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Abstract: Accurate solar radiation forecasting is essential to operate power systems safely under 
high shares of photovoltaic generation. This paper compares the performance of several machine 
learning algorithms for solar radiation forecasting using endogenous and exogenous inputs and 
proposes an ensemble feature selection method to choose not only the most related input parame-
ters but also their past observations values. The machine learning algorithms used are: Support Vec-
tor Regression (SVR), Extreme Gradient Boosting (XGBT), Categorical Boosting (CatBoost) and Vot-
ing-Average (VOA), which integrates SVR, XGBT and CatBoost. The proposed ensemble feature 
selection is based on Pearson coefficient, random forest, mutual information and relief. Prediction 
accuracy is evaluated based on several metrics using a real database from Salvador, Brazil. Different 
prediction time-horizons are considered: 1 h, 2 h and 3 h ahead. Numerical results demonstrate that 
the proposed ensemble feature selection approach improves forecasting accuracy and that VOA 
performs better than the other algorithms in all prediction time horizons. 

Keywords: ensemble feature selection; machine learning; photovoltaic generation; solar radiation 
forecasting 
 

1. Introduction 
Solar generation is a clean renewable energy resource that has emerged as a promis-

ing solution for reducing fossil fuel consumption and CO₂ emissions. According to [1], 
solar energy continued globally to lead renewable capacity expansion with an increment 
of 133 GW (+19%) in 2021, achieving a total of 849 GW capacity and accounting for 28% 
of the renewable generation portfolio. 

The operation of power systems with high penetration of photovoltaic (PV) genera-
tion brings about some challenges due to its non-dispatchability and intermittence, de-
pendent on meteorological parameters and mainly cloud dynamics. The fluctuating PV 
generation may lead to power flow inversion with voltage and frequency variations and 
an imbalance between energy demand and supply; therefore, it requires the development 
of accurate solar radiation forecasting models for reliable power system operation. 

Several forecasting models have been proposed in the literature targeting different 
prediction time horizons: very short-term (intra-hour), short-term (intra-day or day-
ahead), medium-term (1 month) and long-term (1 year) [2], each driving different appli-
cations. For example, intra-hour and intra-day forecasting can be used for real-time power 
system operation. Day-ahead forecasting can be used for dispatch planning purposes. Me-
dium and long-term forecasts can be used for maintenance and energy market purposes. 
Forecasting algorithms can be classified into physical models, such as Numerical Weather 
Prediction (NWP); statistical models, such as Autoregressive Moving Average (ARMA) 
and Autoregressive Integrated Moving Average (ARIMA); and data-driven models, such 
as Artificial Intelligence (AI) algorithms. 
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Physical models are based on sky images, satellite information, and mathematical 
equations that requires in depth understanding to describe the physical phenomena in the 
atmosphere [3]. Statistical models had been widely used in early works to forecast solar 
radiation with satisfactory results. In [4], ARMA and ARIMA models are used for short-
term solar radiation forecasting. In [5], authors propose to combine an autoregressive (AR) 
model with a dynamical system model to 1 h-ahead solar radiation forecasting. 

Over time, these models have been outperformed by techniques belonging to the 
field of artificial intelligence (AI) due to their ability to detect nonlinear relationships [6]. 
Several papers have been developed to forecast solar radiation using AI algorithms. In [7], 
authors compare the performance of regression and Artificial Neural Network (ANN) 
models to forecast solar radiation, and results show that ANN outperforms regression 
models. Reference [8] proposes the use of a genetic algorithm to adjust ANN parameters 
on a solar power forecasting model. The results are compared with ARIMA and ANN and 
show substantial improvements can be achieved with genetic algorithm optimization. 
Reference [9] proposes a hybrid model to forecast hourly solar irradiance based on self-
organizing maps (SOM), support vector regression (SVR) and particle swarm optimiza-
tion (PSO), and the proposed technique outperforms traditional forecasting models. More 
recently, researchers have used machine learning (ML) techniques to forecast solar radia-
tion, which is a promising subfield of AI capable of dealing with a large amount of data 
[10]. The ML algorithms most commonly found in the literature are: support vector re-
gression (SVR), regression tree, random forest and gradient boosting. 

