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Abstract: A robust control algorithm is always needed to harvest maximum power from a Wind
Energy Conversion System (WECS) by operating it consistently at a Maximum Power Point (MPP) in
the presence of wind speed variations. In this work, a Maximum Power Point Tracking (MPPT) control
algorithm is designed via Conventional Sliding Mode Control (CSMC), the Super Twisting Algorithm
(STA), and the Real Twisting Algorithm (RTA) and is applied to a Permanent Magnet Synchronous
Generator (PMSG)-based WECS. CSMC is model-based whereas the STA and RTA are model-free
controllers. In practice, the unavailability of nonlinear terms and aerodynamic forces deteriorates the
performance of these controllers. Thus, an offline NeuroFuzzy algorithm is incorporated to estimate
the nonlinear drift and control input channel to improve the robustness of these algorithms. In
addition, the generator shaft speed and its missing derivative is recovered via a Uniform Robust
Exact Differentiator (URED). In order to carry out a comprehensive comparative study among the
three competitors, the overall system is simulated in a closed loop under the action of these controllers
at three different operating conditions, i.e., nominal, varying load and inertia, and varying wind
speed, using MATLAB/Simulink. The acquired results confirm the superiority of the RTA over the
STA and CSMC in terms of robustness and chatter reduction.

Keywords: wind energy conversion system; uniform robust exact differentiator; sliding mode control;
super twisting; real twisting; NeuroFuzzy

1. Introduction

Over the past few decades, the wind turbine has become the most reliable and devel-
oped renewable energy source among its other counterparts. Based on wind speed, wind
turbines are classified into fixed and variable speeds. However, the maximum power can
be captured by employing a Variable-Speed Wind Turbine (VSWT). A VSWT, in contrast
to a Fixed-Speed Wind Turbine (FSWT), which requires a power electronic converter for
power flow control and a Maximum Power Point Tracking (MPPT) algorithm, and must be
capable of delivering a high-quality electric power [1].

The most preferable options for VSWTs are the direct-drive Permanent Magnet Syn-
chronous Generator (PMSG) and Doubly Fed Induction Generator (DFIG). The main advan-
tages of the PMSG include a wide speed range (0–100 of the rated speed), high conversion
efficiency, and high power density, due to its rare earth metal-based permanent magnets.
This leads to a compact design, direct-drive, small-scale wind turbine with the ability to
operate at very low speeds [2]. Currently, nine out of the top ten world manufacturers
produce wind turbines with PMSGs [3].

Energies 2022, 15, 7039. https://doi.org/10.3390/en15197039 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15197039
https://doi.org/10.3390/en15197039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-6420-6986
https://orcid.org/0000-0003-3659-3824
https://orcid.org/0000-0001-8499-3078
https://orcid.org/0000-0002-1996-7671
https://orcid.org/0000-0001-7208-6374
https://doi.org/10.3390/en15197039
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15197039?type=check_update&version=4


Energies 2022, 15, 7039 2 of 18

Due to the rapid penetration of wind power in the electricity grid, it is essential to
extract the maximum available power from the wind [4]. For this purpose, the Wind Energy
Conversion System (WECS) needs to be operated consistently at the Maximum Power Point
(MPP). This is accomplished through an MPPT control algorithm [5]. In this regard, several
MPPT techniques have been proposed in the literature that can be categorized into three
major types: Indirect Power Controller (IPC)-based algorithms, Direct Power Controller
(DPC)-based algorithms, and other MPPT algorithms including fuzzy-based algorithms,
Neural Network (NN)-based algorithms, adaptive algorithms, Multi-Variable Perturb and
Observe (MVPO) algorithms, and SMC-based algorithms [4].

