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Abstract: Solar energy is the most promising green energy resource, as there is an enormous supply
of solar power. It is considered a good potential solution for energy crises in both domestic and
industrial sectors. Nowadays, many types of solar systems are used for harvesting solar energy.
Most of the research is focused on direct absorption solar collectors (DASCs) due to their ability
to capture more solar energy. The effectiveness of DASCs is dependent on various factors, such
as working fluid properties, geometry, and operating parameters. This review summarizes the
impact of different design and operating parameters on the performance of DASCs. Many effective
parameters are considered and their impact on optical and thermal properties is summarized. The
influence of working fluid parameters, such as base fluid type, nanoparticle type, nanoparticle size,
nanoparticle shape, and nanoparticle concentration on heat transfer performance, was discussed
and their optimum range was suggested. The effects of collector dimensions and many novel
design configurations were discussed. The effect of the most important operating parameters,
such as temperature, flow rate, flow regime, and irradiance on collector performance, was briefly
summarized.

Keywords: solar energy; direct absorption solar collector; working fluid

1. Introduction

Today’s world is striving for green energy resources to support sustainable living on
planet Earth. Renewable energy resources are considered to be a solution to the problem,
and solar energy is a potential candidate to cope with energy crisis as compared to others,
due to low maintenance cost and the enormous supply of solar power from the sun.
The effectiveness of a solar panel is dependent on various factors, such as its geometry,
photothermal to photovoltaic conversion, and its position relative to sun rays.

The efficacy of a photovoltaic system is very much dependent on the working fluid and
its thermal characteristics. Normally, water is used in this kind of system, but it is not an
efficient working fluid due to its inadequate thermophysical properties. There is a need for
such working fluids which are more efficient in terms of their thermophysical properties.
Researchers have tested nanofluids in solar applications and a significant increase in
photothermal efficiency has been witnessed [1]. In order to evaluate the performance of
nanofluids as a working fluid, multiple studies have been carried out, in which different
relationships have been proposed to estimate the thermophysical properties of nanofluids.
Despite the suitable properties of nanofluids, their dispersion stability is a key challenge for
utilizing these in solar collectors. The nanofluid stability is directly associated with thermal
and optical properties of the solar system [2–5].
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Solar radiation is converted into thermal energy in a solar system with the help of
a working fluid [6]. The performance of a solar collector depends on design parameters
and working fluids [7,8]. The geometry of a solar collector is modified to optimize the
optical absorption and heat transfer performance of a working fluid, and to minimize heat
losses [9–11]. Nowadays, many types of solar systems, such as Flat Plate Solar Collectors
(FPSC), Parabolic Trough Solar Collectors (PTSC), Evacuated Tube Solar Collectors (ETSC),
Photovoltaic Thermal Systems (PV/T), and Direct Absorption Solar Collectors (DASC) are
used for harvesting solar energy. Of all the solar systems, more researchers are working
on DASC due to its ability to capture more heat as compared to the others [12]. The
solar radiation in a DASC is absorbed by working fluid within a transparent enclosed
medium [13]. This solar collector gently absorbs the solar radiation to heat the working
fluid and not the surface, reducing thermal losses and increasing thermal yield [14].

The quantity of solar irradiance absorbed by working fluids relies on different factors,
such as working fluid properties, fluid category, and geometry of the receiver. Nanoparticles
act as a booster when added to a working fluid and improve the absorption attributes
of the working fluid [15]. Most of the solar radiations are absorbed by the scattered
nanoparticles in the working fluid; only a small amount is lost during transmission through
the glass of the panel [16]. DASCs incorporated with nanofluids are proposed to enhance
the performance of photovoltaic systems. In order to further enhance the efficacy of solar
systems, nanofluids-based DASCs are proposed by different researchers [17–19].

It is understood from the work of different researchers that design modification in solar
systems enhances their performance. Several investigations have been carried out to look
into the effect of nanoparticle size, shape, and concentration on the thermal efficiencies of
the solar system [20–23]. As compared to surface absorption collectors, a DASC with hybrid
nanofluid is a more efficient system due to the greater number of nanoparticles in bulk
fluid volume, which results in negligible loss of heat to the environment, hence increasing
the system performance. Moreover, the increased stability and optical characteristics, in
addition to the reduced erosion, improve the efficiency of hybrid nanofluids in DASCs.

In this review, the impact of many factors on the performance of DASC is discussed.
Many effective parameters are considered and their impact on optical and thermal proper-
ties is summarized. This review will help to develop the optimized DASC model based on
selected parameters.