The forecasting model can be constructed using only endogenous inputs or with both 
endogenous and exogenous inputs. The endogenous input is the solar radiation time se-
ries itself, and the exogenous inputs can be the meteorological parameters that most affect 
the prediction, such as air temperature, humidity, wind speed, wind direction, and atmos-
pheric pressure. A review of some recent literature on solar radiation forecasting indicates 
that researchers have primarily focused on developing new models and hybridizing dif-
ferent ML algorithms to improve forecast accuracy, mostly using as inputs past observa-
tions of solar radiation. For instance, reference [11] applies a deep learning model for solar 
radiation forecasting with a time horizon of 10 min and uses as input only historical ob-
servations of solar radiation. In [12], the authors propose a hybrid model for short-term 
solar irradiance prediction combining Long Short-Term-Memory (LSTM) and a Convolu-
tional Neural Network (CNN), using as input the solar irradiance historical series. Refer-
ence [13] investigates the use of various deep neural network models for the one-day-
ahead prediction of global horizontal irradiation (GHI) in Saudi Arabia, using only the 
historical values of daily GHI. 

The high correlation between solar radiation and some meteorological parameters 
encouraged authors to use both endogenous and exogenous inputs to improve solar radi-
ation forecasting accuracy. However, most of them perform the selection of exogenous 
inputs using limited algorithms such as Pearson’s correlation coefficient, which only iden-
tifies linear relationships between variables or, intuitively, by trying different combina-
tions of input variables and choosing the one that gives the minimum forecasting error. 
Reference [14] proposes a solar irradiance prediction model using LSTM for three predic-
tion horizons (1, 15 and 60 min). Two sets of input variables are considered: a complete 
dataset with seven meteorological data and a reduced dataset with only three meteoro-
logical data. However, the authors do not apply a feature selection methodology to ade-
quately choose the most significant inputs. In [15], the authors propose an ensemble model 
for short-term PV generation forecasting combining Extreme Learning Machines (ELM), 
Extremely Randomized Trees (ET), k-Nearest Neighbor (KNN), Mondrian Forest (MF) 
and a Deep Belief Network (DBN). Several meteorological data are used as input in the 
forecasting model. However, the authors do not employ an input selection methodology. 
Reference [16] evaluates the performance of different ML algorithms for PV generation 
forecasting such as Linear Regression (LR), Polynomial Regression (PR), Decision Tree 
(DT), Support Vector Regression (SVR), Random Forest (RF), LSTM, and Multilayer 
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Perceptron (MLP). Some meteorological parameters are used in the forecasting model, 
and different forecast time horizons are considered (24-h, 1 week and 1 year). In this study, 
input selection is performed intuitively, analyzing the relationship between each exoge-
nous variable and the output variable. 

Few studies apply a feature selection methodology for solar radiation forecasting. 
Reference [17] investigates the effectiveness of using exogenous inputs to perform short-
term GHI forecasting with several ML models. The authors applied the following feature 
selection techniques: correlation, information, sequential forward selection, sequential 
backward selection, LASSO regression, and random forest. In [18], the authors use a hy-
brid ML model to perform PV power forecasting with an enhanced forward selection 
based on a Light Gradient Boosting decision tree (LightGBDT). In both papers, the results 
show that exogenous inputs improve forecasting performance. 

In addition to the selection of exogenous inputs, the selection of the most related de-
lay values (past observations) plays a key role in ensuring an effective prediction [19]. 
Each feature may have a temporal effect on solar radiation. For instance, some features 
may have a greater impact on more recent past observations, while other features may 
only have an impact on more distant past observations. Therefore, it is necessary to find 
the most relevant features and their corresponding delay value. 

Few researchers have explored the optimal selection of input delay values in the solar 
radiation forecasting problem. This paper tries to address this knowledge gap in the liter-
ature by proposing a forecasting methodology using ML models which incorporates ex-
ogenous information and an ensemble feature selection method with an in-depth analysis 
to choose not only input parameters but also their delay values. The performance of sev-
eral ML algorithms is investigated, and a comparative analysis is presented considering 
different prediction time-horizons. The ML-implemented algorithms are: Support Vector 
Regression (SVR), Extreme Gradient Boosting (XGBT), Categorical Boosting (CatBoost) 
and Voting-Average (VOA). The ensemble feature selection is based on Pearson’s coeffi-
cient, random forest, mutual Information and relief. Prediction accuracy is assessed based 
on several evaluation metrics. The proposed methods are tested with a real database from 
Salvador, Brazil. 

The key contributions of this study are highlighted as follows: 
• Comparing the performance of different state-of-the-art ML algorithms, including 

the CatBoost algorithm, which presents fewer applications in solar radiation forecast-
ing to the best of the authors' knowledge; 

• Proposing an ensemble feature selection method to select the most significant endog-
enous and exogenous variables and their delay values, integrating different ML al-
gorithms. 