The IPC algorithm only boosts the mechanical wind power (Pm) and not the output
electric power (Pe). IPC-based algorithms are subdivided into the Tip Speed Ratio (TSR)
algorithm, Optimal Torque (OT) algorithm, and Power Signal Feedback (PSF) algorithm. In
the TSR algorithm, the TSR is maintained at an optimum value at which the captured wind
power is maximized by regulating the mechanical speed of the generator [6]. Although
this algorithm is highly efficient, the need for an anemometer makes the system costlier.
In the OT algorithm, the electromagnetic torque of the generator is controlled to obtain
an optimum torque at a specified wind speed. Although this algorithm does not require
the anemometer, it requires information on the turbine’s mechanical parameters as well as
air density, which vary in different systems [7]. The PSF algorithm entails the knowledge
of the wind turbine’s maximum power curve that is tracked by the control mechanism.
Although this algorithm does not require the anemometer, it needs the parameters of the
wind turbine [8].

The DPC-based algorithms, which directly maximize Pm, are further subdivided into
the Hill Climbing Search (HCS) algorithm, Incremental Conductance (INC) algorithm,
Optimal-Relation-Based (ORB) algorithm and hybrid algorithm [4]. HCS algorithms are
sometimes, also termed Perturb and Observe (P&O) algorithms. In this technique, if the
operating point lies on the left side of the maximum point, the controller must shift it to
the right to be closer to the maximum point, and vice versa. However, HCS needs to make
an adjustment between the perturbation direction and tracking ability as well as between
the step size and tracking speed [9]. The INC algorithm can perform better than the HCS
algorithm in terms of providing maximum power extraction and efficiency. This algorithm
does not require sensors and parameters of wind turbine and generator. This improves the
system reliability and reduces the system cost [10]. The ORB algorithm requires knowledge
of the system parameters as well as the optimum curve. These quantities are difficult to
compute and may vary in practical applications [7]. A hybrid algorithm combines the
advantages of two algorithms such as the ORB combined with P&O to provide a self-tuning
capability [7].

Other MPPT algorithms include fuzzy-based algorithms, NN-based algorithms, adap-
tive algorithms, the MVPO algorithm, and SMC. The fuzzy and NN-based algorithms are
also termed soft computing techniques. These are model-free algorithms and are indepen-
dent of system parametric variations. However, the very large memory size requirement
poses limitations in its implementation [11]. The adaptive algorithm renders an accurate
optimal response. Furthermore, it can measure the uncertain system parameters [4]. The
feedback linearization control based Particle Swarm Optimization (PSO) is suitable for
WECS but is sensitive to varying parameters of the system and needs specific modeling of
system [12]. Various nonlinear control schemes have been introduced to mitigate this issue.
The smart control schemes such as neural network control [13,14], Takagi–Sugeno–Kang
fuzzy control [11], and neural network [15] have been used to design an efficient controller
for the WECS. However, these control approaches suffer from long offline training periods
and time-consuming computations. Consequently, the SMC can be taken as an alternate
option for the WECS owing to its simple design, insensitivity to parameter variations, order
reduction, good robustness, disturbance rejection, and finite-time convergence [16–18].
However, the chattering problem is still a concerning issue that needs to be handled [19].
The Higher-Order Sliding Mode Control (HOSMC) technique needs the extra information
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regarding high order derivatives of sliding manifold and actuator may get damaged due to
high gains [20].

In nutshell, the algorithms utilized for performance enhancement of the WECS either
have compromised robustness mainly due to the unavailability of the nonlinear dynamics
or compromised performance mainly due to the computationally intensive algorithms.

To tackle the aforementioned problems, an observer-based Conventional Sliding Mode
Control (CSMC), the Super Twisting Algorithm (STA), and the Real Twisting Algorithm
(RTA) have been proposed, giving fast and accurate MPPT for a WECS. The basic analogy of
these three is the same as they tend to bring the system trajectories to a pre-defined sliding
manifold, under the action of the discontinuous control law. On the sliding manifold,
a system’s dynamics offer exciting advantages such as remarkable robustness against
disturbances and parametric variations, and order reduction. To achieve these merits,
the three algorithms have their own structures. The RTA has a simpler structure among
the twisting algorithms and does not require a time derivative of a sliding function [21].
Moreover, the system trajectory can be asymptotically driven to the desired equilibrium
point, while counteracting the disturbances. However, these algorithms are very sensitive
to un-modeled fast dynamics, and chattering may appear sooner or later.