2. Working Fluid Properties

Thermophysical properties and heat transfer capability of a base fluid are affected
by different factors, some of them being the type of nanoparticle, working fluid type,
nanoparticle size, and the shape and concentration of nanoparticles in the working fluid.
The most important factors are briefly described below.

2.1. Base Fluid Type

The efficacy of a thermal system is greatly influenced by the thermophysical prop-
erties of the working fluid [24]. Various types of base fluids are commonly used in solar
systems. Examples of these are water, thermal oils, paraffin oil, Ethylene Glycol (EG),
etc. The thermal efficacy of solar systems is dependent on the absorption properties of
base fluid [25]. It is found that when nanoparticles are mixed in the neutral base fluid,
the base fluid depicts optimum thermophysical properties in terms of viscosity, thermal
conductivity, and heat transfer in comparison to other base fluids [26]. Menni et al. [27]
performed a numerical study to compare the thermal and hydrodynamic properties of
different base fluids, including water, ethylene glycol, and ethylene glycol-water mixture,
by dispersing the Al2O3 nanoparticles. The results of the numerical study showed that
ethylene glycol shows superior thermophysical properties as compared to the other two
base fluids. The results showed that the Nusselt numbers of pure ethylene glycol and ethy-
lene glycol-based nanofluids are higher at all ranges of the Reynolds number as compared
to water and mixture-based nanofluids. However, the variation in the friction coefficient
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is negligible, and all base fluids and nanofluids exhibit approximate the same values of
friction coefficients.

Gholinia et al. [28] worked on water, engine oil, and ethylene glycol by dispersing
carbon nanoparticles. The results showed that the engine oil shows superior temperature
and flow characteristics as compared to water. Gao et al. [29] analyzed the ethylene glycol
and water base fluids using a graphene nanoplatelet (GNP). The highest values of thermal
conductivity were recorded for a blend of water and ethylene glycol in a ratio of 1:1.
Ethylene glycol exhibits a higher thermal conductivity when blended with water. Cao
et al. [30] investigated whether the presence of anion and cation radii in base working fluids
is effective to enhance the absorption characteristics of base fluids for DASCs. The literature
showed that ethylene glycol has superior thermal properties in DASCs as compared to
water, and engine oil also has superior thermal properties as compared to water. Moreover,
the blend of ethylene glycol and water can be used to enhance thermal properties.

2.2. Nanoparticles Type

Many metal-based nanoparticles, such as Al, Cu, Ag, Au, Al2O3, CuO, ZnO, MgO,
Fe3O4, TiO2, etc., and carbon-based nanoparticles such as carbon nanotubes (CNTs),
graphene, etc., have been used for making the working fluids by dispersing these nanoparti-
cles in base fluids [31–33]. Wang et al. [34] tested the DASC using a suspension of graphene
and MXene nanoparticles as a working fluid. Both graphene and MXene nanofluids were
compared in terms of thermal conductivity at different temperatures and concentrations of
graphene and MXene nanoparticles. The results obtained are presented in Figure 1. The
results presented showed that the graphene nanofluids exhibit values of thermal conductiv-
ity compared to MXene at all concentrations and temperatures. Vakili et al. [35] prepared
the nanofluid using graphene nanoplatelets and investigated the performance of the DASC
using this nanofluid. The performance of the DASC operated with graphene nanofluids
was found to be higher as compared to the DASC operated using water, under the same
operating conditions.
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Figure 1. Thermal conductivity of MXene and Graphene nanofluids. (a) Thermal conductivity vs.
nanoparticle concentration at 45 ◦C. (b) Thermal conductivity vs. temperature. Modified and printed
with permission from [34].

Zheng et al. [36] prepared the water-based mono multi-walled carbon nanotubes
(MWCNT) and hybrid MWCNT-TiN nanofluids, and used these nanofluids in DASCs
to improve the optical characteristics of working fluids as compared to conventional
working fluids. The highest solar absorption and photothermal conversion capabilities
were observed for MWCNT nanofluids at a 10 ppm concentration of MWCNT nanoparticles.
The solar absorption characteristics of nanofluids were further improved by the addition of
TiN nanoparticles in suspensions up to a mass fraction of 10 ppm. Joseph et al. [37] analyzed
the effect of C-dot/water nanofluids on the performance of the DASC. Approximately
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five times the solar collector efficiency of the DASC was recorded as compared to water,
due to the application of C-dot/water nanofluid. Kumar et al. [38] added porous carbon
nanoparticles to the base fluid and analyzed the performance of the DASC system. The
enhancement in solar absorption efficiency was observed using a porous activated carbon
nanofluid. Highly stable low-cost porous carbon nanofluid was found suitable for use
in DASC systems. Hazara et al. [39] found that the addition of carbon nanoparticles in
working fluid is beneficial for improving the solar absorption capability of DASCs.