2. Proposed Methodology 
The proposed approach for solar radiation forecasting includes five main steps and 

is presented in Figure 1. First, a real and substantial database is obtained containing data 
on solar radiation and other meteorological information. Then, pre-processing is per-
formed to clean the data by removing outliers and imputing missing values. Normaliza-
tion is also applied to avoid biasing toward extreme values. The next step is to select the 
most significant variables and their delay values, using an ensemble feature selection com-
bining Pearson’s correlation coefficient, random forest, mutual information and relief. 
Then, data is separated into training, validation and test sets, and different machine learn-
ing algorithms are applied. Finally, various statistical indicators are used to quantify the 
accuracy of the forecasting algorithms. 
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Figure 1. Flowchart of the proposed methodology. 

2.1. Data Description 
Simulations are conducted using real-world data collected from the Brazilian Na-

tional Institute of Meteorology website (INMET), which provides data from several 
weather stations in Brazil [20]. The referred data is from the city of Salvador, Brazil 
(12°58’28.9992″ S, 38°28’35.9940″ W), with hot and rainy weather all year round. Temper-
atures are quite stable with a minimum of 22 °C and a maximum of 31 °C. The period 
covered by the database is from 1 January 2015 to 3 August 2021 in sampling intervals of 
1 h. Table 1 shows all variables in the database, and their statistical analysis is presented 
in Table 2. 

Table 1. Available database for solar radiation forecasting. 

Data Abbreviation Unity 
Hour H hour 
Global solar radiation R MJ/m2 
Maximum wind gust Wg m/s 
Wind speed Ws m/s 
Wind direction Wd ° 
Dry bulb temperature T °C 
Hourly maximum temperature Tmax °C 
Hourly minimum temperature Tmin °C 
Dew point temperature Td °C 
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Hourly maximum dew point temperature Tdmax °C 
Hourly minimum dew point temperature Tdmin °C 
Total precipitation P mm 
Station atmospheric pressure A mb 
Hourly maximum atmospheric pressure  Amax mb 
Hourly minimum atmospheric pressure Amin mb 
Relative humidity  H % 
Hourly maximum relative humidity Hmax % 
Hourly minimum relative humidity Hmin % 

Table 2. Statistical features of the available database. 

Variable Mean Standard Deviation Min Max 
H 12.0 3.1623 7.0 17.0 
R 1.6533 1.0462 0.0009 4.15 

Wg 5.6651 1.7302 0.6000 10.6 
Ws 1.6069 0.5372 0.1 3.0 
Wd 130.8017 59.7526 1.0 360.0 
T 27.3608 2.4069 20.4 34.2 

Tmax 28.1414 2.5181 20.8 35.8 
Tmin 26.5007 2.3708 19.9 32.4 
Td 21.5368 1.4812 16.8 25.5 

Tdmax 22.2897 1.4708 17.3 26.0 
Tdmin 20.8531 1.4820 16.3 25.1 

P 0.2041 1.3419 0.0 50.4 
A 1009.4062 2.9636 1001.6 1017.7 

Amax 1009.7137 2.9276 1001.9 1018.1 
Amin 1009.2102 2.9265 1001.4 1017.5 
H 71.3240 10.4711 45.0 96.0 

Hmax 75.0566 10.1359 52.0 97.0 
Hmin 68.1149 11.0133 38.0 96.0 

Figure 2 shows the average monthly solar radiation. The dataset is divided into two 
periods according to the stable weather condition of the city, and different forecasting 
models are developed for each period. These periods are summer, from September to 
March, and winter, from April to August. The forecasting methodology and algorithms 
are implemented using Jupyter and Scikit-Learn libraries. 

 
Figure 2. Average monthly solar radiation from January 2015 to August 2021 in Salvador, Brazil. 
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2.2. Pre-Processing 
The pre-processing data is an important step to achieve an accurate forecasting 

model. First, the data needs to be cleaned from inconsistent measurements, such as miss-
ing data points and outliers [21]. In solar radiance times series, only daytime samples are 
considered. If the complete time series is used, many observed values are zero (night pe-
riod), and the forecast values will also be zero (or very close), substantially reducing the 
prediction error and overestimating the performance of the forecasting model. In the other 
time series, missing values are replaced by applying imputation through the interpolation 
of the observed values. Outliers are detected using the Interquartile Range (IQR) method, 
which divides an ordered dataset into four quartiles (Q1, Q2, Q3, Q4), each quartile contain-
ing 25% of the data. The IQR is evaluated as the difference between Q3 and Q1, and outliers 
are defined as observations that fall below Q1 − 1.5 × IQR or above Q3 + 1.5 × IQR. After 
being identified, outliers are treated by applying interpolation, since the exclusion of these 
records would considerably reduce the size of the available data and affect the continuity 
of the hourly sampling. Min–max normalization is further applied to scale data into [0, 1]. 