The novelty of the proposed control schemes is that the CSMC, STA, and RTA are
modified to include an offline NeuroFuzzy estimator and a sliding modes-based Uniform
Robust Exact Differentiator (URED). The NeuroFuzzy scheme gives estimates of the nonlin-
ear drift and input channel while the URED provides a smoother estimate of the shaft speed
and its missing derivatives. The merits added to the CSMC, STA and RTA include their
excellent robust nature against parametric variations, external disturbances, and capability
to substantially handle chattering in the case of the STA and RTA.

This paper is structured into the following sections. In Section 2, mathematical model-
ing of WECS is presented. Section 3 describes the normal form conversion of the system
states. In Section 4, the generator shaft velocity and its missing derivative are recovered
via a Uniform Robust Exact Differentiator (URED). The offline NeuroFuzzy algorithm is
designed for the estimation of nonlinear terms in Section 5. The proposed control schemes
are covered in detail in Section 6, while simulation results are discussed in Section 7. Finally,
Section 8 comments on the conclusion and presents potential applications where the results
of this research can be used.

2. Wind Energy Conversion System

A Wind Energy Conversion System (WECS) includes the aerodynamic model of the
wind turbine and a model of the PMSG connected to the load. The schematic of the
designed PMSG-based WECS along with the controller part is depicted in Figure 1.

Figure 1. Schematic of the designed WECS.
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2.1. Wind Turbine Model

The details regarding the mathematical modeling are adopted from [12]. The mechani-
cal power available at the turbine shaft is expressed in (1),

pm =
1
2

ρπR2
t vw

3Cp(λ) (1)

where ρ is the air mass-density, Rt is the radius of the turbine blade, R2
t is the swept area of

the turbine, vw is the wind speed, with an average value of 7 m/s as depicted in Figure 2,
Cp is the power coefficient, indicating the efficiency of the wind turbine, and λ is the TSR,
which is given by the subsequent expression (2):

λ =
ΩhRt

vwi
(2)

where Ωh (rad/s) is the High-Speed Shaft (HSS) angular speed of the turbine and i is the
transmission ratio. The typical parameters are given in Table 1.
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Figure 2. Turbine speed versus turbine power for different wind speeds.

The wind-power coefficient Cp(λ) is a nonlinear function of TSR and pitch angle. It
reaches the maximum when the TSR is at the optimum value, known as λopt. Therefore, a
variable-speed wind turbine monitors the CPmax to extract the maximum power up to the
nominal speed by changing the rotor-shaft speed to keep the system at λopt.

Cp(λ) = (6.1λ− 1.3λ2 + 8.1λ3 − 0.97477λ4)10−3 (3)

The wind turbine delivers a mechanical torque, to the rotor shaft, according to the
following expression.

Γm =
1
2

ρπR3
t vw

2CT(λ) (4)

where CT(λ) is the torque-coefficient which is given by the following form.

CT(λ) =
Cp(λ)

λ
(5)

All the necessary details are now reported and it is convenient to present the mathe-
matical modeling of the PMSG.

2.2. PMSG Modeling

The PMSG modeled in the dq-axes is given as follows [12].
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did
dt

=
−Rsid + p(Lq − Lch)Ωhiq − Rchid

(Ld + Lch)
(6)

diq
dt

=
−Rsiq − p(Lq + Lch)Ωhid − Rchiq

(Lq + Lch)
+ pΩhΦ

dΩh
dt

=
1

(JHSS)

[
−pΦiq +

d1v2
w

i
+

d2vwΩh
i2

+
d3Ω2

h
i3

]

where Rs is the stator resistance, Ld and Lq are the stator inductances for a non-salient pole
PMSG (i.e., Ld=Lq) along d and q axis, respectively, p is the pole pair, Ωh is the high speed
shaft angular speed of the rotor shaft, Φ is the constant flux, i is the transmission ratio,
JHSS is the high speed shaft inertia, and id and iq are the stator currents along d and q axis,
respectively. Using the conventional terms for some of these quantities, i.e.,

id = x1

iq = x2

Ωh = x3

Thus, a simplified state space equation of the system, in terms of the above parameters,
can be written as, ẋ1

