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Abstract: For power retailers in a smart grid, it is necessary to design an economic dispatch method
to maintain a balance between power supply and demand on the sale side as well as obtain better
economic benefits. This study concentrates on the economic dispatch of the dominant retailer in
a regional market. The dominant retailer is considered to be equipped with generator resources
such as distributed photovoltaics (PV), wind turbines (WT), and microturbines (MT). As one retailer
cannot exactly predict the market conditions of other retailers, the retail market is considered to be
modeled as a dichotomous-market model consisting of the dominant retailer market and the other
retailers market. As a result, a bi-level optimal dispatch model is proposed for the dominant power
retailer based on the dichotomous-market model. In the proposed model, the outer problem aims to
minimize the costs of purchases under time-of-use (TOU) price given in the market clearing process,
while the inner problem is formulated to simulate the process of market clearing. Furthermore, the
bi-level model is converted to a single-level model via the Karush–Kuhn–Tucker (KKT) conditions
and eventually solved by employing the YALMIP toolbox with Gurobi solver. Finally, a case study is
conducted to validate the effectiveness and adaptability of the proposed model, and the analysis of
the variables is presented.

Keywords: power retailer; economic dispatch; bi-level programming; chance constraint

1. Introduction

The economic dispatch problem of the smart grid has been of considerable interest
in the power system academia in recent years [1]. The study of economic dispatch in
power systems involves microgrids [2], virtual plants [3], renewable energy [4], battery
storage systems (BSS) [5], power retailers [6], demand response (DR) [7,8], etc. Moreover,
with the further development of the power industry, modern power systems have been
transformed to be far more complex, characterized with high renewable energy pene-
trations, distributed facilities, and advanced metering and communication technologies,
as well as ever-increasing customer risk awareness. These new trends bring participants
tremendous challenges, especially for power retailers [9] that lie between the supply side
and the demand side.

As proposed by the French economist François Perroux in [10], all markets, including
the electricity market, can be structurally divided into perfect competition and incomplete
competition markets. The difference between these two categories of markets is whether
the prices can be influenced by suppliers and/or customers [11,12]. In electricity markets,
the presence and absence of different elements such as DR and renewable energy can
lead to fluctuations in electricity prices [13], and these phenomena are more evident in
regional markets. For instance, in the retail markets in China, a number of power retailers
established by the state grid will play a dominant role in the regional markets in the next
few years. In [14–16], it is presented that significant difference appears in the market
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operations of retailers with different qualifications in countries and regions such as the UK,
Singapore, Northern Europe, and the US. As a result, it is valuable to study the economic
dispatch of dominant retailers in regional markets. In order to maintain the dominant role,
power retailers are willing to own generation resources. Such generation resources can
be derived from retailers’ self-owned generating units, sale-side aggregated distributed
power, and aggregators’ purchasable resources. Additionally, these generation resources
enable dominant retailers to have economic dispatch capabilities in a region.

The trading behavior of retailers can be summarized as two types of contracts, one
with the supply side and the other with the demand side, which is commonly described
as a bi-level Stackelberg-based model [17]. These bi-level models can be divided into
two main categories depending on the different participants in the game. One is the
game between retailers and customers [18], and the other is between retailers and the
energy market [1,19,20]. In [18], a bi-level model is proposed to determine the optimal
interplay between the retailer’s tariff design and the prosumer’s decisions regarding using
the storage, consumption, and electricity purchases from as well as electricity sales to the
grid. In [1], a pricing strategy in the smart grid is analyzed by modeling the economic
dispatch problem as a bi-level game in the electricity market, including the wholesale
market and the retail market. However, the impacts of the uncertainty and the renewable
energy consumption are not involved in [1,18]. In [19], a two-stage stochastic programming
scheme is modeled to cope with the uncertainty, and both the participation of retailers in the
day-ahead market and impacts of DR are taken into account. In [17], a bi-level Stackelberg-
based model between an electricity retailer and consumers is presented, in which the upper
level consists of a price-maker retailer (PMR) modeled as the leader who seeks to maximize
its own profit by adopting optimal pricing strategies.The lower level of the model consists
of four followers, three of them represent customer groups with distinct reactions to DR
programs, and their objective function is defined as minimizing the cost of purchased
electricity while preserving the welfare level. The fourth follower is the electricity pool,
which is responsible for the implementation of market mechanisms and determination of
market clearing price (MCP), with the aim of increasing the consumers’ welfare. However,
these kind of models are based on the assumption that information is completely knowable,
which is challenging to realize in practice.