The historical dataset is divided into three sets: training, validation and testing. The 
training set is used to build the ML model, with known inputs and outputs. The validation 
set is used to fine-tune the model hyperparameters. The testing set is used to estimate the 
model performance on data not used to train the model. The training set covers 70% of 
data with 18,521 registers from 2015 to 2019; the validation set covers 10% of data with 
2629 registers from 2019 to 2020, and the test set covers 20% of data with 5299 registers 
from 2020, as shown in Figure 3. The validation and training sets are not continuous due 
to data splitting according to summer and winter seasons. 

 
Figure 3. Training, validation and testing set of solar radiation historical series. 

2.3. Ensemble Feature Selection 
Feature selection is commonly applied in machine learning algorithms to select the 

best set of variables that represent the original data, thus reducing data size and model 
complexity and improving prediction performance [22]. Different feature selection algo-
rithms are often tested, and the variable set with the best forecasting performance is cho-
sen. Alternatively, an ensemble feature selection can be applied by aggregating several 
feature selection algorithms, combining the advantages of each one. The proposed meth-
odology is presented in Figure 4. 
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Figure 4. Ensemble feature selection methodology. 

The dataset used in this paper is composed of solar radiation historical series as the 
endogenous variable (values determined by the model) and other meteorological varia-
bles as exogenous variables (values determined outside the model). Feature selection is 
applied to choose the most important exogenous variables and delay values, analyzing 
both linear and non-linear relationships among features. 

First, Pearson’s correlation analysis is performed [21]. Figure 5 shows the correlation 
matrix between exogenous variables for winter (a) and summer (b) seasons. A correlation 
coefficient r = 0 indicates that no linear relationship exists between variables, and the rela-
tionship becomes stronger as r approaches –1 or +1. As expected, results indicate a high 
linear correlation between variables and their minimum and maximum values. Accord-
ingly, the following variables are removed from the dataset: hourly maximum and mini-
mum atmospheric pressure, hourly maximum and minimum temperature, hourly maxi-
mum and minimum dew point temperature, and hourly maximum and minimum relative 
humidity. 

An ensemble feature selection is next applied to select the most significant variables 
integrating the following algorithms: Mutual Information (MI), Random Forest (RF) and 
relief [23–25]. For each method, the importance of each variable is evaluated, and its value 
is further normalized. The final variable importance ranking is achieved by computing 
the mean value from different feature selection methods. The most important variables 
are global radiation, dry bulb temperature, relative humidity, wind speed, atmospheric 
pressure, and time. The threshold between the selected features and the discarded fea-
tures was found empirically during the model optimization phase. 
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(a) (b) 

Figure 5. Correlation matrix: (a) winter season and (b) summer season. 

Since the dataset consists of multivariate time series, the proper selection of variable 
delays (past observations) is an important task to ensure acceptable forecasting accuracy. 
The next step is to select the delays of the endogenous and exogenous variables applying 
the same ensemble model. The selection of the most significant lags for the exogenous 
variables is done separately from the endogenous variable since they have a reduced but 
no weaker significance. Considering Xt − −k, a delay of k hours in variable X, the adopted 
range of delays to be tested is from 1 to 72 for each variable (Xt − 1 …Xt − 72), which 
seemed sufficient to capture important information from historical values. The final da-
taset with the selected variables and their delays is listed in Table 3.  

Table 3. Selected set of input variables and delay values. 

Winter 
Variable Delays 

Global solar radiation t − 1, t − 2, t − 23, t − 24, t − 25, t − 47, t − 48, t − 72 
Dry bulb temperature t − 1, t − 2, t − 23, t − 24, t − 25, t − 48, t − 49, t − 72 
Relative humidity  t − 1, t − 2, t − 23, t − 24, t − 25, t − 48, t − 49, t − 72 
Wind speed t − 1, t − 24 
Atmospheric pressure  t − 2 
Hour, day, month - 

Summer 
Variable Delays 

Global solar radiation t − 1, t − 2, t − 23, t − 24, t − 25, t − 47, t − 48, t − 72 
Dry bulb temperature t − 1, t − 2, t − 23, t − 24, t − 25, t − 48, t − 49, t − 72 
Relative humidity  t − 1, t − 2, t − 23, t − 24, t − 25, t − 48, t − 49, t − 72 
Wind speed t − 1, t − 2 
Atmospheric pressure  t − 3 
Hour, day, month - 

3. Machine Learning Algorithms 
The performance of several ML algorithms is evaluated to predict solar radiation ap-

plying the proposed methodology. The algorithms used are SVR, XGBT, CatBoost and 
VOA, which are briefly presented below. 