ẋ2
ẋ3

 =

 −(a1 + a3Rch)− (a2x3) + 0
−(c2x3)− (c1 + c4Rch) + c3

k1v2

x1
− k4 − (k2v + k3x3)


 x1

x2
x3

 (7)

The values of the constants a1 = c1 = Rs/(Ld + Lch), a2 = p(Lq − Lch/(Ld + Lch),
a3 = c4 = 1/(Ld + Lch), c2 = p, c3 = k4 = pφ, k1 = d1/(i JHSS), k2 = d2/(i2 JHSS), and
k3 = d3/(i3 JHSS) are listed in Table 2.

Table 1. Parameters of the system [12] and controller.

Type Name of Parameter Magnitude

Turbine

Air mass density, ρ 1.25 kg/m3

Turbine blade radius, Rt 2.5 m
Optimum tip speed ratio, λopt 7

Transmission ratio, i 7
Maximum power coefficient, Cpmax 0.476

PMSG

Stator resistance, Rs 3.3 Ω
Stator d axis inductance, Ld 0.0416 H
Stator q axis inductance, Lq 0.0416 H

Flux, φ 0.04382 Wb
Pole pair, p 3

High-speed shaft inertia, JHSS 0.0552 kg/m2

Load inductance, Lch 0.08 H

Controller

Constant, Υ1 1000
Constant, Υ2 0.01
Constant, k1 60
Constant, k2 1000
Constant, β1 80
Constant, β2 15

URED

Constant, α1 36
Constant, α2 1000
Constant, α3 1
Constant, α4 1800
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Table 2. Parameters specifications.

Parameter Value Parameter Value Parameter Value

a1 27.147 c1 27.147 k1 9.945
a2 0.94866 c2 3 k2 0.1332
a3 8.2264 c3 1.3146 k3 0.00506
a4 0 c4 8.2264 k4 23.806

3. Normal Form Conversion

The nonlinear PMSG-WECS model in (7) can be expressed as [12],

ẋ = f (x) + g(x)u + ∆(x, t)

y = h(x) (8)

where x ∈ Rn represents the state vector, u is the control input, ∆(x, t) is matched uncertainty,
while f (x) and g(x) are nonlinear smooth vector fields which have the following expressions

f (x) =

 f1
f2
f3

 =

 −a1x1 − a2x2x3
−c1x2 − c2x1x3 + c3x3

−k1v2 − k2vx3 − k3x2
3 − k4x2


g(x) =

 −a3x1
−c4x2
0


and

u = Rch

The output, y = h(x) = x3 = Ωh is the angular speed of the rotor shaft. Since the
objective is to control Ωh, therefore, (7) can be transformed into input–output form by
defining the following transformation.

z1 = y = h(x) = x3 = Ωh

z2 = L f h(x) =
∂h(x)

∂x
f (x) = −ϕ1−ϕ2x3−ϕ3x2

3−ϕ4x2

z3 = L2
f h(x) =

x1

x2
(9)

where

ϕ1 = k1v2
w, ϕ2=k2vw, ϕ3=k3 and ϕ4=k4

The relative degree (r) of the system is one less than the system order (n = 3), i.e.,
(r < n), so the input–output form appears as follows.

