bus i on each transmission line.

2.2.3. Lower and Upper Bounds

For the generation limitation of the generators:

Pmin
Gi ≤ PGi ≤ Pmax

Gi , (16)

Qmin
Gi ≤ QGi ≤ Qmax

Gi , (17)

where Pmin
Gi and Pmax

Gi stand for the lowest and highest active power generation capacity
at bus i, and Qmin

Gi and Qmax
Gi stand for the lowest and highest reactive power generation

capacity at bus i, respectively.
For the terminal voltage limitation at each bus:

Vmin
i ≤ Vi ≤ Vmax

i , (18)

where Vmin
i stands for the minimum terminal voltage magnitude, which is set as 0.95, and

Vmax
i stands for the maximum terminal voltage magnitude, which is set as 1.05.

For the limitation of the number of total transmission lines which can be connected by
one bus:

0 ≤ ni ≤ nmax, (19)

where ni stands for the number of total transmission lines connected to bus I, and nmax
stands for the maximum number of transmission lines that can be connected to one bus.

3. Uncertainties and Scenario Analysis
3.1. Uncertainties of Wind Power and Load

To deal with the uncertainties due to the use of wind power and load fluctuations,
wind speed is usually presented using a Weibull PDF and the load is modeled by a Normal
PDF. The detailed models for wind generation and uncertainty analysis are described in
the following.

3.1.1. Wind Uncertainties

Wind energy has the characteristics of randomness, intermittence, and uncertainty,
which can be well-expressed by the wind speed probability distribution. The most popular
PDF for the representation of wind speed is the Weibull distribution, which can be expressed
as follows:

f u =
k
c
×
(u

c

)k−1
× exp

(
−
(u

c

)k−1
)

, ∀ c > 1 ∧ k > 0, (20)

k =

(
σu

µu

)−1.086
, (21)

c =
µu

Γ(1 + 1/k)
, (22)

where v denotes the predicted average wind speed of the wind field, k is the shape factor,
and c is the scale factor, which can reflect the range and extent of wind speed fluctuations.
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The principle of a wind turbine is to convert mechanical energy into electrical energy.
The output power of a wind turbine is highly dependent on the wind speed, and the
function and curve (shown in Figure 1) describing wind generation are given as follows:

PWT(v) =


0, when v < vci & v > vco

Prate

(
v−vci

vrate−vci

)
, when vci ≤ v ≤ vrate

Prate, when vrate ≤ v ≤ vco

, (23)

where PWT is the output power of each wind turbine, vci stands for the cut-in wind speed
(which is set as 3 m/s), vrate stands for the rated wind speed (which is set as 12 m/s), vco
stands for the cut-off wind speed (which is set as 25 m/s), and Prate stands for the rated
output power of each wind turbine [13]. The TEP solution was proposed based on Garver’s
network, the total power generation capacity by fossil fuels was 1110 MW, and the total
wind turbine generation capacity was assumed as 370 MW (i.e., one-third of the fossil fuel
generation capacity).
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3.1.2. Load Uncertainties

The load side occupies a significant position in a power system, and load fluctuations
can have a serious effect on the voltage stability. Power system planning, operation, and
control all aiming at ensuring the security of the load supply. As a result, it is of great
significance to deal with load uncertainties in a power system analysis.

However, the load demand typically presents a periodic change, according to the
regular change of production and life order. At the same time, the change of load is random
and fluctuates, and can be affected by many uncertain factors, such as the economy, society,
and weather. Particularly, the load growth is directly related to the economic growth,
which is also extremely hard to estimate. As a result, experts in the field of economics have
formulated propositions according to their experience. In this light, a normal PDF can be
employed to present the load uncertainties, shown as follows [46]:

fd(Pd) =
1

σd
√

2π
exp

[
− (Pd − µd)

2

2σ2
d

]
, (24)

where µd and σd stand for the mean and standard deviation, and Pd denotes the probability
density of a normally distributed load.

3.2. Scenario Analysis

A Scenario analysis is a common method to describe TEP problems considering
uncertainty and randomness. In order to guarantee the security and stability of a power
system, a scenario analysis has been widely applied to address the uncertainties brought
by RESs and load fluctuations, which can be considered a significant aspect of TEP.
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The key point of applying a scenario analysis method is balancing the computational
efficiency and accuracy: if the number of generated scenarios is too large, the huge compu-
tational burden will lead to low efficiency; in contrast, if a small number of scenarios are
generated, the accuracy cannot be guaranteed. As a result, scenario analysis methods are
divided into two aspects: the first is the scenario generation technology, which is used to
generate a large amount of scenarios to guarantee the computational accuracy, while the
second is a scenario reduction technology, which is used to reduce the number of scenarios
to guarantee computational efficiency.