Given that one retailer cannot exactly anticipate the market conditions and decision
making of other retailers in a regional market, a dichotomous-market model is proposed in
this study, which contains the dominant power retailer market and other retailers market.
In this dichotomous-market model, the dominant retailer reduces operating costs while
satisfying customers’ demands with dispatchable resources such as microturbines (MT),
distributed photovoltaics (PV), wind turbines (WT), etc. These dispatchable resources can
be considered either self-built by the dominant retailer or aggregated from the demand side.
In this process, the uncertainty brought by renewable energy consumption is represented
by random variables and confidence levels, which reflect the retailer’s tolerance to cope
with risk. In contrast, other retailers are modeled as passive recipients of prices, as for
one retailer, it is unable to predict their decision-making and market conditions accurately.
Considering the problem of distributed renewable energy consumption, uncertainties
faced by the dominant retailer in a given region, and the impacts of retailers’ day-ahead
economic dispatch on the market clearing process, a bi-level model between retailers,
market, and customers is proposed.

The main contributions of this paper are as follows:

1. In the proposed dichotomous-market model, a regional retail market containing the
dominant retailer and other retailers is constructed through market share.

2. A bi-level model based on the dichotomous-market model is proposed for scenarios
where the decision making of other retailers in the market is unavailable, and its
advantages are explored in Section 3.
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3. Apart from the effect of economic dispatch on the clearing price, the effect of different
confidence levels and renewable energy consumption rate (indicate risk tolerance for
retailers) has been taken into consideration, which are discussed in the numerical case.

The rest of this paper is organized as follows. A bi-level optimal scheduling model for
the dominant power retailer is proposed in Section 2, as well as the models of uncertain
variables, such as load and PV output, along with chance-constrained programming, are
carried out. Afterwards, the proposed dispatch model is numerically verified in Section 3.
Finally, the conclusions are drawn in Section 4.

2. Main Results
2.1. Problem Formulation

In this section, the concrete content of the dichotomous market is presented in Figure 1.
Additionally, the construction of the bi-level model is introduced. To begin with, the di-
chotomous market proposed in this study consists of two parts: (1) the dominant retailer
market and (2) the other retailers market. According to the current retail markets in China,
a number of power retailers established by the state grid have been playing a dominant
role in the regional markets. The operations of dominant retailers differ significantly from
that of ordinary retailers in that the actions of the dominant retailer have an impact on
MCP, while the common retailers are price recipients. The economic dispatch model in this
paper is proposed for the dominant retailers with dispatching capabilities, as illustrated in
the concept of incomplete competition market, where the decisions of such retailers have
an impact on prices. However, the other retailers in the given region are aggregated into
the other part in the model, referred to as “the other retailers’ market”, considered to be
passive recipients of prices. Distinguished with many existing studies, the behavior of other
retailers is modeled to be the passive reception of prices, which is from the perspective of
one retailer rather than the whole market. It is consistent with reality because the behavior
of the various participants in the market is difficult to accurately predict.

Based on the dichotomous market, the behavior of retailers can be described in a
bi-level model. On the demand side, the dominant retailer is required to satisfy customers’
electricity demand within its service and undertake the task of renewable energy con-
sumption. To obtain better purchasing costs, the dominant retailer can dispatch self-built
resources (such as microturbines (MT), distributed photovoltaics (PV), wind turbines (WT),
etc.) in addition to purchasing power and reserve on energy and auxiliary markets. These
dispatchable resources can be considered either self-built by the dominant retailer or ag-
gregated from the demand side. As a result, the outer problem of the bi-level model is
constructed to obtain an optimal purchase cost with market clearing price (MCP) for the
dominant retailer. The inner problem is to model the joint market clearing process of the
energy and auxiliary markets. The electricity and reserve in the whole market should be
considered in the market clearing process. However, for the dominant retailer, it can only
know information about its own customers; therefore, in the proposed model, the whole
market demand is modeled by market share, which builds on the assumption that market
share shall not change significantly in a short period.

Retailers Joint Market ClearingPower Generations

FeesFees

Electricity

Reserve capacity
Ancillary 

service 

market

Electricity

Market

Transmission 

fees

Customers

Electricity
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Figure 1. Retailer interactions with customers, market, and power generations.
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2.2. The Outer Problem

For the dominant retailer, operating costs can be reduced with the economic dispatch
of self-built generation resources. The model in this paper takes microturbines (MTs) as an
example of controllable generation resources. Apart from controllable generation resources,
uncontrollable distributed power resources may be installed within the power sales area,
taking WT and PV as examples. To highlight the economics of renewable energy, their
operating costs are not included in the outer objective function.