ż1 = z2

ż2 = L2
f h(x) + LgL f h(x)u

}
(10)

ż3 =
ϕ4

ϕ1
(− a1z3 ϕ1

ϕ4
− a2z1 ϕ1

ϕ4
− a3x1z3 ϕ1u

ϕ4
)

− (
z3 ϕ1

ϕ4
)(

ϕ2
4

ϕ2
1
)(− a1 ϕ1

ϕ4
− c2 ϕ1z3z1

ϕ4
+ k4z1 −

a3x1 ϕ1u
ϕ4

) (11)
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where

L2
f h(x) = −ϕ4 f2(x)− (ϕ2 + 2ϕ3x3) f3(x)

LgL f h(x) = a3x1 ϕ4x2

}
(12)

The dynamics shown in (11) represent the internal dynamics that are indirectly affected
by the control input. Now, it is required to prove the stability of the zero dynamics. The
nonlinear system dynamics are divided into two parts, i.e., an internal part and an external
(input-output) part when performing the input–output conversion. Since the external
dynamic states i.e., (z1, z2) are controllable states, i.e., they can be directly controlled by u
while the stability of the internal dynamic state, i.e., z3 is simply determined by the location
of zeros [22]. To obtain the zero dynamics, set z1 = z2 = u = 0 in (11). Consequently, one
gets

ż3 = −z3(k1 − a1) (13)

This confirms that the zero dynamics are stable as long as k1 > a1.

4. Uniform Robust Exact Differentiator

It is worthy to mention that in practical implementation, the forthcoming control
technique will need the higher derivatives of the output (and the derivative of the sliding
surface in the case of the real twisting controller). Therefore, these derivatives will be
estimated in this work via the Uniform Robust Exact Differentiator (URED). Assume that
the actual available output is z1 while ẑ1 is its estimated value.

Suppose that the output z1 is twice differentiable with a second derivative bounded
by constant L > 0. The mismatch between the actual and estimated output (in a noise-free
case) is as follows,

ξ = ẑ1 − z1 (14)

Now, the estimated output ẑ1 and its estimated derivative ẑ2 can be computed via
the solution of the following second-order system, the so-called uniform exact differentia-
tor [23].

ˆ̇z1 = −α1ψ1 + ẑ2

ˆ̇z2 = −α2ψ2

}
(15)

where α1 and α2 are positive input gains and ψ1 and ψ2 are the injecting terms which are
expressed (in terms of ξ) as follows.

ψ1 = −α3|ξ|0.5sign(ξ)− α4|ξ|3/2sign(ξ) (16)

and

ψ2 = −0.5α2
3sign(ξ)− 2α3α4ξ − 3/2α2

4|ξ|2sign(ξ) (17)

Note that α3 and α4 are positive constants and the high degree terms |ξ|3/2sign(ξ) and
|ξ|2sign(ξ) provide uniform convergence independent of the initial conditions.

5. NeuroFuzzy Algorithm-Based Nonlinear Functions Estimation

In this section, a NeuroFuzzy algorithm based on the Takagi–Sugeno–Kang (TSK)
fuzzy inference system (as shown in Figure 3) is used to generate/estimate the nonlinear
functions L2

f h(x) and LgL f h(x). The variables z1, z2, z3, and the wind speed vw are the main

inputs to the system, whereas the final outputs are the estimates of L2
f h(x) or LgL f h(x),

i.e., this is a Multi-Input Single-Output (MISO) structure. The overall NeuroFuzzy estima-
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tion network is comprised of multiple layers which will be discussed in the forthcoming
paragraphs.

Figure 3. MISO adaptive NeuroFuzzy network structure for the estimation of L f
2h(x) and LgL f h(x).

The first layer consists of all the inputs which are available during the estimation
process. The second layer develops the membership functions which are based on the
Gaussian function, i.e., the membership functions can be calculated as follows,

µij = e
(xj−cij)

2

σ2
i (18)

where j represents the number of inputs, i points to the number of fuzzy rules, and cij

and σ2
i refers to the center and width of the ith Gaussian function, respectively. Since the

proposed adaptive NeuroFuzzy structure and architecture depend upon the IF− THEN
rules. For example, it works by the architecture,

Ri : I f xi1 is µi1 AND xi2 is µi2 and . . .

and xij is µij THEN zi = Ψiaij

In the third layer, each node represents the antecedent connective part of the extracted
IF− THEN fuzzy rule which can be expressed by the following mathematical expression.