In this study, Latin hypercube sampling (LHS) is employed to generate scenarios
and express uncertainties. Meanwhile, a simultaneous backward reduction algorithm is
proposed to carry out the scenario reduction process. In this way, both computational
accuracy and efficiency can be guaranteed.

3.2.1. Scenario Generation: LHS

According to the PDF of wind speed and load, LHS is applied to obtain many scenarios
and obtain an approximate description of the uncertainties.

Latin hypercube sampling (LHS) is composed of two parts: sampling and sorting.
Its simulation accuracy is affected by the correlation between the sampled values and the
different input random variables. The basic requirement of the sampling process is to
have the sampling points of the input random variables completely cover their randomly
distributed areas. The sorting process aims to control the correlation among the sampled
values of the input variables; in this way, the impact of the correlation among sampled
values on the accuracy of LHS can be reduced. Compared with simple random sampling,
the advantages of LHS are its high efficiency and good robustness.

LHS is a stratified sampling technique, and the sampled values from this method
can reflect the whole distribution of input random variables effectively. In comparison
with the traditional Monte Carlo method, its advantage that the sampled points can cover
the whole sampling area. In contrast, the random sampling method employs the Monte
Carlo sampling (MCS) technique, which means that, within the sampling area, the sampled
values may fall at any position. As a result (especially for small-scale sampling), the
output probability distribution may become aggregated. As a result, the scenarios obtained
by the LHS method are more representative of the distribution. At the same time, the
computational efficiency and accuracy can be improved, to some extent.

(1) Sampling Process

It is assumed that x1, x2, . . . , xK are k input random variables in the probability problem
to be solved, and xK is any random variable of x1, x2, . . . , xK, whose cumulative probability
distribution function can be expressed as:

YK = FK(xK). (25)

It is supposed that N is the sampling scale, and the sampling method can be carried
out as follows: divide the vertical axis of the curve YK = FK(xK) into N equally spaced
non-overlapping intervals and select one sampled value from each interval (the selected
point can be random or the midpoint of each interval). In our search, the midpoint of
each interval was chosen; this sampling method is called “lattice sampling”. Then, use the
inverse function of YK = FK(xK) to express the sampled value of xK. The nth sample value
of xK can be expressed as:

xKn = F−1
k

(
n− 0.5

N

)
. (26)

The sampled values of the random variable xK are arranged in a row of the sampling
matrix, denoted as [xK1 . . . xKn . . . xKN]. When the sampling processes of K input random
variables are finished, all of the sample values can be formed into a K × N initial sampling
matrix Xs. Then, the next step of the LHS method should be applied; that is, arranging
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the order of the sample points of each row and eliminating the correlation between the
rows of Xs.

(2) Sorting Process

The sorting process aims to minimize the correlation between the rows of the matrix
Xs, as the correlation between the sampled values and the different input random variables
is difficult to control and can have an effect on the calculation accuracy. A high-quality
sorting method is very important for reducing the correlation between the rows of the
sampling matrix and improving the efficiency and accuracy of LHS. In this way, a Cholesky
decomposition method is employed in this section, which has the advantages of high
efficiency and low computational burden.

The first step in rearranging the sampling matrix Xs using the Cholesky decomposition
method is to initialize a K× N matrix L = [L1, . . . , Lk]

T , where each row of L consists of a
random arrangement of integers 1, . . . , N. It is assumed that the correlation coefficients
between the rows of the matrix L can be expressed by a positive definite symmetric matrix
ρL, and the Cholesky decomposition method is applied to obtain a non-singular lower
triangular matrix D which satisfies the following equation:

ρL = DDT . (27)

Then, a matrix G of dimensions K × N can be obtained, whose correlation coefficient
matrix is a unit matrix of dimensions K × K:

G = D−1L. (28)

Unlike the matrix L, not all of the values in G are integers, such that they cannot be
used to show the positions of elements in the sampling matrix. Therefore, the row elements
of L are replaced by the elements in G, which are arranged in order from large to small.
Then, the element positions in each row of Xs are transferred, which are indicated by the
elements in the corresponding row of the updated matrix L. As the correlation coefficients
of G form an identity matrix, the rows of G are irrelevant. When each row’s elements of the
new matrix L are replaced by the elements in the corresponding row of G, in order from
large to small, the correlations between different elements will be reduced, compared with
those in the original matrix L.