(1) The objective function
Excluding the depreciation and maintenance costs of WT, PV, and MTs, the objective

function of the outer problem for a dominant retailer’s day-ahead operating costs, which
include the acquisition cost of electricity, the acquisition cost of spare capacity, and the
generation cost of gas turbines, follows Equation (1).

min f =
T

∑
t=1

[
CTR(PTR,t)∆T + CR(Ut, Dt)∆T +

ND

∑
d=1

CMTd(PMTd,t)∆T

]
(1)

where CTR(·), CR(·), and CMT(·) denote the electricity purchasing cost, the reserve capacity
purchasing cost, and the generation cost of the gas turbine d in hour t, respectively.

The cost of electricity and reserve can be calculated as Equation (2).

CTR(PTR,t) = γtPTR,t
CR(Ut, Dt) = αtUt + βtDt

(2)

where PTR,t, Ut, and Dt are the electricity purchased in the day-ahead (DA) market and
the positive and negative reserve resources purchased in the DA ancillary services market
in hour t, respectively.

As only considering the cost of MTs, the cost of MTs can be calculated as
Equation (3) [21].

ND

∑
d=1

CMTd(PMTd,t) =
ND

∑
d=1

(
Cnl
L
×

PMTd,t

µd

)
(3)

where PMTd,t is the active output of microturbine d in hour t, ND is the number of MTs,
Cnl is the price of gas, L represents the calorific value of gas, and µd denotes the power
generation efficiency of MT d.

(2) Constraint conditions
The equality and inequality constraints in an economic dispatch are as follows.
(a) System power balance constraint. In each dispatch period t, the sum of the power

planned to be purchased by retailers in the DA energy market, the WT output, PV output
forecast, and the MTs’ active output, ignoring network losses, should equal the load
forecast.

NS

∑
s=1

PL f s,t =
NI

∑
i=1

PWT f i,t +
NG

∑
g=1

PPV f g,t +
ND

∑
d=1

PMTd,t + PTR,t (4)

(b) Reserve constraints.

Pr

{
Ut +

ND

∑
d=1

PMTUd,t +
ND

∑
d=1

PMTd,t + PTR,t ≥
NS

∑
s=1

PLs,t −
NI

∑
i=1

PWTi,t −
NG

∑
g=1

PPVg,t

}
≥ η (5)

Pr

{
ND

∑
d=1

PMTd,t + PTR,t − Dt −
ND

∑
d=1

PMTDd,t 6
NS

∑
s=1

PL,t −
NI

∑
i=1

PWTi,t −
NG

∑
g=1

PPVg,t

}
≥ η (6)

where η is the confidence probability and PMTUd,t and PMTDd,t are the positive and negative
reserve provided by the MT d in hour t.
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(c) MTs constraints.
PMTd,t + PMTUd,t ≤ PMTd max
PMTd,t − PMTDd,t ≥ PMTd min
0 ≤ PMTUd,t ≤ PMTUd max
0 ≤ PMTDd,t ≤ PMTDd max

(7)

where PMTd max and PMTd min are the upper and lower limits of gas turbine d output.
PMTUd max and PMTDd max are the upper and lower reserve limits that MT d can provide,
respectively. Due to the rapid adjustment and small capacity of the MTs’ output, the con-
straints on the climbing rate of MTs are not considered in this paper.

2.3. The Inner Problem

The inner problem is formulated to simulate the joint clearing process of the energy
and auxiliary markets to maximize social welfare. As market clearing is a multi-settlement
process containing day ahead (DA) and real time (RT), the proposed model puts more
emphasis on the DA schedule to simulate the market clearing process. Ultimately, the DA-
scheduled market clearing price for each period in a day can be calculated by making a
summation of marginal price and transmission price.

(1) The objective function
The total cost of multi-generators comprises the following two folds: the fuel cost and

the spinning reserve cost. To simplify the market clearing model, demand response (load
response to price) is ignored [22], and the quotation of the generators is considered to be
quoted at cost, which can be formulated as Equation (8).

min F =
T

∑
t=1

[
N

∑
i=1

CGi(PGi,t)∆T +
N

∑
i=1

CURi(PURi,t)∆T +
N

∑
i=1

CDRi(PDRi,t)∆T

]
(8)

where CGi(PGi,t), CURi(PURi,t), and CDRi(PDRi,t) denote the output cost (quote), positive
reserve cost (quote), and negative reserve cost (quote) of the ith generator during time
period t, respectively. t stands for the period, and T is the number of periods, which is
assumed to be 24 for a DA model; N is the number of generator units in the power system.