3.1. Support Vector Regression (SVR) 
Support Vector Regression (SVR) is an extension to the Support Vector Machine 

(SVM) algorithm applied to regression (predicting a continuous quantity output) instead 
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of classification problems [26]. In basic regression models, the error is minimized, while it 
is fitted in SVR within a certain threshold (𝜀ϵ) around the regression line (hyperplane), 
such that all data points within 𝜀  are not penalized for their error. 

The problem can be formulated as follows: 𝑀𝑖𝑛. 12 ‖𝑤‖ଶ + 𝐶 ෍|𝜉௜|௡
௜ୀଵ  𝑠. 𝑎.     |𝑦௜ − 𝑤௜𝑥௜| ≤ 𝜀 + |𝜉௜|      i = 1, 2, ... n 

(1) 

where 𝑛 is the number of training samples, the slack variable 𝜉 is the deviation for any 
value that falls outside 𝜀 ϵ, and 𝐶 is the penalty factor that determines the tradeoff be-
tween minimizing the training error and minimizing model complexity. As 𝐶 increases, 
the tolerance for points outside 𝜀 also increases. The performance of SVR then depends 
on the choice of parameters 𝜀 and 𝐶. 

3.2. Extreme Gradient Boosting (XGBT) 
Extreme gradient boosting is a decision-tree based ensemble algorithm that improves 

the performance of weak learners to establish an effective joint model [27]. This algorithm 
uses a tree ensemble model, shown in Figure 6, to predict the output. 

 
Figure 6. Tree ensemble model for boosting algorithms. 

It has been widely applied to many problems with success. In boosting, the trees are 
built sequentially such that each subsequent tree learns and reduces the errors of the pre-
vious one. A gradient descending algorithm is employed to minimize errors when adding 
new models. XGBT uses parallel processing, considerably improving the training time. It 
is important to mention that XGBT has a large range of hyperparameters, and their ap-
propriate tuning is critical to the algorithm’s performance. 

3.3. Categorical Boosting (CatBoost) 
CatBoost is a gradient boosting framework developed by Prokhorenkova et al. [28] 

in 2017 and uses a binary decision-tree as base predictors. CatBoost has two main differ-
ences compared with other boosting algorithms. It uses the concept of ordered boosting, 
which is a random permutation approach to train the model with a subset of data while 
calculating residuals with another subset, thus preventing overfitting. Furthermore, the 
same splitting criterion is used at all nodes creating always symmetric trees. These trees 
are balanced and less prone to overfitting, which significantly speeds up the model exe-
cution. The CatBoost is, however, sensitive to hyperparameter tuning. 

3.4. Voting Average (VOA) 
Voting-averaged is an ensemble algorithm that combines the prediction from multi-

ple ML algorithms [29]. In regression problems, VOA takes the predictions of each model 
and computes their average value to derive a final prediction. By combining different 
models, the risk of having a poor performance from one model can be mitigated by the 
strong performance from the other models, achieving a more robust algorithm. Since 
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voting uses multiple ML algorithms, it is more computationally intensive. In this paper, 
VOA is implemented by combining: SVR, XGBT and CatBoost. 

4. Performance Metrics 
The performance of the algorithms is evaluated using the following error metrics: 

mean absolute error, mean absolute percentage error, and root mean square error. The 
lower the measures, the better the prediction. In the following equations, 𝐹௜ is the fore-
casted value, 𝑂௜ is the observed value, 𝑂ത௜ is the mean value of observations, and 𝑛 is the 
number of samples. 

Mean absolute error (MAE): 

MAE =  1𝑛 ෍|𝐹௜ − 𝑂௜|௡
௜ୀଵ  (2) 

Mean absolute percentage error (MAPE): 

MAPE =  1𝑛 ෍ ฬ𝐹௜ − 𝑂௜𝑂௜ ฬ௡
௜ୀଵ × 100 (3) 

Root mean square error (RMSE): 

RMSE =  ඩ1𝑛 ෍ሺ𝐹௜ − 𝑂௜ሻ௡
௜ୀଵ

ଶ
 (4) 

The coefficient of determination (R2) is also evaluated. It measures the variance in the 
predictions and varies from 0 to 1. A coefficient equal to 1 indicates that the model per-
fectly interprets the observed data, while a 0 indicates the model predictions perform 
badly on unseen data. The coefficient of determination is evaluated as follows: Rଶ =  1 − ∑ ሺி೔ିை೔ሻ೙೔సభ మ∑ ሺி೔ିைഢതതതሻ೙೔సభ మ ,   𝑂పഥ = ∑ 𝐹௜௡ିଵ௜ୀ଴  (5) 

