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Abstract: Improving the power density of SOFC stacks will accelerate their integration into mobile
applications. We developed a 3D Multiphysics model validated by experimental results from early
studies to examine the effect of radial and circumferential flows on the power density improvements
in a micro-tubular SOFC. The inserts were placed inside the fuel channel to generate flow in different
directions. The effects of geometric parameters of these inserts on flow and mass transfer in the fuel
channel and porous anode were analyzed. We demonstrate that the radial flow enables the fuel to
penetrate directly into the porous anode, increasing the local fuel concentration and enhancing the
fuel diffusion to the anode triple-phase boundaries. We found that the circumferential flow has a
negligible effect on the diffusion process in the anode and on the increase in power density. The
impact of local convective and diffusive mass transfer mechanisms on power density improvement
is analyzed using the local Péclet number along the axial direction. Enlarging the radial velocity
component perpendicular to the porous anode could effectively increase the power density of the
micro-tubular SOFC by 37%. This study helps improve our understanding of mass transfer in fuel
channels and helps build a foundation for SOFC channel designs and optimizations.

Keywords: solid oxide fuel cell; mass transfer; radial and circumferential flows; electrochemical reactions

1. Introduction

The increasing demand for energy has a detrimental impact on the environment [1].
There are intense research efforts that are focused on finding efficient, inexpensive, and
environmentally friendly ways to produce energy. A significant portion of this effort
is devoted to fuel cell technology, which is an energy conversion system that produces
electricity directly from oxidizing a fuel through electrochemical reactions [2]. Compared
to other power generation systems, fuel cells have a high electrical efficiency of 40 to
60% [3]. Fuel cells come in several types, such as alkaline fuel cells (AFC), proton exchange
membrane fuel cells (PEMFC), and solid oxide fuel cells (SOFC). Among these fuel cell
technologies, the alkaline fuel cell (AFC) was one of the first fuel cell technologies used in
real-world applications and made electrical power generation from hydrogen feasible [4].
It has the benefit of operating almost instantly without pre-heating requirements, even
at below-freezing temperatures [5]. Alkaline fuel cell stacks are used in spacecrafts to
generate electricity and provide drinkable water for astronauts [6]. PEMFC stacks are
considered a good candidate for powering vehicles [7]. They have the advantage of
a fast start-up process and a high volumetric power density [8]. Solid oxide fuel cell
stacks are attracting great attention from both the automotive and aircraft industries [9–11]
due to their fuel flexibility [12], compact design, and high-power efficiency [13–15]. The
electrochemical reactions in SOFC stacks do not require a platinum catalyst [16]. Early
studies of SOFC stacks were mainly concerned with their potential application in stationary
power generation [17]. Recently, the application of solid oxide fuel cells (SOFC) in powering
vehicles has consistently evolved. Several successful demonstrations of SOFC in mobile
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applications have been made, including the integration of a SOFC heat engine within a
passenger car [18], a SOFC-based auxiliary power unit for a heavy-duty long-haul truck [19],
and a regional jet [20]. Other research institutes developed miniaturized SOFC stacks to
power drones and to replace the lithium-ion batteries in cellphones and laptops [21].
However, several challenges are holding back the full integration of this technology in
mobile applications, such as long start-up time, poor thermal cycling durability, and low
stack power density. Recent studies made significant progress in reducing the start-up
time [22–24] and improving the thermal cycling reliability [25–27]. Recently, the problem of
low output power density has been receiving more and more attention for both stationary
and mobile applications. Improving the output power density can effectively reduce the
commercialization cost and the size of the SOFC stack to meet the requirements of the
automotive and aircraft industries.

Rigorously understanding the influence of fluid dynamics of the reactants on elec-
trochemical reactions contributes significantly to improving the output power density of
SOFC stacks. The local distribution and consumption of these reactants largely depend on
the channel design of the SOFC stack. The flow characteristics could primarily influence
the local electrochemical reaction in the SOFC stack. In the literature, the flow field designs
are classified into three main categories: designing different inlet and outlet manifolds,
designing various channel shapes, and placing inserts in flow channels.

The purpose of inlet and outlet manifolds design is to evenly distribute the airflow
inside the SOFC stack. Numerous studies have examined the influence of various manifold
designs on the performance of SOFC stacks. A detailed examination of the manifold design
influence on the performance of a single MT-SOFC using three different flow manifold
configurations, including single inlet/outlet line-type and single and double inlet/outlet
Z-type, was conducted by Yu et al. [28]. Their investigation showed that compared to
the single inlet/outlet line-type and Z-type, the double inlet/outlet Z-type could better
improve the airflow distribution quality. A later study examined single inlet/outlet line-
type, double inlet/outlet U-type, and modified external airflow path type for a 49-tubular
SOFC stack [29]. They discovered that reducing the width of the exhaust header and the
first tube row to half in the modified type was essential in increasing SOFC performance.
The improved external airflow channel provided enough air and better gas distribution
compared to the other types. The influence of manifold design on SOFC power density
was further investigated with other channel flow field designs, including helical design,
traditional parallel and modified parallel designs, as well as single-, double-, and triple-
entry serpentine designs [30]. The results showed that the triple-entry serpentine flow field
design outperforms the single and double serpentine designs in terms of performance by
5.18%. Another previous study investigated the effect of inlet/outlet manifolds on flow
uniformity in planar SOFC stacks [31]. It is important to note that their research found that
the width ratio of the inlet manifold to the outlet manifold was the most crucial element
affecting flow uniformity. They found that increasing the width ratio of the inlet to outlet
manifold could increase the flow uniformity index. However, they mention that increasing
the flow uniformity index above 0.80 could negatively affect the volumetric power density.
Valery et al. [32] tried to improve the performance of a planar SOFC by intensifying the
mass transfer with radial guides in straight channels. They found that the cell performance
of the new guided flow channel design achieves a more uniform velocity distribution,
current density, and species concentration when compared to the conventional parallel
flow channel design. Similarly, Huang et al. [33] examined the influence of four different
interconnect designs on the power density of a planar SOFC. They found that the design
with small, evenly spaced guide vanes resulted in a more uniform flow distribution than
the other designs. It also eliminated the local hot spots and increased the peak power
density by 11%.