The literature depicted that metal-based nanofluids show better thermal performance
due to their high conductivity [40–43]. Some studies showed that TiN nanofluids have
superior photothermal and optical characteristics, and can be used in DASCs as a working
fluid [44]. The literature exhibited that the dispersion of carbon-based nanoparticles in base
fluids is more effective for enhancing the thermal properties as compared to other types of
nanoparticles [45–48].

2.3. Particle Size

Many authors examined the influence of nanoparticle size on the performance of
DASCs. Said et al. [49] studied the effect of TiO2 nanoparticle size on optical characteristics
in DASCs. The results showed that smaller nanoparticle size (<20 nm) is beneficial for
improving the optical characteristics of nanofluids. The results of the study are presented
in Figure 2a, which shows that particle size has no significant influence on the extinction
coefficient. The 0% transmissivity was observed for a particle size of 20 nm within the
200–300 nm wavelength range, as shown in Figure 2b. However, a sudden surge was
detected in transmissivity when the wavelength reached 400 nm.
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Howe et al. [50] worked on the consequences of size, concentration, and shape of
the nanoparticle on optical properties of nanofluids. Smaller-sized nanoparticles exhibit
less transmittance and absorb light in better ways. Rod type nanoparticles exhibit higher
transmittance and absorb less light. The results are presented in Figure 3.
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Figure 3. Effect of nanoparticle size, shape, and concentration on transmittance. (a) Effect of size and
shape. (b) Effect of concentration. Modified and printed with permission from [50].

The particle scattering is normally neglected in the DASC by assuming a smaller
nanoparticle size than the radiation wavelength [22–25]. The practice of neglecting the
scattering effect is justifiable in near-infrared and visible regimes; however, the scattering
becomes reasonable when a localized surface plasmon effect is produced as a result of
metallic nanoparticle excitation [15]. The scattering effect of the nanoparticle cannot be
neglected for a higher particle size. Therefore, the light scattering from particle excitation
must be considered for thermal analysis. Won et al. [16] studied the influence of nanopar-
ticle size on optical chrematistics in DASCs. The silica-gold nanoparticles of different
thicknesses and radii were used for making nanofluids, and the effect of light scattering
was studied. The results are presented in Figure 4. The results showed that the scattering
efficiency was much less than the absorption efficiency for a 10 nm thickness and radius
of core–shell particle (Figure 4a). However, the scattering efficiency was much higher
than the absorption efficiency for a 10 nm shell thickness and 80 nm core radius of the
core–shell particle (Figure 4b). Moreover, the resonance of the surface plasmon varied with
the geometry and size of the nanoparticle.
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thickness of 10 nm. (b) Silica radius of 80 nm and gold thickness of 10 nm. Modified and printed
with permission from [16].

It is suggested that the size of nanoparticles in the base fluid must be smaller for the
purpose of achieving better thermophysical properties of working fluids in solar collec-
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tors [51]. Moreover, the light scattering effect can be avoided by reducing the particle size.
Therefore, the nanoparticle size must be smaller in order to achieve the optimum optical
and thermophysical properties [52]. At elevated temperatures and higher concentrations of
nanoparticles, this trend is converges more often [53–55]. A negligible increase in thermal
conductivity has been noticed for large-sized nanoparticles. Heat transfer augments with
the fluid layer around the nanoparticles in a nanofluid. By enhancing the size of nanoparti-
cles, fluid layer thickness also increases, which results in enhanced thermal conductivity of
working fluid.

2.4. Particle Shape

The variation in particle geometry led to the change in nanofluid properties, due to the
change in reaction behavior between the nanoparticle and base fluid [56]. The absorption
capability of a nanoparticle can be improved by altering the shape of the nanoparticle. Qin
et al. [57] developed the sharp-edged Ag nanoparticles (i.e., with a smaller angle of edges
and radius of curvature) to make these capable of inducing several absorption peaks at
various wavelengths. The multiple absorption peaks were achieved due to the lightning rod
and surface plasmon effect of Ag sharp-edged nanoparticles. Further, the absorption band
was expanded by developing the SiO2/Ag core–shell configuration. A 35% enhancement
in the solar absorption coefficient was recorded for four-edged Ag nanospheres, while 20%
enhancement was recorded for four-edged Ag nanorods as compared to single-edged Ag
nanoparticles. The results are presented in Figure 5.
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Figure 5. Influence of particle shape on absorption characteristics of working fluid in the DASC. (a)
Solar absorption efficiency of nanofluids with different sharp edges. (b) Absorption coefficient of
different nanofluids (made of Ag nanorod, Ag nanosphere, four-edged Ag nanoparticle, and four-
edged SiO2/Ag core–shell) at the same particle concentration and operating conditions. Modified
and printed with permission from [57].
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Compos et al. [23] studied the influence of particle shape on the photothermal ef-
ficiency of a DASC. The spherical and non-spherical nanoparticles of different metals,
including silver, gold, and copper, were used for the production of different nanofluids.
The comparison of DASC performance using spherical and cubic silver nanofluids is
presented in Figure 6. The results show that the nanofluid prepared from cubic silver
nanoparticles exhibited higher performance as compared to the nanofluid prepared from
the spherical nanoparticles. The results of temperature and photothermal efficiency are
presented in Figure 6a,b respectively.
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different temperatures for spherical and cubic silver nanofluid. Modified and printed with permission
from [23].