The cost quotations contain the output cost, positive reserve cost, and negative reserve cost
of the ith generator during time period t. They can be formulated as Equations (9)–(11) [22]:

CGi(PGi,t) = aiPGi,t
2 + biPGi,t (9)

CURi(PURi,t) = bURiPUR,t (10)

CDRi(PDRi,t) = bDRiPDRi,t (11)

where ai, bi, bUDRi, and bDRi are the quote parameters of generator units.
(2) Constraints
The equality and inequality constraints for the proposed DA market clearing approach

are as follows.
(a) System power balance constraint and spinning reserve constraints. In order to

maintain the power balance against an outage of the online generator and uncertainties of
load forecasts, the controllable spinning reserve (SR) requirement is considered, which is
given as Equations (12)–(14).

N

∑
i=1

PGi,t = PLtotal,t (12)

N

∑
i=1

PURi,t = PURtotal,t (13)

N

∑
i=1

PDRi,t = PDRtotal,t (14)
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where PLtotal,t, PURtotal,t, and PDRtotal,t denote the total electricity and positive and negative
reserve purchased by all retailers in hour t, respectively; PGi,t, PURi,t, and PDRi,t are the bid
electricity and positive and negative reserve provided by generator i in hour t.

(b) Generator constraints: The output of each generator is restricted by its minimum
and maximum limits and rate constraints.

PGi,t + PURi,t ≤ PGi max (15)

PGi,t − PDRi,t ≥ PGi min (16)

PGi,t−1 − Ri∆T ≤ PGi,t ≤ PGi,t−1 + Ri∆T (17)

where PGi max and PGi min denote the upper and lower output limits of the generator unit i.
Additionally, Ri is the climbing rate of unit i.

(c) Spinning reserve constraints. The operating constraints of the spinning reserve,
including minimum and maximum limits, are also taken into account, which can be given
as Equations (18) and (19)

0 ≤ PURi,t ≤ PURi max (18)

0 ≤ PDRi,t ≤ PDRi max (19)

(3) Market clearing price
The bid-winning electricity and spinning reserve of the generator unit i are obtained

through the inner problem. Then, the final market clearing price can be obtained by adding
the transmission price, which can be modeled as a constant number PTr. The final market
clearing price can be formulated as follows:

PL,t = λL,t + PTr (20)

PUR,t = λUR,t + PTr (21)

PDR,t = λDR,t + PTr (22)

where the left-hand side of the equation are the final market clearing price of electricity
(PL,t) and positive and negative reserve (PUR,t and PDR,t), while the right-hand side is the
marginal price (λL,t, λUR, and λDR,t) obtained through the lower-level optimization.

2.4. Uncertainty Modeling

The uncertainty variables considered in the proposed model include PV, WT, and load.
For instance, the PV output is mainly dependent on the amount of solar irradiance reaching
the ground, temperature, and characteristics of the PV module itself, as shown in previous
studies [23,24]. However, the given bi-level model emphasizes the hourly characteristics,
considering the climbing rate of the unit. Distinguished from commonly used probabilistic
models, a model established on prediction and bias is applied instead.

On top of this, the PV output can be described as follows, which contains both day
and night parts:

NG

∑
g=1

PPVg,t =

{
0, nighttime

∑NG
g=1 PPV f g,t + εPV,t, daytime

(23)

where PPVg,t denotes the output of the gth PV in time period t, and NG is the number of PV.
In this way, PV output can be expressed as the sum of the output prediction (PPVg f ,t) and
the bias prediction (εPV,t) in the daytime, while it comes to 0 in the nighttime. εPV,t denotes
the bias prediction in time period t, which obeys a normal distribution with mean 0, and its
standard deviation is approximated by Equation (24) [25]:

σPV,t = 0.2
NG

∑
g=1

PPV f g,t + 0.02
NG

∑
g=1

PPVNg (24)
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where PPVNg denotes the installed PV capacity for unit g.
The wind power output is also described in the same way as Equations (25) and (26):

NI

∑
i=1

PWTi,t =
NI

∑
i=1

PWT f i,t + εWT,t (25)

σWT,t = 0.2
NG

∑
g=1

PWTfi,t + 0.02
NG

∑
g=1

PWTi (26)

Similarly, the load within the business of the retailer can be expressed as follows:

PL,t = PL f s,t + εL,t (27)

where PL f s,t, εL,t denote the forecast load and forecast bias in time period t, respectively.
εL,t obeys a normal distribution with mean 0 and standard deviation σL,t. Additionally, σL,t
can be described in Equation (28) [26], and the coefficient k is normally taken as 1:

σL,t = kPL f s,t/100 (28)

2.5. Chance Constraints

Chance constraint programming (CCP), proposed by Charnes and Cooper [27], is a
stochastic programming method used to solve problems where the constraints contain
random variables, and decisions must be made before the realization of the random vari-
ables is observed. Considering that the decision made may not satisfy the constraint when
an unfavorable situation occurs, the principle of species is applied: the decision made is
allowed not to satisfy the constraint to some extent, but the probability that the constraint
holds is not less than a certain confidence level α. One of the common forms of CCP can be
formulated as follows:

max f (x)
s.t.Pr

{
gj(x, ξ) ≤ 0, j = 1, 2, · · · , k

}
≥ α

(29)

where x is an n-dimensional decision vector; ξ is a random vector with known probability
density function; f (x) denotes the objective function; gj(x, ξ) ≤ 0 represents the random
chance constraint function; Pr(·) represents the probability of an event; and α is the given
confidence level.

The chance constraints posed by random variables with uncertainty, such as wind, PV,
and load, can be transformed into deterministic constraints. Equations (5) and (6) can be
translated into a standard form [28].

Pr{h1(x1) ≥ f1(ξ1)} ≥ η (30)

Pr{h2(x2) 6 f2(ξ2)} ≥ η (31)

where x is the decision variable to be sought, i.e., Ut, Dt, PMTUd,t, PMTDd,t, and ξ are random
variables. ξ1 follows a normal distribution with mean ∑NS

s=1 PLs,t−∑NI
i=1 PWTi,t−∑NG

g=1 PPVg,t

and variance (σL,t)
2 + (σWT,t)

2 + (σPV,t)
2; ξ2 follows a normal distribution with mean

∑NI
i=1 PWTi,t + ∑NG

g=1 PPVg,t − ∑NS
s=1 PL,t and variance (σL,t)

2 + (σWT,t)
2 + (σPV,t)

2 [25]. It is
converted to a deterministic constrained form employing random variable quantile points.{

h1(x) ≥ Φ−1
1 (η)

h2(x) 6 Φ−1
2 (1− η)

(32)

where Φ(·) denotes the specific normal distribution function of ξ.
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2.6. The Bi-Level Program and KKT Conditions

Following the general formulation of a bi-level program, the retailer problem can be
drawn as:

min f (PTR,t, Ut, Dt, PMTd,t)

s.t.Equation (4)–Equation (7)

arg min F(PGi,t, PURi,t, PDRi,t)

s.t.Equation (12)–Equation (22)

Based on the work in [29], the inner problem can be reformulated as an equivalent
system of the Karush–Kuhn–Tucker (KKT) conditions, thus turning a bi-level problem into
a single-level one. When it comes to the model solution, the Lagrange function can be
solved by applying either Jacobian or the function kkt(·) in the Gurobi solver. It should
be noticed that the objective function in Equation (8) contains a quadratic term as shown
in Equation (9), while other terms in the objective function and constraints are all linear
ones. The resulting problem can be solved as a single-level problem due to the convexity
of both the objective function and the constraints. Problems of this type can be solved by
employing the Gurobi solver in YALMIP toolbox.

3. Numerical Results and Discussion

In this section, the methodologies and parameters employed for generating scenarios
for the market clearing process and economic dispatch are presented. Furthermore, the role
and impact of the MTs, the confidence level of stochastic programming, and the renewable
energy consumption rate in the economic dispatch decision of the dominant retailer are
discussed separately in the generated scenarios.

3.1. Scenario Generation

In the numerical example presented in this paper, the inner market clearing model
contains three power generation units. The quoted and operating parameters of the
generating units are shown in Tables 1 and 2, which can be referred to in [30].

Table 1. The quote parameters of generator units.

Generator Unit i

Electricity Cost Parameters/
$·(MW · h)−1

Reserve Cost Parameters/
$·(MW · h)−1

ai bi bURi bDRi

1 0.045923 15.47 14.00 13.80
2 0.012800 17.82 18.14 15.34
3 0.010875 12.88 16.18 15.12

Table 2. The operating parameters of generator units.