The shape of the channel is another factor that affects the convective heat and mass
transfer characteristics in SOFC stacks. Different flow channel shapes, such as rectangular,
triangular, and trapezoidal, have been investigated. Khazaee studied the influence of the
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three-flow channel shapes on a planar SOFC performance [34]. In their research, they
found that the rectangular channel resulted in higher performance when compared to the
triangular and trapezoidal. Rectangular and triangular flow channels resulted in a 27%
and 22% increase in power density, respectively, compared to the trapezoidal design. Liu’s
study realized that when optimizing the channel rib-geometry for a pitch greater than 2 mm,
the interconnect rib width had a noticeable impact on the SOFC output current density,
which increased by 10 to 20% compared to the conventional interconnect rib design [35].
Another related study examined the influence of the interconnect flow channel design on
the performance of a planar SOFC [36]. They found that substituting the cathode flow
channel with a porous current collector can increase the power density by 6.3% and the
electrical efficiency by 8.6% compared to the conventional interconnect design. In order to
increase the volumetric power density of SOFC, Christman sought to increase the reaction
area inside the flow channel by adopting the cross-flow roughness technique with four
rib-geometries [37]. In their research, they reported that the increase in the surface area of
the electrolyte was proportional to the increase in power density. While at low Reynolds
numbers, the cross-flow roughness geometries had a negligible effect on flow mixing. The
cross-flow roughness geometries could enhance the volumetric power density and the
active area of the cells without compromising their thermal stability.

The performance of the SOFC stack can also be enhanced using an insert structure in
fuel channels. Huang et al. [33] successfully increased the peak power density up to 14%
by placing a Ni-mesh insert as the contact layer between the anode and the interconnect.
This inspired Canavar et al. to develop an innovative flow field design using woven nickel
meshed wire insert inside the anode channel for a large-sized tubular SOFC [38]. The
experiment showed that the flow field created solely by the woven nickel meshed insert
results in a peak power density of 36% compared to the conventional flow field design.
The increase in power density may result from secondary flow (the cross-sectional flow
perpendicular to the main flow direction) since the flow characteristics directly affect the
mass transfer characteristics inside the porous electrode. Although these early studies
proved that the secondary flow created by the insert structure has a great potential to
increase the power density, the influence of the secondary flow on the mass transfer of
reactants and the electrochemical reactions needs further investigation. Our early study
analyzes the working mechanisms of the recirculating flows in the air channels on heat
transfer enhancement [39], but the influences of different insert structures on mass transfer
characteristics in fuel channels are not well-discussed. The secondary flow in a tubular
SOFC includes both radial and circumferential flows. Our recent study partially covered the
effect of radial flows on electrochemical reactions [40]. However, there was no discussion
on how the width of the inserts affected the electrochemical reactions. The mixing effect in
the fuel channels due to the circumferential flows was also not investigated.

In this study, we compared the effects of two different insert structures in fuel channels
on power density improvements and gas-phase pressure drop of the micro-tubular SOFC.
The first is cone-insert, which induces the flow in the radial direction and enlarges the
velocity component perpendicular to the electrode, forcing the fuel to enter the anode.
The other is a helical screw insert that induces the flow in the circumferential direction,
which enhances fuel-mixing in fuel channels. The flow and mass transfer characteristics
in the fuel channel and porous anode were simulated, and we discuss the relationship
between flow characteristics and power density improvement. The influence of insert
parameters such as gap, width, and pitch variations on the power density improvement
of the micro-tubular SOFC were investigated. We propose a criterion based on the local
Péclet number along the axial direction to analyze the effect of the local convective and
diffusive mass transfer mechanism on the power density improvements. The cell mole
fraction distribution, normalized power density, and pressure drop are also plotted and
compared to a micro-tubular SOFC without inserts.
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In Section 2, we provide a brief overview of model development, boundary conditions,
and experimental validation. In Section 3, we present and discuss the influences of the radial
and circumferential flows on the electrochemical reactions and gas-phase pressure drop.

2. Model Description
2.1. Geometry Description

A 3D Multiphysics model was developed in this study to examine the flow and mass
transfer characteristics of a single anode-supported micro-tubular solid oxide fuel cell with
inserts placed in fuel channels. As illustrated in Figure 1, this model considered two types
of inserts: cones and helical screw inserts. The cone-inserts mainly induced the radial
flows, while the helical screw inserts aimed to generate the circumferential flows. Table 1
summarizes the geometrical parameters of the micro-tubular SOFC.
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Figure 1. Schematic of micro-tubular solid oxide fuel cells with (a) cone-insert and (b) helical
screw insert.

Table 1. The geometry details of the micro-tubular solid oxide fuel cells investigated in this study.

Parameters Symbol Value Unit

Fuel channel diameter D0 7 mm
Internal diameter Di 1 mm

Total length Lt 50 mm
Anode thickness ta 2 mm

Electrolyte thickness te 50 µm
Cathode thickness tc 250 µm

2.2. Numerical Model
2.2.1. Electrochemical Reactions

In this study, we limited ourselves to a carbon-monoxide-fueled SOFC. As the hy-
drocarbon fuel was reformed, hydrogen and carbon monoxide were produced for the
electrochemical reactions. Since hydrogen diffusion in anodes is much faster than carbon
monoxide due to the molecular size, we mainly focused on examining the effect of the
radial and circumferential flows on the mass transfer characteristics of the carbon monoxide
in the fuel channel and anode of a micro-tubular SOFC. The overall reaction is

2CO + O2 → 2CO2 (1)

Through the porous cathode, the oxygen molecules diffuse to reach the cathode’s
triple-phase boundaries (TPB), where they are reduced to oxygen ions as