The literature shows that the nanofluids made of sharp-edged or cubic particles exhibit
higher absorption properties and thermal conductivity as compared to spherical or rod-
shaped nanoparticles [54,58]. The platelet-shaped or cylindrical particles induce higher
performance in terms of entropy and viscosity generation and thermal conductivity [59–63].
Moreover, the nanoparticles with anisotropic characteristics and multiple surfaces show
higher absorption and thermal properties.

2.5. Particle Concentraion

It has been found that within a certain limit of a particle concentration, the thermal
properties of nanofluids are increased; beyond the limit, thermal conductivity begins to
decrease due to the clustering effect. At higher volume fractions, the viscosity is increased
due to the increase in non-Newtonian behavior [64–70]. However, the pumping power is
increased due to an increase in viscosity [71,72]. It is concluded by many authors that the
volume fraction up to 1 wt.% is effective, and beyond this, the performance of nanofluid is
decreased. The particle–particle and particle–wall interactions are dependent on particle
concentration [73,74].

Bardsgard et al. [13] used the Eulerian model to optimize different parameters, such
as particle concentration and collector height for the DASC. The extinction coefficients
of different particle concentrations were presented. The maximum efficiency of a DASC
was achieved on 0.3 wt.% particle concentration and a decrease in efficiency was observed
for more than 0.5 wt.% concentration. The maximum efficiency (68%) of a collector was
achieved for the 300 µm thickness of the receiver. The effect of particle concentration on
extinction coefficients and collector efficiency is presented in Figure 7.
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3. Geometrical Parameters

The performance of a solar system depends on various parameters, such as the type of
solar system and geometrical parameters of the collector.

3.1. Collector Length

It is observed that collector efficiency changes with the change in length. Initially,
it starts improving by increasing the length; later, it starts decreasing. By increasing the
length of the collector, the surface area of the collector also increases, which helps solar
panels to capture more solar radiation. However, it was observed that after a certain limit,
the performance of the solar panel deteriorates, which results in heat loss. Due to the
increased surface area, working fluid is exposed to radiation for more time, which leads
to increased outlet temperature. Sharaf et al. [75] utilized energy and exergy analysis to
optimize the performance of the DASC. During experimentation it was found that exergy
efficiency is enhanced with an increase in collector length up to an extent, after which it
begins reducing. In order to gain the most useful power, an appropriate fluid velocity
according to the collector length must be selected.

3.2. Collector Depth

Collector depth also influences the efficiency of solar panels. With the increase of
collector depth, the efficiency of the solar panels is also enhanced, as working fluid can
absorb more solar radiation. Radiative transfer equations coupled with conduction and
convection heat transfer equations are utilized by Gorji and Ranjbar [76] for evaluating the
effect of collector geometry on the performance of the DASC with nanofluid. A significant
enhancement in collector efficiency was observed by increasing the depth of the collector.
Vital et al. [77] studied the effect of collector thickness on collector thermal efficiency of
a DASC. The results of the study are presented in Figure 8. The results showed that the
thermal efficiency of a DASC increases with an increase in the collector thickness. The
maximum performance was reached for H > 3. Bardsgard et al. [13] used the Eulerian
model to optimize the different parameters such as particle concentration, and collector
height for the DASC. The maximum efficiency (68%) of a collector was achieved for the
300 µm thickness of the receiver.
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Figure 8. Thermal efficiency of a DASC operating with different nanofluids. (a) Thermal efficiency
vs. nanoparticle concentration for collector thickness of 1 cm. (b) Thermal efficiency vs. collector
thickness. Modified and printed with permission from [77].