Generator Unit i
Active Output Limits/MW Reserve Limits/ MW

Climbing
Rate Limit/

$·(MW · h)−1

PGi max PGi min PURi max PDRi max Ri

1 60 15 3.335 3.335 40.02
2 80 12.5 4.150 4.150 49.80
3 140 25 8.350 8.350 100.20

In the outer dispatch model, the dominant retailer A is used as an example, which
has two MTs. For two MTs, the essential parameters are as follows: the price of gas
Cnl = 4 $/MBtu and the calorific value of gas L = 0.0097 MWh/m3, while the operating
parameters of MTs are shown in Table 3, which can be referred to in [21]. Furthermore,
retailer A faces problems with renewable energy consumption within their service, which
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usually comes from aggregators and customers’ distributed power generators. The renew-
able energy is equated as PV with an installed capacity of 9.1 MW and WT with a rated
power of 5 MW.

Table 3. The operating parameters of MTs.

Microturbine Units d
Active Output Limits/ MW Reserve Limits/ MW Generation

Efficiency

PMTd max PMTd min PMTUd max PMTDd max µd

1 4.0 0.2 0.5 0.5 58.7%
2 4.0 0.2 0.5 0.5 60.0%

Apart from the dispatchable MTs and the renewable energy that can be selectively
consumed as described above, the main business of the electricity retailer is to provide
electricity to customers. This part is modeled by the whole market electricity demand and
the market share of electricity sales companies. Since the market share fluctuates little in
the short term, it can be regarded as a constant, which is set to 30% in this example. In order
to cope with fluctuations in power demand, an additional positive and negative spinning
reserve is necessary. The coefficient of the positive and negative spinning reserve to power
demand is set to 0.02. The forecasted loads in the whole market and PV and WT output for
retailer A in each period are shown in Figure 2. In the cost calculation, transmission price is
considered, which is taken as 2/3 of the market clearing price [31], thus giving the MTs a
cost advantage.
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Figure 2. Forecast loads in the whole market and PV and WT output for retailer A in each period.

3.2. Analysis of the Dichotomous-Market Model

At the very beginning, the dichotomous-market model is proposed in this study
because we suggest that the dominant retailer‘s decisions impact the amount of electricity
and reserve involved in the market clearing process. To visualize this, a comparison case
is presented where the clearing price is not influenced by the retailer’s decision, and all
retailers are left to passively accept the price and then make a dispatch action. Thus,
the original bi-level model becomes a two-stage model with the market clearing and
dispatch processes. To obtain a fair comparison performance, the global parameters market
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share, confidence level, and the renewable energy consumption rate are set to 30%, 95%,
and 100%, respectively. Additionally, a large consumption rate is set to make the results
more visible, which are shown as in demand for positive and negative reserves.

In Table 4, retailers are divided into two categories: (1) the dominant retailer, which
is equipped with dispatchable resources, and (2) the common retailers, who can only
passively accept prices. In the two-stage model, the retailers’ economic dispatch decisions
do not affect the simulated market clearing process. As shown in scenario ii and scenario iv,
it can be found that the total cost of the common retailer decreases by 0.76%, as the common
retailer is classified as other retailers in the dichotomous market due to the perceived lack
of access to specific information and can only act as a price recipient. The reduction in
costs in two scenarios indicates that the bi-level has a lower clearing price compared with
the two-stage model. This result proves that the dispatch of retailers impacts the clearing
price, as the dispatching behavior of retailers reduces the amount of electricity participating
in the market clearing process, resulting in a lower clearing price. A similar result can
be obtained in scenario i and scenario iii, where the total cost of the dominant retailer is
reduced by 0.32%. The deterioration in cost reduction performance is due to the increase in
reserve costs resulting from renewable energy consumption. Apart from this, a comparative
analysis of scenarios i, ii iii, and iv shows that it is not reasonable to ignore the dominant
retailer’s dispatching behavior.

Table 4. The cost of retailers in four scenarios. Scenario i: two-stage model for a dominant retailer;
scenario ii: two-stage model for a common retailer; scenario iii: bi-level model for a dominant retailer;
scenario iv: bi-level model for a common retailer.

Scenarios Electricity
Cost ($)

Positive
Reserve Cost ($)

Negative
Reserve Cost ($)

MTs
Cost ($)

Total
Cost ($)

i 26,375.56 1892.05 1831.40 3268.23 33,367.25
ii 32,943.30 611.00 611.00 0 34,165.29
iii 25,595.66 1481.19 1787.88 4395.33 33,260.06
iv 32,636.99 626.13 642.03 0 33,905.15

3.3. Impact of MTs

In the given model, MT1 and MT2 are set up to undertake part of the power and
reserve supply at a lower cost because of the lower transmission fees compared with power
plants on the generation side. Given a confidence level of 95% and complete consumption
of renewable energy, a discussion on the cost of retailer A in scenarios with and without
MTs is presented. The power purchase cost for retailers is shown in Table 5. The partial
optimization results in two scenarios are shown in Figures 3 and 4.