O2 + 4e− → 2O2− (2)
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The oxygen ions produced are then transported through the electrolyte to the triple-
phase boundaries in the anode and combine with the carbon monoxide to produce electrons
and carbon dioxide as

2O2− + 2CO→ 2CO2 + 4e− (3)

The operational potential of this electrochemical reaction, E, is determined as follows:

E = EOCV − ηact,a − ηact,c − ηohmic (4)

Here, EOCV is the equilibrium potential at a current density equal to zero. The subscript
a is for the anode electrode and c is for the cathode electrode. ηact represents the activation
overpotential, and the ηohmic represents the ohmic overpotential. The open-circuit voltage
potential is expressed as

EOCV = 1.46713− 0.0004527T +
RT
2F

ln

 PCO

PCO2

√
PO2

Patm

 (5)

Here, P denotes the local gas partial pressure at the triple-phase boundaries, and CO,
O2, and CO2 denote the specific gas components. Patm is the ambient pressure [41]. The
Butler–Volmer equations are used to calculate the activation overpotential:

ia = Aυ,ai0,CO

(
PCO

PCO,ref
exp

(( n
υ − α1

)
Fηact

RT

)
−

PCO2

PCO2,ref
exp

(
−α1Fηact

RT

))
(6)

ic = Aυ,ci0,O2

(
PO2

PO2,ref
exp

(( n
υ − α2

)
Fηact

RT

)
− exp

(
−α2Fηact

RT

))
(7)

Here, ia and ic are the anodic and cathodic current density at the reference temperature
Tref, respectively. n is the number of electrons transferred per υmolar reactant in the elec-
trochemical reaction. α1 and α2 are the cathodic direction transfer coefficient defined in an
early study [42], which are 1 and 2, respectively. The Faraday constant is F. i0 is the reference
exchange current density (A/m2). This can be stated in the form of Equations (8) and (9)
using the Arrhenius expression [43]:

i0,CO = iCO,ref exp
[
−Ea

R

(
1
T
− 1

Tref

)]
(8)

i0,O2 = iO2,ref exp
[
−Ec

R

(
1
T
− 1

Tref

)]
(9)

The ohmic losses generated by electron/ion conduction are calculated from

il = −σl,eff∇φl (10)

is = −σs,eff∇φs (11)

Here, σeff is the effective conductivity, and φ is the potential. The subscript l is for the
electrolyte, and s is for the electrodes. The effective conductivities of the porous electrodes
and the structural factors are defined as follows:

σl,eff = σl·
Vl
τl

(12)

σs,eff = σs·
Vs

τs
(13)

Here, V is the volume fraction and τ is the tortuosity.
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2.2.2. Momentum Transport

The steady-state continuity and Navier–Stokes equations are solved to obtain the
velocity and pressure distributions of the gas mixture in the anode gas channel as

∇ · (ρu) = 0 (14)

ρ(u·∇)u = ∇·
[
−P + µ

{
∇u + (∇u)T − 2

3
(∇·u)

}]
(15)

Here, ρ, µ, and u denote the density, dynamic viscosity, and gas mixture velocity. P
represents pressure. We can calculate the gas mixture density from the ideal gas law:

ρ =
PM
RT

(16)

M =
n

∑
i=1

xi Mi (17)

Here, R is the universal gas constant, M is the molar mass, and T is the temperature.
The viscosity of the mixture inside the porous media is expressed by Wilke’s method [44] as

µ =
n

∑
i=1

xiµi

∑n
j=1 xjφij

(18)

Here, the subscript i and j represent different gas components, while φij is defined as

φij =

(Mj

Mi

) 1
2

(19)

The Brinkman equations are used to compute and obtain the velocity and pressure
distributions inside the porous electrodes, as shown in Equations (20) and (21).

∇·(ρu) = Qm (20)

ρ

ε
(u·∇)u

ε
= ∇

[
−p +

µ

ε

{
∇u + (∇u)T − 2

3
(∇·u)

}]
−
(

µ

k
+

Qm

ε2

)
·u (21)

Qm =
ia
2F
(

MCO2 −MCO
)

(22)

Here, ε is the electrode porosity and k denotes the permeability of the porous media.
The source term Qm that appears in the mass and momentum equations is a result of the
electrochemical reactions, as shown in Equation (20).

2.2.3. Mass Transport

The mass transfer of gas mixture in the micro-tubular SOFC is mainly caused by
diffusion and convection. The concentration of each gas component of the multi-component
mixture is described and analyzed by the species conservation equation:

∇
(
−ρωi ∑ Deff,ij.∇xj +

(
xj −ωj

) ∇p
p
·u
)
+ ρ(u·∇)ωi = Si (23)

where ω is the mass fraction and Si is the source term as a result of the generated species
due to electrochemical reactions. The molecular diffusion coefficients can be calculated as

Dij =
101T1.75·

(
1

Mi
+ 1

Mj

)0.5

p.
(

v1/3
i + v1/3

j

)2 (24)
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where M is the molar mass (kg·kmol−1) and v is the diffusion volume (cm3).
The porosity (ε) and tortuosity (τ) are used to correct the effective diffusion coefficient

since it depends on the porous material structure and reduced diffusivity in the porous
electrodes, as follows [45]:

Deff,ij =
ε

τ

(
DijDk,ij

Dij + Dk,ij

)
(25)

The Knudsen diffusion coefficient can be calculated from [46];

Dk,ij =
2
3

rp

√
8RT
πMij

(26)

Here, rp is the effective pore radius of the electrodes.

2.3. Numerical Model

The boundary conditions applied to the micro-tubular solid oxide fuel cells are illus-
trated in Figure 2. We applied a uniform O2 concentration to the outer surface of the porous
cathode, a uniform CO mass flow rate at the fuel inlet, and the ambient pressure at the fuel
outlet. The CO mole fraction was fixed as 0.95 at the fuel inlet for all cases investigated.
The operating potential was applied to the cathode surface, while the zero potential is
applied to the anode surface. At the insert walls, we used a no-slip boundary condition.
The temperature is assumed to be 800 °C everywhere in the SOFC. The carbon deposition
inside the porous electrode is not considered in this simulation. Table 2 summarizes the
parameters used in this study.