3.3. Collector Design

Struchalin et al. [78] showed that a tabular DASC working with nanofluids is more
efficient than a conventional DASC. They compared the thermal efficiency of a tabular
DASC with commercial and flat plate collectors. They demonstrated that the tabular DASC
exhibited a 20 to 25% higher efficiency as compared to vacuum tube type and flat plate
type collectors. The results of the study are shown in Figure 9. In another study [79], they
tested the tabular DASC system using magnetic Fe3O4 nanofluids and multi-walled carbon
nanotubes.
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Figure 9. Thermal efficiency of a DASC operating with different nanofluids. (a) Thermal efficiency vs.
nanoparticle concentration. (b) Comparison based on thermal efficiency. Modified and printed with
permission from [78].

Wang et al. [80] modified the typical DASC model with the addition of a separation
tank. In the modified experimental setup, the rotating magnetic field as an external forced
convective system was added to achieve non-uniform solar irradiation. This modification
results in an increase in photothermal efficiency by up to 12.8% due to the change in the
heating mechanism from conduction to convection. The main reason for this is that the
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heat transfer mechanism of working fluids is changed from heat conduction to thermal
convection, which decreases heat loss to the environment. Moreover, the method is effective
to reduce the flow losses and blockage in the pipeline. The modified DASC model is shown
in Figure 10.
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Figure 10. Experimental DASC setup. (a) DASC without magnetic separation tank. (b) DASC with
magnetic separation tank [80].

Hooshmand et al. [81] developed the porous-foam-filled DASC system. The 12 mm
air gap was created between the double-pane collector glazing, and polyurethane foam
was filled to reduce the heat losses. The enhancement in thermal efficiency was observed
by utilizing both porous foam and SiC nanoparticles in the working fluid. Zhang et al. [82]
developed a novel DASC by utilizing the TiN/GO hybrid nanofluid and heat storage
core made of molten salt (44% KNO3, 12% NaNO3, and 44% Ca(NO3)2,). The maximum
experimental collector efficiency was 526.96 J. Based on the concept of the cavity, Peng
et al. [83] developed the novel DASC model, in which a cavity-type receiver tube was
equipped with parabolic reflectors. The modified novel DASC is shown in Figure 11. In this
DASC, two parabolic concave mirrors were installed to focus the solar rays and transfer
them to the receiver. The schematic of the novel DASC and cross-section of the tube is
shown in Figure 11a. The effect of different reflection shapes on efficiency was noticed.
Figure 11b shows the comparison of the efficiency of a novel collector with a conventional
DASC and a surface-based solar collector (SBSC).

Qin et al. [84] designed a direct-absorption parabolic-trough solar collector (DAPTSC)
to achieve the effect of both surface and volumetric absorption. The two nanofluids were
used separately in two sections of a DAPTSC. Low concentrated nanofluid was used in
the outer segment, while the high concentrated nanofluid was used in the inner section.
The semi-cylindrical coating was used for making the DAPTSC capable of both surface and
direct absorption. A significant enhancement in thermal efficiency was observed using a
hybrid DAPTSC. Kumar et al. [85] suggested three different designs of DASC based on the
shape of the absorber plates, such as trapezoidal-corrugated DASC, triangular-corrugated
DASC, and circular-corrugated DASC. The heat transfer area was varied by changing the
shape of the absorber plate. All of the configurations are shown in Figure 12. Maximum
thermal efficiency was obtained for circulated–corrugated DASC.

Karami et al. [86] developed the DASC system combined with a humidification-
dehumidification desalination unit. The proposed system reduces significant heat losses.
Many other design parameters, such as receiver thickness, tube shape, etc., have been also
considered by a few authors. The literature indicates that design modification is the most
important parameter for nanofluid-based DASCs.
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Figure 11. (a) Schematic of a newly designed DASC and the cross-section of receiver tube. (b) Com-
parison of developed DASC and SBSC models with conventional models. Modified and printed with
permission from [83].
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4. Operating Parameters
4.1. Temperature

At elevated temperatures, thermal conductivity rises because of energized nanoparti-
cles. Frictional resistance between adjoining layers and enhanced Brownian motion is the
cause of this enhanced thermal conductivity, whereas working fluid viscosity decreases
with a temperature rise.

4.2. Flow Rate

The flow rate strongly affects the performance of the DASC. The results of many
studies showed that the collector efficiency increases with the increasing flow rate of
working fluids [87], whereas the exergy efficiency decreases [88]. The outlet temperature
decreases with increasing flow rate due to the decrease in solar radiation absorption. Thakur
et al. [89] studied the effect of flow rate on pumping power, entropy growth rate, and exergy
efficiency using a DASC. The results of the study are presented in Figure 13. Vakili et al. [35]
studied the influence of flow rate on DASC collector performance. It was found that a
0.00075 kg/s flow rate gave the worst collector performance, and the performance of the
collector was improved at a flow rate of 0.015 kg/s.
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Figure 13. Effect of flow rate on the performance of DASC operating with different nanofluids.
(a) Pumping power vs. flow rate (b) Entropy growth rate vs. flow rate. (c) Exergy efficiency vs. flow
rate. (d) Performance evaluation criteria vs. Reynold number. Modified and printed with permission
from [89].