Ri =
n+m

∏
j=1

µij = e
∑n+m

j=1
(xj−cij)

2

σ2
i (19)

The fourth layer is the normalization layer which provides the normalized value via
the following expression.

Ψi =
Ri

∑i Ri
(20)

The fifth layer, based on the outputs of the fourth layer, is the summation layer which
integrates all the normalized values of layer four and provides an estimated value via the
following expression.

L2
f h(x) =

∑i ∏m
i=1 µijai

∑i ∏m
i=1 µij

=
∑i Riai

∑i Ri
= Ψiai (21)

where ai is a constant parameter which shows the ith rule consequence. Now, the nonlinear
terms are estimated and are ready to be utilized in the controller algorithm.
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6. MPPT Control Design Strategies

In the previous sections, the control convenient form (i.e,. normal form) and nonlinear
terms, i.e., L2

f h(x) and LgL f h(x) were estimated. Now, the main objective is to extract
the maximum power from the plant by designing a proper and well-suited MPPT control
algorithm. This task is done here via the CSMC, the super twisting control law, and the real
twisting control law with the configuration shown in Figure 4.

Figure 4. Closed-loop observer-based SMC PMSG-WECS configuration.

6.1. Conventional Sliding Mode Control Design

The design of the CSMC is pursued by first defining a switching surface in terms of
errors (a mismatch between the actual and desired states) followed by defining a discontin-
uous control law that enforces sliding modes along the surface.

The attractiveness lies in the fact that once the system state variables influence the
switching surface, the structure of the feedback loop is adaptively altered, and the system
states slide along the switching manifold. A system in sliding mode progresses with n−m
number of states with n being the dimension of system states and m being the dimension of
control inputs. This order reduction provides invariance to the plant parameter variations
and the disturbances which is one of the main benefits of SMC. Now the control design, for
the reference tracking, can be carried out by defining the tracking error, e(t), as follows,

e(t) = z1 −Ωre f (t) (22)

For the sake of ease, Ωre f (t) will be represented by z1re f for the rest of the paper. Now,
the time derivative of (22) becomes,

ė(t) = ż1 − ż1re f (23)

In the actual implementation, only z1 is available and its derivative is estimated via
a Uniform Robust Exact Differentiator (URED). Therefore, ż1 will be replaced by ẑ2 (i.e.,
estimated derivative of z1). Thus,

ė(t) = ẑ2 − ż1re f (24)

Further differentiation of (24) along (10) and (11) becomes

ë(t) = L̂2
f h(x) + L̂gL f h(x)u (25)
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The sliding manifold of a PI type is defined as follows:

s = (ẑ2 − ż1re f ) + α1(z1 − z1re f ) . . .

+α2

∫ t

0
(z1 − z1re f )dτ (26)

where α1 and α2 are the positive gains. The time derivative of (26) along (10) and (11) becomes

ṡ = ( ˙̂z2 − z̈1re f ) + α1(ẑ2 − ż1re f ) + α2(z1 − z1re f ) (27)

The values of ˙̂z2 are considered similar to the second equation of (10) in which L2
f h(x)

and LgL f h(x) are replaced with their estimated values performed in the previous section.
In this strategy, the strong reachability of the following form is considered.

ṡ = −k1s− k2sign(s) (28)

Now comparing (27) and (28), one gets,

u =
1

L̂gL f h(x)
[z̈1re f − α1ẑ2 − α2z1 + α1ż1re f ...

+α2z1re f − L̂2
f h(x)− k1s− k2sign(s)] (29)

where, k1 and k2 are the positive gains of the control input u.
To prove the closed loop stability, with the proposed PI sliding surface, the time

derivative of a Lyapunov candidate function v = 1
2 s2 along (27) and (29) becomes,

v̇ = sṡ

v̇ = −k1s2 − k2s sign(s)

v̇ ≤ −k1s2 − k2|s| (30)

The inequality in (30) indicates the finite time enforcement of sliding modes. Note that
this is the conventional control law based on the PI surface, which maintains sliding mode
from the very start (i.e., t ≥ 0) (confirmed by (30)). It also confirms that the system evolves
with full states in sliding mode. Now, to reduce the chattering across the sliding manifold,
the HOSM control strategies (i.e., super twisting and real twisting) are designed.