In addition, statistical moments such as skewness (SK) and kurtosis (K) are evalu-
ated. Skewness is a statistical measure of the asymmetry of the error distribution. It indi-
cates the overall tendency of a forecasting model to over-forecast (in case of positive skew-
ness) or under-forecast (in case of negative skewness). Kurtosis is a statistical measure that 
assesses the propensity of a distribution to have extreme (outliers) values within its tails. 
The excess kurtosis is a form to compare to Gaussian distribution. Since Gaussian distri-
bution has a kurtosis of 3, excess kurtosis is evaluated by subtracting kurtosis by 3. Posi-
tive values of excess kurtosis indicate that the distribution tail is heavier and longer than 
Gaussian distribution, with a probability of containing more extreme values (outliers). 
Negative values of excess kurtosis indicate that the distribution has light tails that are 
shorter than Gaussian distribution and include fewer extreme values. 

5. Results and Discussion 
This section presents the results obtained with the proposed methodology using sev-

eral ML algorithms for solar forecasting under different temporal scales. The relevance of 
performing an ensemble feature selection is also investigated. The hyperparameters 
adopted in the algorithms were selected using the GridSearchCV function from Scikit 
learn library [30]. It is a grid search technique that exhaustively enumerates all hyperpa-
rameter combinations and evaluates the accuracy of each combination through the vali-
dation set. Hyperparameters for both forecasting models are presented in Table 4. 
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Table 4. Algorithm hyperparameter tuning. 

Algorithm 
Hyperparameter  

Winter Summer 

SVR 
regularization C = 10, ε = 0.01, γ = auto, kernel function 

K = RBF 
Regularization C = 100, ε = 0.001, γ = auto, kernel function K = 

RBF 

XGBT 
learning rate = 0.1, max. depth = 5, number of estima-

tors = 80, subsample = 0.9 
learning rate = 0.1, max. depth = 5, number of estimators = 100, 

subsample = 0.8 

CatBoost 
depth = 6, L2 regularization = 10, learning rate = 0.05, 

iterations = 2000 
depth = 6, L2 regularization = 10, learning rate = 0.05, iterations 

= 2000 

VOA 

XGBT (learning rate = 0.1, max. depth = 5, number of 
estimators = 80, subsample = 0.9) 

CatBoost (depth = 6, L2 regularization = 10, learning 
rate = 0.05, iterations = 2000) 

SVR (regularization C = 10, ε = 0.01, γ = auto, kernel 
function K = RBF) 

XGBT (learning rate = 0.1, max. depth = 5, number of estimators 
= 100, subsample = 0.8) 

CatBoost (depth = 6, L2 regularization = 10, learning rate = 0.05, 
iterations = 2000) 

SVR (regularization C = 100, ε = 0.001, γ = auto, kernel function 
K = RBF) 

5.1. Impact of Feature Selection of Variables and Delays 
In this section, the effectiveness of using an ensemble feature selection for solar radi-

ation forecasting is investigated. Two other cases are analyzed for comparison purposes: 
• Case 1: The forecasting model is trained using only endogenous inputs, which is the 

solar radiation and its 10 past observations; 
• Case 2: The forecasting model is trained using both endogenous and exogenous in-

puts (solar radiation and other meteorological data), and their past observations are 
selected using the Pearson correlation coefficient; 

• Case 3: The forecasting model is trained using both endogenous and exogenous in-
puts, selected using the proposed ensemble feature selection. 
The algorithm to perform this analysis is VOA, and for a fair comparison, the hy-

perparameters are kept the same in the three cases, and the models are trained and tested 
using the same dataset partition from the training set only. The results are presented in 
Table 5. Among all of them, Case 3 shows better prediction accuracy using all metrics. 

Table 5. Comparison of forecasting performance for different input datasets using VOA. 

Winter 
Input Set MAE RMSE MAPE R2 

Case 1: endogenous 0.2591 0.3532 34.1955 0.8377 
Case 2: end + exog (Pearson coefficient) 0.2521 0.3439 32.8627 0.8460 

Case 3: endo + exog (ensemble selection) 0.2537 0.3431 31.8928 0.8468 
Summer 

Input Set MAE RMSE MAPE R2 
Case 1: endogenous 0.3153 0.4536 35.4139 0.8261 

Case 2: end + exog (Pearson correlation) 0.3017 0.4358 31.1411 0.8395 
Case 3: endogenous and exogenous 0.303 0.4326 30.6106 0.8417 

Figure 7 shows the learning curve obtained with VOA for all cases. The learning 
curve shows the relationship between training and validation errors with a variable num-
ber of training samples. Through its analysis, it is possible to diagnose bias and variance 
problems in supervised learning models. In all cases, as the size of the training set in-
creases, the training error increases and the validation error decreases, converging for a 
small error value, which is the desirable behavior. The narrow gap between the training 
and validation curves indicates a low variance error. Training data are fitted well, and the 
algorithm can generalize on unseen data. Case 3 has lower training and validation errors. 
This highlights the positive impact of applying the proposed ensemble feature and delays 
the selection method, which keeps the features and their significant delays that provide 
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the most relevant information and discards features and delays that may be negatively 
impacting the learning process. 