4.3. Flow Regime

The heat transfer performance of a DASC increases with the change in flow regime
from laminar to turbulent. The convective coefficient of the DASC is increased by increasing
the Reynolds number and increasing the Nusselt number [90]. The collector efficiency is
enhanced up to a certain limit of Reynolds number, and then decreases at a higher Reynolds
number due to the higher heat loss. Moreover, the entropy generation and pressure drop at
higher Reynolds numbers become higher due to more friction as the result of inertial forces.
Some studies [91] showed that the heat transfer properties change in different light regions.

4.4. Penetration Depth

The coolant in the DASC must have low transmissivity and high absorptivity over
a different range of wavelengths. Hazara et al. [92] studied the optical characteristics
of nanofluids in DASCs, and studied the effect of nanoparticle size and concentration
on a wide range of wavelengths. The results of the study are presented in Figure 14.
The increase in scattering and reduction in transmittance was observed by the increasing
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nanoparticle concentration and size. The reduction of transmittance is due to the increased
light scattering by the nanoparticles present in the fluid. This leads to decreased absorption
capability.
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Figure 14. Optical characteristics of boron nitride (BN)/carbon black ethylene glycol nanofluids.
(a) Scattering intensity at various particle sizes. (b) Absorption spectra at various wavelengths;
transmittance spectra at various wavelengths. (c) Transmittance spectra at various wavelengths.
(d) Extinction coefficients at various wavelengths. (e) Absorbed energy fraction at various penetration
depths (fluid height from the top level to inside the collector). (f) Temperature difference vs. exposure
time at various fluid heights. Modified and printed with permission from [92].
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An increase in the size of nanoparticles and their concentration results in an increased
scattering, which in turn decreases the optical absorption capability. The performance of a
DASC is excessively influenced by the effect of absorption and scattering. This scattering
and optical absorption behavior influence the extinction coefficient of a working fluid.

4.5. Irradiation Position

Wang et al. [93] studied the effect of solar irradiation position by developing the
two test configurations of DASC systems, such as bottom irradiation DASC and side
irradiation DASC. The results show that the bottom irradiation DASC collector exhibited
better performance as compared to the side irradiation DASC system. The results of the
study for both configurations are presented in Figure 15.
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Figure 15. Effect of irradiation position on DASC configuration. (a) Temperature difference at
different depths. (b) Photothermal conversion effectiveness for bottom irradiation (BI) and side
irradiation (SI) DASC systems. Modified and printed with permission from [93].

Shen et al. [94] developed a model for investigating the effect of effective radius, length-
radius ratio, and incident light angle of nanoparticles on the performance of DASC. The
optimum value of each parameter was investigated. The simulation results showed that the
nanoparticle’s effective radius has a significant influence on the transmittance. It is evident
from the results that the effective radius also has a significant effect on the directional-
hemispherical transmittance. The figure shows the hemispherical transmittances of rod-
shaped Au nanofluids with different length-radius (L/R) ratios, such as 6, 7, and 8. For each
L/R ratio, the two peaks of transmittance are shown. The transmittances of Au nanofluids
at different angles of incidence are shown in Figure 16. When electromagnetic waves
propagate radially concerning the Au nanorods, the transmissivity decreases. Transmittance
reduces in the same spectral region in which the electromagnetic wave is incident radially
to the particles. Figure 16d shows the solar absorption spectrum of Au nanofluids, with
different incident angles.
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Figure 16. Effect of different radius sizes, length/radius, and angle of incidence on transmittance and
solar absorption. (a) Effect of radius size on transmittance. (b) Effect of different length/radius on
transmittance. (c) Effect of incidence angle on transmittance. (d) Effect of incidence angle on solar
absorption. Modified and printed with permission from [94].

Zhu et al. [95] studied the radiative effects, including absorption, emission, and scatter-
ing, on DASCs. The results showed that DASCs have both benefits and disadvantages over
SBSCs. Sharaf at al. [96] investigated the influence of the type of radiation spectrum under
different operating conditions for several working fluids in DASCs. Many other operating
parameters, such as inlet flow velocity, radiative heat flux, and aspect ratio, are considered.
The results of many other studies are reported in Table 1. Most of the effective parameters
and their values are reported. The reported results show that the performance of a DASC
can be enhanced by optimizing the working fluid parameters, collector dimensions, flow
rate, and solar irradiance.