Table 5. Purchasing cost with or without MTs under a confidence level of 95%.

With MTs
or Not

Electricity
Cost ($)

Positive
Reserve Cost ($)

Negative
Reserve Cost ($)

MTs
Cost ($)

Total
Cost ($)

yes 25,595.66 1481.19 1787.88 4395.33 33,260.06
no 26,485.09 3494.30 3494.30 0 33,473.68

(1) Analysis of MTs’ impact on retailer’s day-ahead economic dispatch costs
In Table 5, it can be found that when retailer A is equipped with MTs, although the

generation cost of MTs is incurred, the power cost and reserve cost are lower than that
where it is not equipped with MTs. MTs reduce the total operating cost and reserve cost
of retailer A by 0.64% and 53.22% compared with that where it is not equipped with MTs.
The reasons for this phenomenon are as follows:

(a) Figure 3a demonstrates the market clearing price in scenarios with and without
MTs, and the price has the same double-peak character as the electricity demand. Figure 3b
demonstrates the output and reserve planning of MT1 and MT2 in each interval. From
Figure 3a,b, it can be observed that MTs’ output increases when the power price is high,
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which is specifically reflected in the two intervals, 10:00–11:00 and 19:00–20:00. As a result,
retailer A’s power purchase during the high-price period is reduced, which is the main
reason for the power cost reduction. Additionally, at the same time, it can also be observed
that MT2, owing to its lower cost, gives priority to the power output, as shown in Figure 3b.
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Figure 3. (a): The market clearing price in scenarios with and without MTs. (b): Operating conditions
of MTs in each interval.

(b) The positive and negative reserve purchased from the auxiliary market is shown
in Figure 4. In Figure 4a, it can be observed that MT1 and MT2 prioritize power over the
reserve to cope with higher electricity prices between 18:00 and 20:00. During this interval,
the positive reserve is provided by the auxiliary market. At other intervals, both MT1 and
MT2 arrange positive reserve output, resulting in a reduction in positive reserve purchase
from the market. The negative reserve purchase case is similar to the positive reserve.
In some intervals, 00:00-6:00 and 17:00–24:00, MTs fail to provide cheap negative reserve as
higher negative reserve cost. Furthermore, it is worth noting that reserve demand is related
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to electricity demand and new energy consumption. As can be seen in Figures 2 and 4,
the electricity demand has a double-peak character, while the reserve demand only has a
single-peak character. This phenomenon is because the active consumption of renewable
energy requires more reserve resources to satisfy the power balance requirements.
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Figure 4. The positive (a) and negative (b) reserve purchased in the auxiliary market in scenarios
with and without MTs.

(2) Analysis of MTs’ impacts on power clearance price
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It can be observed in Figure 3b that the power clearance prices are both high in
two cases during the peak load periods, such as 10:00–12:00 p.m. and 19:00–21:00 p.m.,
because the amount of purchased power is large, and the unit 2 with higher cost needs to
join, resulting in a high price.

To conclude, the dispatch schedule of retailers with controllable distributed power
sources may have a certain impact on market clearing results, especially during peak load
periods; by optimizing the scheduling of controllable distributed power sources (MTs),
the operating costs of retailers can be effectively reduced.

3.4. Impact of Confidence Levels and Consumption Rate

For retailer A equipped with MTs, under the chance constraint confidence levels of 98%,
95%, and 91%, the power purchase cost is shown in Table 6, and the partial optimization
results under the three confidence levels are shown in Figures 5–7.
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Figure 5. The market clearing price (a) and electricity (b) involved in the market clearing process
under different confidence levels.



Energies 2022, 15, 7087 14 of 17

Table 6. The cost of electricity purchased by the retailer at η of 98%, 95%, and 91%.

Confidence
Levels

Electricity
Cost ($)

Positive
Reserve Cost ($)

Negative
Reserve Cost ($)

MTs
Cost ($)

Total
Cost ($)

98% 25,687.37 1892.14 2183.45 4500.72 34,263.69
95% 25,595.66 1481.19 1787.88 4395.33 33,260.06
91% 25,488.86 1243.24 1449.27 4337.42 32,518.80
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Figure 6. The positive (a) and negative (b) reserve purchased by the dominant retailer under different
confidence levels.