 
Figure 7. Learning Curves for VOA. (a) Summer season. (b) Winter season. 

5.2. Forecasting Accuracy of Machine Learning Algorithms 
This section compares the results obtained using four different ML algorithms for 

solar radiation forecasting with a 1-hour-ahead prediction horizon. The proposed ensem-
ble feature selection with endogenous and exogenous inputs is applied in all cases. Table 
6 shows the forecasting accuracy for the test dataset in terms of MAE, RMSE, MAPE, R2, 
SK and K. VOA showed the best predictive performance in all metrics, except for MAPE, 
wherein CatBoost has a slightly lower error. XGBT presented the worst performance for 
all metrics during winter and summer. All models have low and positive skewness values, 
implying that they are more likely to forecast radiance values above rather than below the 
mean value. Furthermore, except for SVR during the summer season, all models exhibit 
negative excess kurtosis, indicating that the models are less likely to deliver extreme pre-
diction errors. 

Table 6. Forecasting accuracy of ML algorithms (1 h ahead). 

Winter 
 SVR XGBT CatBoost VOA 

MAE 0.2430 0.2534 0.2426 0.2417 
RMSE 0.3433 0.3507 0.3470 0.3418 
MAPE 28.0122 29.5350 27.2163 27.4862 

R2 0.8466 0.8399 0.8433 0.8480 
SK 0.1336 0.0880 0.0994 0.1039 
K −1.1632 −1.1829 −1.2022 −1.1877 

Summer 
 SVR XGBT CatBoost VOA 

MAE 0.2922 0.3009 0.2905 0.2877 
RMSE 0.4366 0.4426 0.4373 0.4309 
MAPE 28.3590 28.6951 26.8127 27.3177 

R2 0.8389 0.8344 0.8383 0.8430 
SK 0.0462 0.0332 0.0338 0.0360 
K 0.2922 −1.1663 −1.1551 −1.1563 

Figure 8 shows the histogram of absolute errors obtained with each algorithm. The 
number of records is displayed at the top of each bin. It is possible to see that all of the ML 
algorithms exhibit a similar histogram. In all cases, the peak of each error distribution is 
centered around zero, showing that the most likely occurrence is a small solar radiation 
forecast error. 
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Figure 8. Histogram of the absolute error for all ML algorithms. (a) Summer. (b) Winter. 

Figure 9 shows the solar radiation observed, forecast and the residuals obtained with 
the VOA algorithm during the months of winter and summer seasons, respectively. The 
forecasting error is larger in summer than in winter. 

 

 
(a) Winter (August 2021) 
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(b) Summer (February 2021) 

Figure 9. Solar radiation observed, forecast and residuals for 1 h ahead using VOA: (a) winter and 
(b) summer. 

It is important to evaluate the computational performance of the algorithm when 
dealing with real-world applications. Table 7 shows the learning speed in seconds for all 
algorithms using summer and winter datasets, averaged over 20 runs. All of the experi-
ments were performed on a computer with an Intel i5-1035G1 CPU (1.19 GHz) and 8.0 
GByte RAM. XGBT has the lower training speed for summer and winter datasets, 2.85 s 
and 1.75 s, respectively. VOA has the higher training speed for summer and winter da-
tasets, 183.93 s and 14.76 s. VOA combines SVR, XGBT and CatBoost, being more complex. 
All ML algorithms have a higher training speed for the summer dataset because it has 
more registers (data from September to March) than the winter dataset (data from April 
to August). All algorithms have an acceptable testing speed, with an average execution 
computational time of 11 s. 

Table 7. Average learning speed in seconds (s) for all ML algorithms (1 h ahead). 

 Learning Speed (s) 
 SVR XGBT CatBoost VOA 

Summer 63.09 2.85 13.08 183.93 
Winter 9.73 1.75 9.81 14.76 

 Testing Speed (s) 
Summer 36.99 1.44 13.35 13.14 
Winter 4.91 1.17 10.27 10.58 

5.3. Results for Different Temporal Scales 
The variability and stochasticity of photovoltaic generation usually occur on ultra-

short-term and short-term time scales. Therefore, it is important to compare the effective-
ness of the forecasting methodology under different temporal scales. Figure 10 shows the 
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MAE, RMSE, MAPE and R2 for all algorithms, considering three forecasting horizons: 1 
hour ahead, 2 hours ahead, and 3 hours ahead. 