Table 1. Summary of Results.

Ref. Solar
System Working Fluid Properties Operating

Parameters
Collector Design

Parameters Results

[97] DASC

Base fluid—Water
Nanoparticle Type—CuO/ZnO

Particle size—30/50 nm
Particle concentration—0.01

vol% (70:30)

Irradiance—1000
W/m2

Panel
Type—Quartz

cuvette
Size—2.5 × 12.5 ×

45 mm

Thermal
conductivity—+10%

Transmittance—−100%
Rise in temperature—15%

Extinction
coefficient—+100%

Photo Thermal
efficiency—97.35%

[98] DASC

Base fluid—DI water
Nanoparticle

Type—Al2O3/Co3O4
Sample Thickness—10–30 mm

Mass fraction—40 mg/L

Incident flux—8.5
W/cm2

Diameter—20 mm
Height—30 mm

Solar Absorptivity—+80%
Penetration depth—20

mm
Temperature rise—+5.4%
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Table 1. Cont.

Ref. Solar
System Working Fluid Properties Operating

Parameters
Collector Design

Parameters Results

[99] DASC

Base fluid—DI water
Nanoparticle Type—Ag/rGO
Ag particle size—25 to 45 nm

Particle concentration—40 ppm

Irradiance—1326
W/m2

Inner
diameter—30 mm

Collector
Height—20 mm

Enhancement in collector
efficiency—2.7

Times Collector
efficiency—+77%

Transmittance—−21%
Extinction

coefficient—+20%

[16] DASC

Base fluid—water
Nanoparticle type—SiO2/Au

Particle size—10 nm core radius
& 10 nm shell thickness

Particle concentration—0.01
vol%

Mass flow
rate—0.004 kg/ms

Collector length—1
m

Collector
height—1.5 cm

Height
variation—1–2 cm

Collector Efficiency—25%

[100] DASC

Base fluid—water
Nanoparticle

type—CuO/MWCNT
Particle size Ag—25–45 nm

Particle concentration—0.0015
wt.%

—

Inner
diameter—30 mm

Outer
diameter—45 mm
Length—200 mm

Rise in
temperature—+13.3%

Transmittance—−530%
Solar weighted absorption

fraction—+233%
Extinction

coefficient—+500%

[101] DASC

Base fluid—water
Nanoparticle

type—Fe3O4/SiO2
Particle size—400–500 nm
Mass fraction—1 mg/mL

Irradiance—1000
W/m2

Tube
diameter—3.6 cm

Collector
height—5 cm

Temperature rise—+108%
Enhancement in

photothermal conversion
efficiency—32.9%
Efficiency—98.5%

[102] DASC

Base fluid—DI Water
Nanoparticle type—Au/Cu

Particle size—2 to 3 nm
Particle

concentration—150/2000 mg/L

Irradiance—1000
W/m2 — Temperature

Rise—+60–100%

[14] DASC

Base fluid—DI Water
Nanoparticle type—Au/Ag

Particle size—29 ± 7 nm
Volume fraction—0.00025%

— — Photothermal conversion
efficiency—+41.37%

[103] DASC

Base fluid—DI Water
Nanoparticle

type—Fe3SO4/SiO2
Particle size—30/15 nm

Volume fraction—500 ppm,
1000 ppm & 2000 ppm

Volume ratio—25:75, 50:50 &
75:25

— Collector size—60
× 60 × 1 cm

Exergy efficiency—+63.7%
Collector

efficiency—+16.6%
Extinction

coefficient—+800%

[104] DASC

Base fluid—Silicone oil
Nanoparticle type—ZnO/Au

Particle size—80/13.3 nm
Particle concentration—0.1, 0.5

& 1.0 mg/mL

Irradiance—10 k
W/m2 — Photothermal

Efficiency—+240%

[87] DASC

Base fluid—DI water
Nanoparticle type—Al2O3

Particle size—5 nm
Mass fraction—20 to 100 mg/L

Irradiance—1000
W/m2

Mass flow
rate—0.010 kg/s

Collector
length—1 m

Collector
width—1 m

Height of
collector—6 to

12 m

Collector
efficiency—38–85%

Outlet temperature—28 to
80 ◦C
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Table 1. Cont.