6.2. Super Twisting Algorithm Design

The CSMC suffers from high-frequency oscillations across the switching manifold
which can cause problems in any practical application. As a remedy to eradicate such
oscillations, among many techniques, the higher-order sliding modes based on smooth
switching law, known as the Super Twisting Algorithm (STA), is utilized.

ṡ = ut = −β1|s|0.5sign(s)− β2

∫
sign(s)dt (31)

where β1 and β2 are positive scalars. By comparing (27) and (31), one may get the following
sliding mode enforcement law.

ust = ueqv + ut (32)

where ueqv is the equivalent controller defined in (29). It is worth noting that due to the
variable gain of the first term in ut, the gain decreases as the trajectories strike towards the
manifold while in the second term, the integral provides a low pass filtering effect. This
causes a considerable reduction in chattering.

Now, in the next subsection, we use real twisting law to suppress the chattering. The
closed-loop stability remains almost similar to the one outlined in the CSMC presentation.
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6.3. Real Twisting Control Algorithm Design

As mentioned earlier, the chattering is undesirable in electro-mechanical systems
because it actuates high-frequency dynamics which can cause instability, and wear/tear of
the system [24]. This is considerably alleviated via the use of STA. However, the STA is still
sensitive to un-modeled fast dynamics due to which chattering may appear sooner or later
in the system [19]. To deal with this, a model-free second-order sliding mode control law
named the Real Twisting Algorithm (RTA) is used. The overall discontinuous control law,
ur, is given as,

ur = −Υ1sign(s)− Υ2sign(ṡ) (33)

where s is defined in (26) while the gains Υ1 and Υ2 are positive constants. These gains are
often chosen by trial and error. For more details, the readers may see [25].

7. Results and Discussion

The PMSG-based WECS (depicted in Figure 1), along with the proposed control
scheme, is depicted in Figure 4. The PMSG-based WECS, under consideration, has a
maximum power coefficient Cpmax = 0.476, that corresponds to an optimal TSR λopt = 7.
The remaining relevant parameters are listed in Table 1. Moreover, an optimal wind speed
(7 m/s, see Figure 2) is considered for simulations. The efficacy of the proposed algorithm
is evaluated, via comparison with CSMC and STA, in three distinct cases: nominal, varying
load and varying inertia, and deterministic.

In the nominal case, the MPPT is subjected to a stochastic wind speed profile. In
the load-varying inertia case, the robustness of the proposed control scheme is analyzed
under a stochastic wind speed profile with varying load and inertia. Finally, the robust
performance, in the presence of abrupt variations in wind speed profile, is evaluated.
Moreover, the URED observed states in the nominal and in varying load varying inertia
case are shown in Figures 5 and 6, respectively. It must be observed that due to the
continuous nature of STA and RTA, the performance of URED is better than that of CSMC.
In the case of CSMC, the undershoots are caused by the presence of chattering in the
reference signal. Moreover, since the overall performance depends upon these estimates
thus, better performance is expected in the case of STA and RTA. In addition, the estimated
data comply with the standards of a physical system and thus stand validated with the
knowledge of a real/practical system.
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Figure 5. Z2 tracking in the nominal case.
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Figure 6. Z2 tracking in the varying load and varying inertia case.