Table 2. A summary of parameters used in this study.

Parameters Symbols Values Units Ref.

Activation energy for the anode reaction Ea 120 kJ mol−1 [47]
Activation energy for the cathode reaction Ec 130 kJ mol−1 [47]

Electrode porosity ε 0.35 - [43]
Specific surface area of the anode Aυ,a 2.33 × 105 m−1 [48]

Specific surface area of the cathode Aυ,c 2.46 × 105 m−1 [48]
Permeability k 1 × 10−11 m2 [49]

Electrode tortuosity τ 4 - [50]
Viscosity, CO µCO 4.1877 × 10−5 Pa·s [44]
Viscosity, O2 µO2 5.1343 × 10−5 Pa·s [44]

Viscosity, CO2 µCO2 4.1904 × 10−5 Pa·s [44]
Viscosity, N2 µN2 4.3529 × 10−5 Pa·s [44]

Electrical conductivity, anode σNi 30,316 S·m−1 [51]
Electrical conductivity, cathode σLSM 12,793 S·m−1 [51]
Ionic conductivity, electrolyte σYSZ 2.2669 S·m−1 [51]

Diffusion volume, CO υCO 18.0 cm3 [52]
Diffusion volume, O2 υO2 16.3 cm3 [52]

Diffusion volume, CO2 υCO2 26.7 cm3 [52]
Diffusion volume, N2 υN2 18.5 cm3 [52]

Effective radius of the pores rp 0.5 µm [53]
Ambient pressure Patm 101.325 kPa [41]

Inlet mass flow rate at the anode Qfuel 6.27 × 10−6 kg s−1 -
Inlet mole fraction, CO xCO 0.95 - -
Inlet mole fraction, O2 xO2 0.21 - -
Reference temperature Tref 800 ◦C -

Operating potential E 0.6 V -



Energies 2022, 15, 7048 8 of 21

Energies 2022, 15, x FOR PEER REVIEW 7 of 21 
 

 

where ω is the mass fraction and Si is the source term as a result of the generated 

species due to electrochemical reactions. The molecular diffusion coefficients can be cal-

culated as 

��� =

101��.�� ∙ �
1

��
+

1
��

�
�.�

�. ���
� �⁄

+ ��
� �⁄

�
�  (24)

where M is the molar mass (kg·kmol−1) and v is the diffusion volume (cm3).  

The porosity (ε) and tortuosity (τ) are used to correct the effective diffusion coeffi-

cient since it depends on the porous material structure and reduced diffusivity in the po-

rous electrodes, as follows [45]: 

����,�� =
�

�
�

�����,��

��� + ��,��

� (25)

The Knudsen diffusion coefficient can be calculated from [46]; 

��,�� =
2

3
���

8��

����

  (26)

Here, rp is the effective pore radius of the electrodes.  

2.3. Numerical Model 

The boundary conditions applied to the micro-tubular solid oxide fuel cells are illus-

trated in Figure 2. We applied a uniform O2 concentration to the outer surface of the po-

rous cathode, a uniform CO mass flow rate at the fuel inlet, and the ambient pressure at 

the fuel outlet. The CO mole fraction was fixed as 0.95 at the fuel inlet for all cases inves-

tigated. The operating potential was applied to the cathode surface, while the zero poten-

tial is applied to the anode surface. At the insert walls, we used a no-slip boundary con-

dition. The temperature is assumed to be 800 ℃ everywhere in the SOFC. The carbon 

deposition inside the porous electrode is not considered in this simulation. Table 2 sum-

marizes the parameters used in this study. 

 

Figure 2. A summary of boundary conditions of the micro-tubular solid oxide fuel cells. 

Table 2. A summary of parameters used in this study. 

Parameters Symbols Values Units Ref. 

Activation energy for the anode reaction Ea 120 kJ mol−1 [47] 

Activation energy for the cathode reaction Ec 130 kJ mol−1 [47] 

Electrode porosity ε 0.35 - [43] 

Specific surface area of the anode Aυ,a 2.33 × 105 m−1 [48] 

Specific surface area of the cathode Aυ,c 2.46 × 105 m−1 [48] 

Permeability k 1 × 10−11 m2 [49] 
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2.4. Model Validation

We applied mapped mesh for the fuel channel, cone-inserts, and the PEN (posi-
tive electrode, electrolyte, and negative electrode) structure to ensure the generation of
a fully structured mesh of the micro-tubular SOFC. We compared the simulation results
obtained from the model with four different total mesh numbers, which are 150,000, 250,000,
350,000, and 450,000, respectively. A mesh number larger than 250,000 does not affect the
steady-state solutions by more than 1%. We, therefore, used 250,000 mesh elements for
our simulations.

Experimental data from Mirahmadi’s study was used to validate the SOFC Multi-
physics model [43]. The polarization curves generated from our simulation and those
measured in their experimental data are shown in Figure 3a. Our simulated current density,
measured at a given voltage, agrees well with the experimental results. The flow transport
characteristics in the micro-tubular SOFC fuel channel were validated by comparing the
friction factor as a function of the Reynolds number between our simulation and the experi-
mental data from an earlier study [54]. The results indicate that our calculated friction factor
matches well with the experimental data within 10% due to the experimental uncertainty
reported, proving that the transfer process of the flow is properly simulated in our study.
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The frictional factor of the internal pipe flow shown in Figure 3b is defined as

f =
2D
ρu2

∆p
L

(27)

where ∆p is the pressure difference between the area averaged pressure at the inlet and
outlet cross sections of the fully developed region, L is the length of the fully developed
region, D is the hydraulic diameter, and ρ and u are the fluid density and velocity.