Ref. Solar
System Working Fluid Properties Operating

Parameters
Collector Design

Parameters Results

[105] DASC
Base fluid—water

Nanoparticle Type—Al, Au, Cu
& Graphite

Irradiance—1000
W/m2

Length—5 cm
Width—3 cm

Height—150 µm
—

[106] DASC

Base fluid—DI water
Nanoparticle Type—PVP

(polyvinylpyrrolidone) coated
silver

Density 10.5 g/cm3

Volume fraction—250 ppm, 500
ppm & 1000 ppm

Tilt angle—20◦,
35◦, 50◦

Flow rate—0.0075
kg/s, 0.015 kg/s &

0.0225 kg/s

60 × 60 × 1 cm —

[18] DASC
Base fluid—water

Nanoparticle Type—Graphite
Particle size–30 nm

1000 W/m2

Collector
size—3 × 5 cm2

Collector
depth—150 µm

Efficiency—84%
Exergy efficiencies—94.3%

5. Conclusions and Future Challenges

Solar energy is a plausible solution to the world’s energy crisis issue due to its low
installation and maintenance cost, huge potential, and feasibility of installation. Due to
its performance, the DASC has outperformed the other collectors. The effectiveness of
the DASC is dependent on various aspects. This review summarizes the effect of design
and working parameters on the performance of DASCs. The following points have been
concluded from this review.

Ethylene glycol has superior thermal properties in DASCs as compared to water, and
engine oil also has superior thermal properties in comparison to water. Additionally, the
mixture of ethylene glycol and water can be used to enhance thermal properties.

The performance of the DASC operated with carbon-based nanofluids was found to
be higher as compared to the DASC operated with any other working fluid, under the same
operating conditions. The addition of carbon nanoparticles in working fluid is useful for
enhancing the solar absorption capability and thermal performance of DASCs.

A smaller nanoparticle size is beneficial in DASCs for improving the optical character-
istics of nanofluids. Smaller-sized nanoparticles exhibit less transmittance and absorb light
in a better way.

The nanofluids made of sharp-edged or cubic particles exhibit higher absorption prop-
erties and thermal conductivity as compared to spherical or rod-shaped nanoparticles. The
platelet-shaped or cylindrical particles induce higher performance in terms of entropy, vis-
cosity generation, and thermal conductivity. Moreover, the nanoparticles with anisotropic
characteristics and multiple surfaces show higher absorption and thermal properties.

The maximum efficiency of a DASC can be achieved up to a certain limit of particle
concentration; beyond this, the efficiency is decreased. At higher volume fractions, the
viscosity is increased due to the increase in non-Newtonian behavior, which results in
increasing the pumping power.

An increase in the length of the solar panel results in an increased surface area, which
helps solar panels to capture more solar radiation. However, it was observed that after a
certain limit, the performance of the solar panel deteriorates, which results in additional
heat loss. The exergy effectiveness enhances with an increase in collector length up to
an extent, after which it begins reducing. In order to gain the most useful power, an
appropriate fluid velocity according to the collector length must be selected.

The thermal efficiency of a DASC is highly dependent on the collector thickness. The
maximum performance can be achieved by investigating the optimum thickness of the
receiver.
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Many novel DASC designs, such as the tabular DASC, the DASC with a rotating
magnetic field as an external forced convective system, the porous-foam filled DASC, the
direct-absorption parabolic-trough solar collector (DAPTSC), and circulated–corrugated
DASC can be used to enhance the performance of DASCs as compared to conventional
DASCs. At elevated temperatures, thermal conductivity rises because of energized nanopar-
ticles. Frictional resistance between adjoining layers and enhanced Brownian motion is the
cause of this enhanced thermal conductivity, whereas working fluid viscosity decreases
with a rise in temperature. The collector efficiency increases with the increasing flow rate
of the working fluid, whereas the exergy efficiency decreases. The outlet temperature
decreases with increasing flow rate due to the decrease in solar radiation absorption.

The heat transfer performance of a DASC increases with the change in a flow regime
from laminar to turbulent. The convective coefficient of the DASC increases by increasing
the Reynolds number and increasing the Nusselt number. The collector efficiency is
enhanced up to a certain limit of the Reynolds number, and then decreases at a higher
Reynolds number due to the higher heat loss. Moreover, the entropy generation and
pressure drop at higher Reynolds numbers become higher due to more friction as the result
of inertial forces.

The effect of the solar irradiation position is also important. The bottom irradiation
DASC collector exhibits better performance as compared to the side irradiation DASC
system. The DASC has both benefits and disadvantages over surface absorption collectors.

Most of the effective parameters reported in the different sections are dependent
on each other. Most of these authors studied the influence of only a few parameters on
the performance of DASC by considering the constant values of other parameters. So,
the constraints of each reported study limited this study. As the concluding remarks are
reported based on the reported literature, the parameter values cannot be used directly
to optimize the performance of DASCs. Hence, there is a need to consider all effective
parameters and their influence on DASC efficiency under the same operating conditions.
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