7.1. Nominal Case

In the nominal case, the wind turbine is operated at optimum TSR (λopt) that will
confirm Cpmax. The three algorithms CSMC, STA, and RTA are then employed to enable
maximum power extraction. This is accomplished by controlling the rotational speed
of PMSG at optimum values. The algorithms confirm the tracking of HSS rotational
speed (Figure 7) while keeping the tip speed ratio at its optimum value (Figure 8) and
the coefficient of power at Cpmax = 0.476 (Figure 9). In Figure 7, it is worth noticing that
the CSMC offers poor tracking performance and pronounced chattering effects. The STA,
which is sensitive to un-modeled fast dynamics, offers relatively good tracking performance
but exhibits some chattering as well. In the case of the proposed algorithm, the elimination
of chattering and superior tracking performance is evident. In addition, the tip speed
ratio (λ), power coefficient (Cp), mechanical torque (Γm), andthe mechanical power on
generator side (PmHSS ) against TSR (λ), shown in Figures 8–11, respectively, further confirm
the efficacy of the proposed RTA-based algorithm. In Figures 10 and 11, it can be observed
that the RTA reaches the manifold smoothly despite all the nonlinearities and stays there
with minimal/negligible amplitude of chattering, the STA undergoes a slightly longer
transient phase (known as the reaching phase in the sliding mode control theory), while
the CSMC exhibits chattering, a noticeable reaching phase, and poor performance in the
sliding phase. Thus, MPPT is more effective in the case of the proposed RTA.
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Figure 7. The reference and actual PMSG side-shaft speed.
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Figure 10. Electromagnetic torque versus tip speed ratio.



Energies 2022, 15, 7039 14 of 18

Figure 11. High-speed shaft side power versus tip speed ratio.

7.2. Varying Load and Varying Inertia

The robustness of the proposed algorithm is demonstrated in the presence of varying
load inductance and inertia profiles, as shown in Figure 12.
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Figure 12. Varying load, varying inertia.

At the instances of transition in load inductance/inertia (see Figure 12), the proposed
RTA algorithm outperforms the STA and CSMC while tracking the HSS side angular
speed as shown in Figure 13. The zoomed portions indicate the transition instances of
the load/inertia where the STA and CSMC exhibit oscillatory behavior which can cause
lower power extraction. This distraction at the transition instances of STA and CSMC
is more evident in the tip speed ratio and power coefficient shown in Figures 14 and 15,
respectively. In Figure 15, the Cp goes to a very low value, about 38% for CSMC, while the
RTA retains Cp to its optimum which ensures its robustness again parametric variations
and also provides MPP.
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7.3. Varying Wind Speed

The system is now subjected to sharp variations in wind speed in order to further
elaborate the robust performance of the proposed algorithm. In such a scenario, it is
desirable that the system should operate at Cpmax .

In Figure 16, it is worth mentioning that the variations in wind speed cause the CSMC
and STA to exhibit almost a transient behavior at each instant of time while the RTA pro-
vides smooth tracking of angular speed at HSS. Although some transient distractions can
be observed in tip-speed and power coefficient, they do not have remarkable effects on the
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control scheme performance and system stability as shown in Figures 17 and 18, respec-
tively. These results demonstrate that the proposed algorithm offers robust performance
and thus maintains the MPPT along with minimized chattering.
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8. Conclusions

In this work, the model of a PMSG-based WECS is presented with three states, and
then it is transformed to a two states normal form with the output-oriented model. The
normal form states are then equipped with SMC (CSMC, STA, and RTA) for the tracking
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of wind speed in three cases, i.e., the nominal case, varying load and varying inertia case,
and finally the deterministic case of wind speed profile for the robustness evaluation
of the controllers. In a practical environment, one may not be available with nonlinear
terms and aerodynamic forces, hence, an offline NeuroFuzzy scheme is designed for the
estimation of nonlinear drift (i.e., L2

f h(x) and LgL f h(x)). Meanwhile, the rotational speed of
the PMSG rotor was available, therefore, the missing derivative of HSS has been estimated
via the URED. During the simulation process, it was observed that the CSMC was showing
oscillatory behavior (chattering) with a considerable steady-state error, which was further
improved via a replacement of the discontinuous control component with the STA and
RTA. The simulation results in the presence of varying load varying inertia disturbances
and abrupt variations in wind speed are quite delightful and the newly examined law
showed to be a more practical and appealing candidate for an MPPT. In nutshell, this new
law outshines all the employed designed strategies.
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