3. Results and Discussion
3.1. Effect of Radial Flows

We first examined the effect of the radial flows on the mass transfer characteristics of
fuel and the overall output power density of the micro-tubular SOFC. A cone-insert was
applied to generate the flow in the radial direction, as illustrated in Figure 4. The effects
of different gaps, widths, and pitches on the flow and mass transfer characteristics in fuel
channels of micro-tubular SOFCs with cone-inserts were studied. The cone-insert gap, Cgap,
is defined as the clearance between the cone-insert and the anode-fuel channel interface,
while the width, Cwidth, is the thickness of the cone base and the pitch, Cpitch, is the distance
between two successive cones.
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Figure 4. Schematic of the porous anode and cone-insert inside the fuel channel of micro-
tubular SOFC.

We initially examined the effect of cone-insert gap variation “Cgap” on flow and mass
transfer characteristics in a micro-tubular SOFC. Figure 5 plots the predicted streamlines
and CO mole fractions in the mid-plane throughout the central axis of the SOFC. The
streamlines in the flow channel were parallel to the anode-fuel channel interface (z-direction)
for the case without the insert. The streamlines within the anode were oriented radially,
showing the direction of fuel diffusion. The streamlines exhibited tiny fluctuations at
the corners of the cone-inserts for the case with a 1 mm gap, as illustrated in Figure 5.
The influence of these fluctuations on fuel diffusion is negligible. As the gap was further
decreased from 1 mm to 0.1 mm or 0.01 mm, the fuel was forced into the porous anodes,
which significantly affects the fuel diffusion, as observed from the streamlines in the anodes.
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The same trend can also be observed from the CO mole fraction distributions. For
the no-insert case, the mole fraction of CO gradually decreases along the flow direction (z-
direction) due to the electrochemical reaction. The cone-insert case with a 1 mm gap exhibits
a similar trend as the case without an insert. As the gap decreases, the CO mole fraction
begins to fluctuate along the r-direction, as represented by the wavy patterns shown in the
contours of CO mole fractions of the case with 0.1 mm and 0.01 mm gaps. This indicates
that decreasing the gap is able to drive more fuel into anode pores through the convective
mass transfer, which could facilitate the fuel diffusion process inside porous anodes.

The effect of the radial flow induced by the cone-insert could be characterized by the
local Péclet number at the anode-fuel channel interface. The local Péclet number, Pe, is the
ratio of convection to diffusion and is expressed as

Pe =
rp·ur

Dcoco2,eff
(28)

In this equation, ur is the characteristic velocity in the r-direction, rp is the effective
pore radius, and Dcoco2,eff is the effective diffusion coefficient. Figure 6a compares the local
Péclet numbers as a function of axial locations for the cases with gaps of 1 mm, 0.1 mm,
and 0.01 mm. The local Péclet number for the no-insert case is at the order of magnitude
of 10−5, indicating a small convective mass transfer at the anode-fuel channel interface.
The case with a 1 mm gap is comparable to the no-insert case, showing insignificant peaks
at the order of 10−5, which indicates a low r-direction velocity at the anode-fuel channel
interface. This is in part because most of the fuel can flow through the 1 mm gap between
the cone-insert and the anode-fuel channel interface instead of entering the anode. As
the gap is decreased from 1 mm to 0.1 mm, the local Péclet number is increased, and it
reaches the maximum value at the base of the cones, indicating that the fuel enters the
anode pores at a relatively large r-direction velocity. The case with a 0.1 mm gap shows a
maximum local Péclet number of 0.005. As the gap is further decreased to 0.01 mm, these
peaks become significantly higher and wider, indicating that more fuel is delivered into
the porous anode. The positive and negative peaks highlight that the fuel enters or leaves
the anode, respectively. The local Péclet number peaks with a higher order of magnitude,
indicating that convective and diffusive mass transfer of fuel in the radial direction are
comparable at the anode-fuel channel interface. The convective mass transfer along the
radial direction enables more fuel to reach the triple-phase boundaries and therefore has
the potential to improve the SOFC power density.
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Figure 6. The influence of cone-insert of different gaps on (a) local Péclet number variation in the
anode-fuel channel interface along the axial direction, (b) the output power density and the gas-phase
pressure drop of the micro-tubular SOFC.

Figure 6b shows the influence of the gap between inserts and anode-fuel channel
interface on the output power density and gas-phase pressure drop of the micro-tubular
SOFCs with cone-inserts. In order to compare the power density improvement of the
tubular SOFC with an insert and the conventional SOFC without an insert, we used the
normalized power density, Pn, which is the ratio of the power density of the micro-tubular
SOFC with inserts to that with no insert, expressed as

Pn =
Pin

P0
(29)

Here, Pin represents the power density from the micro-tubular SOFC with an insert,
while P0 represents the power density from the conventional micro-tubular SOFC without
an insert. The gas-phase pressure drop is calculated from the difference between the fuel
inlet and outlet divided by the total length of the SOFC. A smaller gap between inserts
and the anode-channel interface drives more fuel to enter the porous anode, leading to
a higher CO concentration and a large concentration gradient inside the porous anode.
This facilitates the fuel diffusion to the triple-phase boundaries and improves the output
power density. A 0.01 mm gap could improve the output power density of SOFC by 24%.
However, the increase in the SOFC power density coexists with the increase in pressure
drop. As more CO fuel is forced to travel through the porous anode, a higher pump power
is required to overcome the friction between the gas and porous electrode. A cone-insert
could lead to a pressure drop of around 300 Pa/mm for the case with a 0.01 mm gap.