(1) Impacts of confidence levels on purchase cost
As the confidence levels increase, it can be observed in Table 6 that the purchase cost

of retailer A increases, in which the costs of the positive reserve, negative reserve, and MTs
all tend to increase. Additionally, when the confidence level changes from 91% to 98%,
the positive reserve cost increases by 52.19% and the negative reserve cost increases by
50.66%, while the MTs cost increases by 3.76%, but the power cost increases by only 0.78%.
The reasons for this phenomenon are as follows.

(a) As already pointed out in Sections 2.4 and 2.5, confidence levels affect the tolerance
of constraints that contain random variables (PL,t, PWTi,t, and PPVg,t). As the confidence
level rises, the constraints become tighter, resulting in increased demand for power and
reserve, but the reasons for the increase are different. For electricity, it is affected by
the power balance constraint and the chance constraints (Equations (4)–(6)), while the
variation of reserve is mainly reflected in the chance constraints and operating constraints
(Equations (5)–(7)). As confidence levels rise, power purchases rise in all intervals (as
shown in Figure 5b) and maintain the same double-peak character as power demand.
The variation resulted from the chance constraint is small compared with the total demand,
so the increase in power purchase cost is not significant.

(b) As shown in Figure 6, the positive and negative reserve purchased by retailer A
under three different confidence levels are presented. In comparison with Figure 6a,b,
it is evident that the positive and negative reserves do not increase in the same way as
the confidence level rises. In Figure 3b, it can be found that the output strategy of MTs
is to provide power and positive reserve as a priority, and only in some periods such as
7:00–16:00; MT2 is arranged with negative reserve, which is determined by the cost. As a
result, the negative reserve is mainly purchased from the ancillary services market, which
is significantly impacted as the confidence level rises. Moreover, MTs’ output strategy
reduces the purchase of positive reserve in the auxiliary service market, which is more
evident when the confidence level is below 95% (as shown in Figure 3a, in the intervals
such as 0:00–6:00, 16:00–18:00, and 20:00–24:00, the increase in confidence level does not
affect the purchase of positive reserve.).

(2) Impacts of consumption rate on purchase cost
Renewable energy consumption affects the balance and chance constraints on electric-

ity consumption, which leads to changes in the amount of electricity and reserve purchases,
coupled with the market clearing price. Therefore, in addition to the confidence level dis-
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cussion, renewable energy consumption’s impact should also be considered. As shown in
Figure 7a,b, at the same confidence level, the increase in the consumption rate has different
impacts on the total cost and reserve cost. It is worth noting that the total cost contains
electricity cost and positive and negative reserve cost, while the reserve cost only contains
positive and negative reserves.

Without difficulty, the phenomenon in Figure 7b is that the reserve cost increases as
both the confidence level and the consumption rate increase. This is consistent with the
intuition that the confidence level and consumption rate increase, the uncertainty becomes
more prominent, and the chance constraints tighten, leading to a higher lowerbound on the
target value. However, as shown in Figure 7a, it presents a richer connotation due to the
incorporation of electricity cost. When the confidence level is low (retailer risk is expected
to be low, such as when the confidence level is below 90%), the consumption of more cheap
renewable energy contributes to lower total costs. However, when the confidence level is
higher (higher risk expectation for retailers, such as when the confidence level is higher
than 90%), the consumption of more cheap renewable energy may reduce the electricity
cost, while the higher reserve cost will lead to higher total cost instead.

To conclude, the choice of confidence level is related to the risk appetite of the retailer,
and a good selection of both confidence level and consumption rate is also essential.

(a) (b)

Figure 7. The impacts of consumption rate on the total cost (a) and reserve cost (b).

4. Conclusions

In this study, a bi-level model based on the dichotomous market is proposed for
scenarios where the decision making of other retailers in the market is unavailable. For a
dominant retailer, it is faced with the uncertainty brought by renewable energy consump-
tion, represented by random variables, reflecting the retailer’s tolerance to cope with risk.
Additionally, from the case study in Section 3, the conclusion can be drawn in three parts:
(1) the impacts of the dominant retailers’ economic dispatching decisions on the whole
market shall not be ignored; (2) controllable dispatching resources have good performance
in renewable energy consumption scenarios; and (3) a good selection of both confidence
levels and consumption rate is essential. However, the dichotomous-market model is cre-
ated as a last resort. In future research, methods such as power flow analysis, multi-agents,
and distributed optimization shall be helpful in studying complex retailer problems.
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