Assume that ρx is the matrix of the correlation coefficients after Xs is rearranged. It
should be noted that, after the data in Xs are rearranged according to L, ρL, and ρx have
the characteristic of consistency, but are not completely equal. As ρL is a rank correlation
matrix, the smaller values of the elements in the matrix ρL will lead to smaller values of the
elements in ρx.

It should be mentioned that the sampling technique is not necessary to apply initially
during the calculation process. An alternative method can be considered for generating L
first, and then the values of the sampling matrix can be calculated by the following method:

[xk1, . . . , xkN ] = F−1
k

(
Lk − 0.5

N

)
. (29)

As L is no longer used in subsequent calculations, it can be overwritten with the
generated sampling matrix Xs, in order to save memory.

The elements in each row of the sampling matrix Xs represent the sampled values of
each random variable, and the elements in each column represent the input values of each
random variable in one random simulation process.

3.2.2. Scenario Reduction: Simultaneous Backward Reduction Method

In the scenario generation process, many random scenarios will be generated with an
equal probability, which can lead to a heavy computational burden. However, many of the
generated scenarios are similar—from the perspective of the amount of information that
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they can provide—and there is little significance of precise research on them. As a result,
a scenario reduction process seems necessary, which aims at selecting fewer classical and
representative scenarios from many real historical ones, following which the reproduced
probabilities are arranged with respect to the chosen scenarios, in order to span the largest
range of original outcomes. In this way, both the accuracy and efficiency can be guaranteed
during the scenario analysis process.

The scenario reduction technique can be expressed through the concept of distance.
The distance between the scenes i(t) and j(t) defined at time point t can be represented
as follows:

ct

(
pi(t)

gω , pj(t)
gω

)
= ‖pi(t)

gω − pj(t)
gω ‖2, t = 1, L, T. (30)

The objective of the scene reduction is to minimize the distance between the original
scenarios and the subset of scenarios after the reduction process; that is, under the condition
that a certain number of scenarios needs to be deleted, the value of the following expression
should be minimized:

∑
i∈J

pi·min
j/∈J

cT

(
pi

gω, pj
gω

)
, (31)

where J is a set of scenarios which are eliminated in the scene reduction process, and the
probabilities of scenarios i and j occurring are pi and pj, respectively.

In order to minimize the value of the above equation, a simultaneous backward
reduction method is employed. The steps of the scenario reduction process are as follows:

(1) Let k = 0, and set the deleted scenarios J = J(0) as an empty set;
(2) Calculate the number of scenarios lk which need to be deleted at the kth iteration.

When l is taken as lk, the value of the following equation should be minimized.

∑
i/∈J(k−1)U

pi· min
j/∈J(k−1)U

cT

(
pi

gω, pj
gω

)
(32)

(3) Delete scenarios lk, set k = k + 1;
(4) Set J = J(k). The deleted scenarios i of J will be replaced by scenario j, which are closest

to i in the retained scenarios. As a result, the probability of the remaining scenario j
needs to be corrected, which should be expressed as the sum of its original probability
pj and the total probability of the deleted scenarios which are replaced by it; that is,
qi = pj + ∑pi.

The simultaneous backward reduction method is a typical scenario reduction analysis
method, as both the computational efficiency and the changing characteristics of the
research objects can be considered effectively. Through this technique, the generated
scenarios of wind power generation and load are reduced. The scenario generation and
scenario reduction processes are shown in Figure 2.
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4. Case Study
4.1. Garver’s Six-Bus System

The proposed model was applied to Garver’s network, which consists of six buses,
five loads, and three generators. There are total of 15 positions to develop the transmission
network (shown in Figure 3). Originally, the demands of five loads were 20 MW, 60 MW,
10 MW, 40 MW, and 60 MW. The maximum generation capacities of the three generators
at bus 1, bus 3, and bus 6 were 150 MW, 360 MW, and 600 MW, respectively. The total
maximum generation capacity was 1110 MW, but bus 6 was isolated from other buses.
Next, it was assumed that all demands increased by four times; in this way, the generators
at bus 1 and bus 3 cannot satisfy the demand anymore, and new transmission lines need to
be built to satisfy the larger power flow demand.
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The basic parameters of the proposed network are given in the following tables. Table 2
shows the power demand at each bus and power generation capacity of each generator.