We then studied the effect of the cone-insert base width variation “Cwidth” on the mass
transfer of fuel in the micro-tubular SOFC. Figure 7 shows the effect of width variations of
the cone-insert base on the streamlines and CO mole fractions distributions in micro-tubular
SOFCs. In these cases, the gap between cone-inserts and the anode-fuel channel interface
was fixed at 0.01 mm, and the widths of the base of cone-inserts were 0.1 mm, 1 mm, and
5 mm, respectively. It can be seen from the streamline plots that the wavy patterns become
wider as the width of the cone base increases. This is due in part to the fact that the fuel is
forced to travel a longer distance for the case with a larger width. It also affects the radial
variation of the CO mole fraction inside the porous anode. Compared to the case with
1 mm and 0.1 mm width, the cone-insert case of a 5 mm width shows a lower average
molar concentration at the SOFC outlet, meaning more CO is consumed. This leads to the
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conclusion that forcing the fuel to travel inside the anode at a longer distance could result
in a higher output power density.

Energies 2022, 15, x FOR PEER REVIEW 12 of 21 
 

 

that the fuel is forced to travel a longer distance for the case with a larger width. It also 

affects the radial variation of the CO mole fraction inside the porous anode. Compared to 

the case with 1 mm and 0.1 mm width, the cone-insert case of a 5 mm width shows a lower 

average molar concentration at the SOFC outlet, meaning more CO is consumed. This 

leads to the conclusion that forcing the fuel to travel inside the anode at a longer distance 

could result in a higher output power density. 

 

Figure 7. The streamlines and CO mole fractions of the micro-tubular SOFCs, without an insert and 

with cone-inserts of different widths (the thickness of the cone base). 

We plotted the local Péclet number variations at the anode-fuel channel interface 

along the axial direction for the cases with different widths of the cone base to study their 

effect on the mass transfer characteristics. The cone-insert with a 0.1 mm width has the 

highest peaks at the order of magnitude of 0.14. The cases with 1 mm and 5 mm widths 

show peaks of comparable magnitude. This is due primarily to the surface area of the 

forced fuel to enter and travel inside the porous anode. The peak in the case with 0.1 mm 

width is the sharpest among the three cases, indicating that nearly all the fuel enters the 

anode and travels in a relatively smaller region than those with 1 mm and 5 mm widths. 

As the width of the cone base increases, the fuel travels longer in the anode, which could 

be observed between two successive peaks in Figure 8a. 

  

(a) (b) 

Figure 8. The influence of cone-insert of different widths on (a) local Péclet number variation in the 

anode-fuel channel interface along the axial direction, (b) the output power density and gas-phase 

pressure drop of micro-tubular SOFC. 

Figure 7. The streamlines and CO mole fractions of the micro-tubular SOFCs, without an insert and
with cone-inserts of different widths (the thickness of the cone base).

We plotted the local Péclet number variations at the anode-fuel channel interface along
the axial direction for the cases with different widths of the cone base to study their effect
on the mass transfer characteristics. The cone-insert with a 0.1 mm width has the highest
peaks at the order of magnitude of 0.14. The cases with 1 mm and 5 mm widths show peaks
of comparable magnitude. This is due primarily to the surface area of the forced fuel to
enter and travel inside the porous anode. The peak in the case with 0.1 mm width is the
sharpest among the three cases, indicating that nearly all the fuel enters the anode and
travels in a relatively smaller region than those with 1 mm and 5 mm widths. As the width
of the cone base increases, the fuel travels longer in the anode, which could be observed
between two successive peaks in Figure 8a.
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Figure 8. The influence of cone-insert of different widths on (a) local Péclet number variation in the
anode-fuel channel interface along the axial direction, (b) the output power density and gas-phase
pressure drop of micro-tubular SOFC.



Energies 2022, 15, 7048 13 of 21

Figure 8b illustrates the influence of the width variation on the SOFC power density
and gas-phase pressure drop. For the same chosen gap, a wider width of the base of the
cone allows fuel to travel a longer distance within the porous anode, resulting in large
high-CO concentration zones. The high-concentration zone contributes to the diffusion
of fuel to the triple-phase boundaries, therefore increasing the SOFC power density. The
cone-insert with a 5 mm width has the potential to increase the output power density by
37%. The power density improvement is consistent with early observation [38], which
experimentally examined the effect of the fuel channel with wire nickel meshes randomly
placed inside. Their new channel design showed a 36% improvement in the peak power
density. However, as with the gap cases, improving the SOFC power density comes at the
cost of increasing the pressure drop due to the higher friction loss in the porous anode.
Higher pump power is required to sustain the flow. A cone-insert with a width of 5 mm
may result in a pressure drop of around 600 Pa/mm.

We next studied the effect of pitch variation “Cpitch” on flow and mass transfer char-
acteristics in a micro-tubular SOFC. Figure 9 compares the streamlines and the CO mole
fractions at the plane across the center axis for no insert and three cone-insert cases with a
fixed gap of 0.01 mm and different pitches of 12 mm, 18 mm, and 24 mm. Figure 9 demon-
strates that the wave interactions caused by the presence of the cone-insert become weaker
as the pitch increases, so increasing the pitch causes a decrease in the radial concentration.
The number of wavy patterns is inversely proportional to the insert pitch. A smaller insert
pitch could enable fuel to enter the anode repeatedly.
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Figure 9. The streamlines and CO mole fractions of the micro-tubular SOFCs, without an insert and
with cone-inserts of different pitches.

Figure 10a illustrates the axial Péclet number variations for the cases with pitches
of 12 mm, 18 mm, and 24 mm, respectively. The Péclet number peaks have a relatively
similar order of magnitude for all the cases. The location and the distance of the peaks vary
depending entirely on the cone-insert location inside the fuel channel. The pitch case of
24 mm shows a slightly higher order of magnitude compared to 18 mm and 12 mm. This
is mainly because the number of cones inserted directly affects the pressure and velocity
profiles. As the pitch increases, the number of cones inserted decreases, which can be seen
from the number of peaks.
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Figure 10. The influence of cone-insert of different pitches on (a) local Péclet number variation in the
anode-fuel channel interface along the axial direction, (b) the output power density and gas-phase
pressure drop of micro-tubular SOFC.