  

  

Figure 10. Performance of ML algorithms for different prediction time horizons: (a) MAE, (b) RMSE, 
(c) MAPE, (d) R2. 

As expected, as the prediction horizon increases, forecasting errors increase and R2 
decreases, indicating the algorithm prediction performance degradation. Overall, the 
VOA demonstrated the best prediction performance among all ML algorithms used, out-
performing other models in every prediction horizon, except for MAPE, wherein Catboost 
had the lowest error for all forecasting horizons. In most cases, XGBT presented the worst 
performance for a short prediction horizon (1 h), while SVR presented the worst perfor-
mance for a longer prediction horizon (3 h). 

Figure 11 shows the histogram and boxplot of absolute errors obtained when using 
VOA for the 1 h ahead and 3 h ahead forecasts. In the boxplot, the lower and upper lines 
denote the first and third quartile values (25th and 75th percentiles), respectively, and the 
median value (50th percentile) is represented by the central line. The lower and upper 
horizontal lines are the smallest and largest non-outliers, respectively, and outliers are 
represented by the ‘+’ symbol. Results show that, as the prediction horizon increases, the 
error distribution tail becomes fatter, and the range of error values increases. It can be 
concluded that the proposed methodology results in acceptable forecasting errors up to 3 
h ahead, with a maximum error of 0.31 (MAE) achieved by VOA. 
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Figure 11. Absolute error using VOA to forecast 1 h ahead and 3 h ahead: (a) histogram and (b) 
boxplot. 

This study presented promising results with the proposed forecasting methodology. 
However, it is important to mention that, if another database from a different location 
needs to be used, the same methodology should be applied, but simulations must be per-
formed to adjust the hyperparameter of the ML algorithms. 

6. Conclusions 
In this paper, a solar forecasting methodology is proposed using machine learning 

algorithms and an ensemble feature selection method. The ensemble feature selection is 
used to choose the most related endogenous and exogenous inputs and their past obser-
vation values and integrates Pearson’s coefficient, mutual information, random forest and 
relief. The advantage of the proposed feature selection method was validated comparing 
the obtained results against two other cases: (a) when only endogenous inputs are used 
and (b) when both endogenous and exogenous inputs are used, selected with Pearson’s 
correlation coefficient. Four state-of-the-art ML algorithms were tested to forecast solar 
radiation, namely SVR, XGBT, CatBoost and VOA. The performance of these algorithms 
was evaluated using widely adopted statistical parameters, such as MAE, RMSE, MAPE, 
R2, skewness and kurtosis. Three prediction time horizons were considered: 1 h, 2 h and 3 
h ahead. 

This study did not aim to improve the accuracy of the machine learning models used 
(SVR, XGBT, CatBoost and VOA) but rather to evaluate and compare their performance 
using different sets of inputs. The forecast methodology proposed in the present research 
differs from the literature by using an ensemble feature selection for choosing past obser-
vation values of both endogenous and exogenous inputs. 

The main results and conclusions are summarized below: 
• The proposed ensemble feature selection outperformed the other two cases analyzed, 

one using only endogenous variables as inputs and the other using endogenous and 
exogenous variables as inputs, selected with Pearson’s correlation coefficient; 

• As the prediction horizon increased, the error distribution tail became fatter and the 
range of error values increased; 

• All investigated machine learning models revealed acceptable forecasting perfor-
mance. Among all algorithms, VOA offered the best predictive performance, outper-
forming other models in every prediction horizon, except for MAPE, wherein Cat-
boost had the lowest error for all forecasting horizons; 

• All algorithms have an acceptable testing speed for real-world applications, with an 
average execution computational time of 11 s. XGBT had a lower training speed, and 
VOA had a higher training speed. 
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• One interesting finding of this research was that forecasting error was larger in sum-
mer than in winter, since the algorithms used are sensitive to the database. 
In this study, the maximum number of past observations adopted in the ensemble 

feature selection method was chosen empirically. The results and conclusions obtained 
suggest that more research should be carried out for the optimal selection of this parame-
ter, aiming to attain more accurate forecasts. Finally, as the performance of ML algorithms 
mainly depends on the dataset used, more experiments can be investigated using different 
datasets from other locations than Brazil. Besides, the proposed methodology can be ap-
plied to other forecasting problems, such as wind speed and load forecasting. 
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