Table 2. Garver’s six-bus system data.

Bus
Demand Generation

P (MW) Q (MVAr) PMAX (MW) PMIN (MW) QMAX (MVAr) QMIN (MVAr)

1 80 16 160 0 48 −10
2 240 48 \ \ \ \
3 40 8 370 0 101 −10
4 160 32 \ \ \ \
5 240 48 \ \ \ \
6 0 0 610 0 183 −10

4.2. Result of the Scenario Analysis

Wind speed is an important parameter, serving as the input of the wind turbine. The
distribution of the typical wind speed per hour for one day collected from [47] is shown
in Figure 4, which was taken as the input of the Weibull distribution function for the
scenario generation.
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Figure 4. Daily wind speed curve.

The real load data of three hundred households has been given in [48], and four typical
(postcode:2010) days in different seasons were selected to represent the daily load change.
The corresponding curves are depicted in Figure 5, which show that the load demand
presented seasonal variation characteristics; namely, the power demand in summer and
winter was larger, compared with that in other seasons. In order to obtain a more accurate
prediction result for the load data, the average seasonal power demand per day was used
to simulate the load distribution on Garver’s network. The obtained data were taken as the
input to a normal PDF for the scenario generation.
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Figure 5. Daily load consumption curves in the different seasons.

When considering the TEP problem, including the uncertainties of wind energy and
load fluctuations, in the first scenario generation process, the LHS technique was used
to generate 4000 original wind power generation and load scenarios. Then, the scenario
reduction technology (i.e., simultaneous backward reduction) was employed to reduce the
number of scenarios from 4000 to 100, 100 to 10, and 10 to 3. The scenario reduction process
is clearly depicted in Figure 6.

During the scenario reduction process, the scenarios with a lower probability were
merged into the scenarios with a higher probability. As a result, the remaining three
scenarios represent the original scenarios with the highest probability. The effectiveness
and accuracy of considering the uncertainties can be guaranteed.
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4.3. Optimization Results

Traditionally, to guarantee safe power system operations, the optimal solution of
TEP problems is proposed under the peak load situation, which can be considered as the
worst-case scenario. When taking the integration of RESs into account, the peak load cannot
be treated as the worst situation anymore, as the power generation by RESs fluctuates
over time. This means that, when the power demand achieves a peak value, there could
be a relatively large renewable energy generation, and the scenario under a high off-peak
demand value and a low RES generation should be considered as a worse case. In this
way, the idea of ‘net peak’ is proposed in the demand analysis, which denotes the highest
value of the difference between the power demand and renewable energy generation. As a
result, with the additional consideration of net peak values, the security and reliability of
the power system can be guaranteed, which is of great significance in TEP.

Following the scenario reduction technique, three scenarios of wind power generation
distribution and three scenarios of load distribution were reserved; that is, the worst-case
analysis was based on a total of nine (3× 3) scenarios.

In Table 3, the parameters obtained for the nine scenarios are given, which are sorted
in terms of probability, from high to low; it should be noted that the sum of all scenario
probabilities is equal to one (or 100%). The nine scenarios are also shown in Figure 7,
including three curves in each figure, which stand for wind power generation, load power
consumption, and net load, respectively. It is shown, through the marked points, that
the peak load point does not always stand for the worst-case scenario, as the largest net
load value is under the net peak case. In this way, the new idea of a worst-case analysis
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considering both peak load value and net peak value proposed in this section can better
ensure the security and reliability of the power system.

Table 3. Net load based on nine reduced scenarios.

Possibility of Scenario
(%)

Demand
(MW)

Wind Power Generation
(MW)

Net Peak Value
(MW)

1 22.46 1270.419 304.175 966.244
2 16.18 1207.873 230.626 977.247
3 13.89 1270.419 287.195 983.224
4 10.61 1270.419 296.187 974.232
5 10.00 1237.604 304.175 933.429
6 9.26 1237.604 287.195 950.409
7 6.67 1116.723 190.735 925.988
8 6.56 1201.549 236.620 964.929
9 4.37 1156.879 240.343 916.536
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We can see that, based on the nine scenarios, scenario 3 should be considered as the
worst-case scenario, which had the largest net peak value (of 983.224 MW). To ensure the
safety of the power system, the data of the worst-case scenario was taken as the input to
the proposed AC model, in order to obtain an optimal result. It is shown that the minimum
investment cost of new transmission lines is USD 250 million, and the final planning
scheme is n12 = 1, n14 = 1, n15 = 1, n23 = 1, n24 = 1, n26 = 4, n35 = 3, n46 = 3. The new
transmission lines that need to be added are detailed in Table 4 and Figure 8.