As seen in Figure 10b, the cone-insert pitch has an effect on the overall power density
and gas-phase pressure drop of the micro-tubular SOFC. For a smaller pitch, two successive
cones are closer, which allows more fuel to enter and pass through the porous anode. This
promotes the fuel diffusion to the triple-phase boundaries, improving the SOFC power
density. A 6 mm pitch cone-insert has the ability to enhance the output power density by
33.6%. Similar to the gap and width cases, increasing the SOFC power density results in an
increase in pressure drop. A cone-insert with a pitch of 6 mm may result in a pressure drop
up to 500 Pa/mm.

To study the effect of the radial flow on the electrochemical reactions, we plotted the
relationship between the normalized power density and the average Péclet numbers for all
the cone-insert cases in Figure 11. The average Péclet number, Peave, is expressed as

Peave =
1
A

∫ |ur|rp

Dcoco2,eff
dA (30)

Here, ur is the local fuel velocity perpendicular to the anode surface at the anode-fuel
channel interface, and A is the surface area of the interface between the fuel channel and
porous anode. Figure 11a shows that, in general, an increase in the Péclet number leads
to an increase in the SOFC power density. This is associated with the fact that radial flow
facilitates fuel diffusion inside the porous anode, which then improves the electrochemical
reactions and increases the power density. It should be noted from data group 2 that the
normalized power densities are different for a similar average Péclet number. This proves
that the distance fuel traveling inside the porous anode is another important factor for
power density improvement, since a larger width of the cone base forces fuel to travel a
longer distance in the anode. This is consistent with the observations in Figure 11b, which
compares the current density distributions for the micro-tubular SOFCs with different
cone-inserts. We demonstrate that the local current densities of the SOFC with inserts are
systematically higher than that of the conventional micro-tubular SOFC, indicating that
the electrochemical reactions are enhanced by the high local fuel concentration caused by
radial flows. A smaller gap causes a higher current density peak, while a larger width also
leads to a wider current density peak due to the long traveling distance of fuel in the anode.
A decrease in the pitch leads to an increase in the number of peaks, which could effectively
improve the output power density. However, it should be noted that increasing the local
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current density could also result in higher heat generations from electrochemical reactions.
This may lead to local hotspots or high-temperature gradients, which might accelerate the
degradation of the micro-tubular SOFC.
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3.2. Effect of Circumferential Flow

We next studied the effect of circumferential flows on the mass transfer of carbon
monoxide in the fuel channel and the anode of a micro-tubular SOFC. The flow in the
circumferential direction is induced by the helical screw inserts.

The effects of different gaps and pitches of helical screw inserts on the power density
enhancement were investigated, as illustrated in Figure 12a. The gap, Hgap, is the distance
between the helical screw insert and the anode-fuel channel interface. The pitch, Hpitch, is
the distance measured between two points on the same plane of the helix tape that is one
turn apart and parallel to the axis. The width, Hwidth, is the thickness of the helix tape, and
it was fixed as 0.2 mm in our study.
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Figure 12b shows the 3D streamlines of a single MT-SOFC with a helical screw insert
inside the fuel channel. The streamlines indicate that the fuel is rotating around the insert
in the fuel channel. The helical screw inserts were able to generate circumferential flow.
The influence of circumferential flow on the mass transfer characteristics of a tubular SOFC
is illustrated in Figure 13.
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Figure 13. The streamlines (left) and CO mole fractions (right) of the micro-tubular SOFCs (a) without
an insert; and with helical screw inserts of different (b) pitches (c) gaps.

We investigated the effect of the pitch and the gap of the helical screw insert on the
flow and mass transfer in a micro-tubular SOFC. For all examined cases, the streamlines
in the fuel channel are almost parallel to the anode-fuel channel interface, as shown in
Figure 13. The streamlines display minor fluctuation for the case with a 6.25 mm pitch, and
these fluctuations become weaker as the pitch increases. However, the streamlines in the
anode are not affected by this fluctuation, which means that the helical screw insert cannot
force the fuel to penetrate into the anode. As shown in the CO mole fraction contours, the
concentration distribution in all cases with helical screw inserts is similar to the traditional
SOFC. This implies that a helical screw insert cannot increase the amount of fuel diffused
into anode pores regardless of the pitch or gap variation.

We further examined the effect of helical screw insert gap variation Hgap on the
flow and mass transfer characteristics of micro-tubular SOFC in anode and fuel channels.
Figure 13c illustrates the simulated streamlines and CO mole fractions in the mid-plane
along the central axis of the micro-tubular SOFC. As can be observed, for all the examined
cases, the streamlines in the fuel channel are almost parallel to the anode-fuel channel
interface (z-direction). For the cases with 1 mm, 0.1 mm, and 0.01 mm gaps, the streamlines
are nearly identical. The CO mole fraction in the radial direction inside the anode seems
uniform in all cases, indicating that the helical screw insert cannot force the flow to penetrate
into the porous anode. This confirms that the circumferential flow field generated by the
helical screw insert, regardless of gap or pitch variation, cannot increase the amount of fuel
diffused into anode pores and has a negligible impact on the power density.