Table 4. Optimal results based on nine reduced scenarios.

f(v) Number of New
Transmission Lines

Cost of Each Transmission
(USD M)

USD 250 M
n26 = 4 30
n35 = 2 20
n46 = 3 30
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Compared to the risk-averse TEP model and deterministic security-constrained TEP
model proposed in [49], the cost obtained in this study was reduced by 16.7% and 30.3%,
respectively. Compared to the chance-constrained model proposed in [28], the cost was
reduced by 19.2%. The optimal results obtained here prove that the combination of robust
TEP and a scenario-based method not only can guarantee the security of power system
operations, but can also reduce the required investment, to some extent.

To further study the impact of the reserved number of typical scenarios on the optimal
results, the number of reserved scenarios was adjusted, and the optimal solutions, based
on 4× 4, 6× 6, 8× 8, and 10× 10 scenarios, are provided in Table 5. For example, the
expression for the 4 × 4 scenarios means that, during the scenario reduction process,
the original 4000 scenarios were reduced to four typical scenarios each for wind power
generation and load.

Table 5. Optimal results under the different number of scenarios.

Net Peak (MW) Scheme Cost (USD M)

3 × 3 983.244 n12 = 1, n14 = 1, n15 = 1, n23 = 1,
n24 = 1, n26 = 4, n35 = 3, n46 = 3 250

4 × 4 1012.456 n12 = 1, n14 = 1, n15 = 1, n23 = 1,
n24 = 1, n26 = 5, n35 = 4, n46 = 2 270

6 × 6 1046.371 n12 = 1, n14 = 1, n15 = 1, n23 = 1,
n24 = 1, n26 = 5, n35 = 4, n46 = 3 300

8 × 8 1031.641 n12 = 1, n14 = 1, n15 = 1, n23 = 1,
n24 = 1, n26 = 4, n35 = 4, n46 = 4 300

10 × 10 1079.168 n12 = 1, n14 = 1, n15 = 1, n23 = 1,
n24 = 1, n26 = 5, n35 = 5, n46 = 4 350

According to the optimal solutions shown in the table, we can see that, with an
increasing number of reduced scenarios, the net peak values generally show an upward
trend and the investment costs of the optimal solutions also increase. This can be explained
as, under a larger number of reduced scenarios, more extreme situations are taken into
consideration and more power needs to be transferred between different buses to satisfy
the fluctuating power demand. In this way, when a relatively larger number of scenarios
are reduced, the higher accuracy and robustness of the power system can be achieved,
while also leading to a heavy computational burden and high investment cost. In contrast,
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with a relatively smaller number of reduced scenarios, the computational efficiency can
be improved and the investment cost can be reduced, but more operational risks must
be taken.

5. Conclusions

In this paper, we proposed a comprehensive AC TEP model considering wind power
and load uncertainties. Differing from the traditional random sampling technique, the
LHS method was employed to complete the scenario generation process, where the ad-
vantages of this method include a high sampling efficiency and accuracy. Furthermore,
a simultaneous backward reduction algorithm was applied for the scenario reduction, in
order to reduce the computational complexity. A novel method was proposed to present
the worst-case power demand scenario, which can better guarantee the security of a power
system, compared with the traditional method. A case study conducted on Garver’s six-bus
system demonstrated the effectiveness and robustness of the proposed method. The main
conclusions in this paper are listed as follows:

• The combination of the scenario generation and reduction methods can well-describe
the changing characteristics of wind power generation and load fluctuations. A high-
quality scenario analysis process can be presented, while taking the uncertainties
into consideration.

• All possible extreme scenarios can be fully represented by the applied worst-case
scenario method. The optimal solutions can demonstrate the impacts of uncertain-
ties on the planning scheme, and planners should balance the investment cost and
overloading risk carefully before making their final decisions.

• Compared to the proposed risk-averse and security-constrained TEP model, the plan-
ning cost was reduced by 16.7% and 30.3%, respectively, indicating the economic
advantages of the proposed method.

In conclusion, the above optimal results indicate that the final optimal solution of TEP
with the integration of RESs may be greatly affected by uncertain factors. TEP problems
considering various uncertainties play a significant role in guaranteeing the safety of power
system operations.
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