Figure 14 shows the local Péclet number as a function of axial locations at the interface
between the fuel channel and porous anode for the micro-tubular SOFCs with different
helical screw inserts. It should be noted that the Péclet numbers for all cases are on the order
of 10−5, indicating a small radial velocity induced by the helical screw inserts. The non-zero
velocity at the anode-channel interface is due in part to the flow rotation caused by helical
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screw inserts in the fuel channel. Figure 14a shows the Péclet numbers for the cases with
three different gaps. A 1 mm gap has a negligible impact on the Péclet number distribution,
while the gaps of 0.1 and 0.01 mm slightly increase the local Péclet number, which is mainly
due to the increase in radial velocities with the decreasing gap. However, the maximum
radial velocity induced by helical screw inserts is still three orders of magnitude smaller
than that induced by cone-inserts. This is because the helical screw inserts generate and
enhance the flow velocity in the circumferential direction, while the cone-inserts generate
and enhance the flow velocity in the radial direction. Figure 14b shows that the oscillation
amplitude of the Péclet number increases with the decreasing pitch of the helical screw
insert. This is in part because the smaller pitch leads to a stronger flow interaction between
two subsequent helical ridges. It should be noted that the location of the Péclet number
peaks depends entirely on the helical ridge locations.
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Figure 15 illustrates the influence of the helical screw insert pitch and gap variations
on the SOFC power density and gas-phase pressure drop. The gap and the pitch variations
of the helical screw inserts have a negligible effect on the SOFC output power density. The
normalized power density varies within 0.1% for all the cases examined in this section.
Figure 14 also demonstrates that the gas-phase pressure drop is only at the order of
magnitude of 0.1 Pa/mm, which is much smaller than the one caused by the cone-inserts.
The gas-phase pressure drop decrease as the pitch of the helical screw inserts increase,
indicating that reducing the number of helices leads to a reduction in the frictional loss. It
also decreases with the increasing gap, which may be due to the lower friction loss in the
region between the helical screw and the anode.



Energies 2022, 15, 7048 18 of 21Energies 2022, 15, x FOR PEER REVIEW 18 of 21 
 

 

 
 

(a) (b) 

Figure 15. The influence of helical screw insert of different (a) pitches and (b) gaps on normalized 

power density and pressure drop of micro-tubular SOFC.  

4. Conclusions 

We developed a 3D Multiphysics model to examine the effects of radial and circum-

ferential flows on the mass transfer characteristics in a micro-tubular SOFC. We inserted 

the cones and helical screw into the fuel channel for flow generation. The geometrical pa-

rameters of these inserts, such as different gaps, widths, and pitches, were examined to 

study their impact on the electrochemical performance of micro-tubular SOFCs.  

We first examined the effect of the radial flow generated by the cone-inserts. The gap 

between cone-inserts and anode and the width of the cone base are two primary factors 

that affect mass transfer in the porous electrode. A smaller gap could force the fuel to enter 

the anode, resulting in a higher CO mole fraction in the radial direction compared to the 

conventional tubular SOFC. This facilitates the diffusion of the fuel to reach the triple-

phase boundaries and therefore improves the SOFC power density by more than 20%. A 

larger width of the cone base could enable the fuel to travel a longer distance inside the 

anode, resulting in larger high concentration gradient zones, further enhancing the elec-

trochemical reactions and increasing the power density up to 37%. The pitch is also an 

important factor, which has the potential to increase the power density since the cone-

inserts with a smaller pitch could induce more radial flow in the fuel channel.  

The Péclet number at the anode-fuel channel interface is proposed to characterize the 

impact of the radial and circumferential flows on the mass transfer characteristics and the 

power density of the tubular SOFC. A higher local Péclet number indicates a higher local 

velocity in the radial direction, indicating an improvement of the convective mass transfer 

at the anode-fuel channel interface. The power density of SOFC, in general, is proportional 

to the average Péclet number, meaning the convective mass transfer along the radial di-

rection is one of the main factors in enhancing the power density. It should be noted that 

in all the cases of cone-inserts, the power density increases at the expense of a higher gas-

phase pressure drop.  

We also investigated the effect of different gaps and pitches on mass transfer within 

the fuel channel and porous anode using helical screw inserts. We demonstrated that re-

gardless of the geometrical parameter variation, the circumferential flow has a negligible 

impact on the convective transport mechanism and the power density improvements of 

the tubular SOFC. In comparison, the radial flow has the potential to significantly enhance 

the electrochemical reactions in porous electrodes and increase the SOFC power density. 

Figure 15. The influence of helical screw insert of different (a) pitches and (b) gaps on normalized
power density and pressure drop of micro-tubular SOFC.

4. Conclusions

We developed a 3D Multiphysics model to examine the effects of radial and circum-
ferential flows on the mass transfer characteristics in a micro-tubular SOFC. We inserted
the cones and helical screw into the fuel channel for flow generation. The geometrical
parameters of these inserts, such as different gaps, widths, and pitches, were examined to
study their impact on the electrochemical performance of micro-tubular SOFCs.

We first examined the effect of the radial flow generated by the cone-inserts. The gap
between cone-inserts and anode and the width of the cone base are two primary factors
that affect mass transfer in the porous electrode. A smaller gap could force the fuel to enter
the anode, resulting in a higher CO mole fraction in the radial direction compared to the
conventional tubular SOFC. This facilitates the diffusion of the fuel to reach the triple-phase
boundaries and therefore improves the SOFC power density by more than 20%. A larger
width of the cone base could enable the fuel to travel a longer distance inside the anode,
resulting in larger high concentration gradient zones, further enhancing the electrochemical
reactions and increasing the power density up to 37%. The pitch is also an important factor,
which has the potential to increase the power density since the cone-inserts with a smaller
pitch could induce more radial flow in the fuel channel.

The Péclet number at the anode-fuel channel interface is proposed to characterize
the impact of the radial and circumferential flows on the mass transfer characteristics and
the power density of the tubular SOFC. A higher local Péclet number indicates a higher
local velocity in the radial direction, indicating an improvement of the convective mass
transfer at the anode-fuel channel interface. The power density of SOFC, in general, is
proportional to the average Péclet number, meaning the convective mass transfer along
the radial direction is one of the main factors in enhancing the power density. It should be
noted that in all the cases of cone-inserts, the power density increases at the expense of a
higher gas-phase pressure drop.

We also investigated the effect of different gaps and pitches on mass transfer within
the fuel channel and porous anode using helical screw inserts. We demonstrated that
regardless of the geometrical parameter variation, the circumferential flow has a negligible
impact on the convective transport mechanism and the power density improvements of
the tubular SOFC. In comparison, the radial flow has the potential to significantly enhance
the electrochemical reactions in porous electrodes and increase the SOFC power density.
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