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Abstract: Increasingly people, especially those residing in urban areas with the urban heat island
effect, are getting exposed to extreme heat due to ongoing global warming. A number of methods
have been developed, so far, to assess urban heat vulnerability in different locations across the world
concentrating on diverse aspects of these methods. While there is growing literature, thorough
review studies that compare, contrast, and help understand the prospects and constraints of ur-
ban heat vulnerability assessment methods are scarce. This paper aims to bridge this gap in the
literature. A systematic literature review with the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) approach is utilized as the methodological approach. PRISMA is an
evidence-based minimum set of items for reporting in systematic reviews and meta-analyses. The
results are analyzed in three aspects—i.e., indicators and data, modelling approaches, and validation
approaches. The main findings disclose that: (a) Three types of indicators are commonly used—i.e.,
demographic properties and socioeconomic status, health conditions and medical resources, and natu-
ral and built environmental factors; (b) Heat vulnerability indexing models, equal weighting method,
and principal component analysis are commonly used in modelling and weighting approaches;
(c) Statistical regressions and correlation coefficients between heat vulnerability results and adverse
health outcomes are commonly used in validation approaches, but the performance varies across
studies. This study informs urban policy and generates directions for prospective research and more
accurate vulnerability assessment method development.

Keywords: climate change; global warming; heat vulnerability; urban heat; urban heat island;
vulnerability assessment; extreme heat; vulnerable communities

1. Introduction

In recent years, with the rise in climate change impact, urban heat has become a major
issue for many cities to tackle as a consequence [1–3]. Extreme heat events are becoming
more frequent and intense in recent years due to climate change, which has directly caused
a substantial increase in heat-related morbidity and mortality [4–7]. This indispensably
puts extra burden on medical systems and national finance [8–10]. Meanwhile, the urban
heat island (UHI) effect has been exaggerating the consequences caused by the increased
extreme heat in metropolitan areas [11,12]. Hence, it is urgent for local governments to
locate the harmful heat and identify the characteristics of vulnerable populations.

An increasing number of methods have been developed to assess urban heat vul-
nerability in different locations across the world concentrating on diverse aspects [13–15],
with the aim of helping local urban planning departments to make scientific and effective
planning and policies on mitigating the impacts of extreme heat [11,16,17]. Before 2010,
there were only a few studies [18,19] modelling urban heat vulnerability in limited locations.
In 2009, Reid et al. [20] disruptively proposed a heat vulnerability index (HVI), with which
they located heat vulnerability at the census-tract-level and recognized potential areas
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where mitigation interventions were urgently needed. Since then, a substantial number of
related research has been conducted, especially during the last five years or so [21].

Varying heat vulnerability models has been built by combining different types of heat-
related indicators to identify vulnerable populations, areas exposed to increased extreme
heat [22,23] and assess the spatiotemporal distributions to provide policy directions for
policymakers [24,25]. Boumans et al. [13] developed a modelling and support platform for
climate change and applied it to examine how heat stress influenced heat-related illness
and death. El-Zein & Tonmoy [26] employed 22 heat-related indicators in a multicriteria
outranking model to assess the vulnerability to increased extreme heat in 15 government ar-
eas of Sydney. Estoque et al. [27] used seven environmental and social-ecological indicators
to assess heat health risks in 139 Philippian cities during hot, dry seasons.

Nonetheless, there were no criteria in the indicator selection in terms of types or
amounts because the indicator selection relied critically on local contexts [28,29]. Local
characteristics of population, infrastructure, and ecosystem play an essential role in heat
vulnerability assessment. Additionally, indicators for the model development and valida-
tion were constrained by data availability and the researchers’ subjective judgment [30,31].
Modelling methods and validation methods were different in heat vulnerability assess-
ments due to the lack of generic references. These facts are not conducive to comparative
studies and the applications of heat vulnerability models [32,33]. To date, there is no
widely acknowledged standardized system of heat vulnerability assessment. Therefore,
a systematic review is urgently needed to identify currently available heat vulnerability
assessment methods and their capabilities.

As underlined above, although there is growing literature on heat vulnerability assess-
ment, thorough review studies which compare, contrast, and help understand the prospects
and constraints of urban heat vulnerability assessment methods are scarce. Against this
brief backdrop, the study at hand aims to fill this gap through a systematic review. The rest
of the paper is structured as follows: Section 2 introduces the methodological approach,
Section 3 presents the results, Section 4 discusses the findings, and Section 5 concludes
the paper.

2. Materials and Methods

This study aimed to tackle the research question of ‘what are the methods to assess
urban heat vulnerability’ by undertaking a systematic review of the literature with the
preferred reporting items for systematic reviews and meta-analyses (PRISMA) approach.
PRISMA “is an evidence-based minimum set of items for reporting in systematic reviews
and meta-analyses” [34]. PRISMA is primarily used in the reporting of reviews, focusing on
the evaluation of the effects of the interventions (i.e., evaluating etiology, prevalence, diag-
nosis, or prognosis). It is also broadly applied as a basic framework in reporting systematic
reviews with objectives. Following the lead of Regona et al.’s PRISMA review study [35]—
a three-phase approach including planning, review, and reporting—was selected as the
methodological approach for the review.

At the planning phase, the research objective, research question, keywords, and the
inclusion and exclusion criteria were developed (Table 1). The research aim was organized
to produce useful findings to form a deeper understanding on the prospects and constraints
of urban heat vulnerability assessment methods. The inclusion criteria included available
online and peer-reviewed English journal articles which were relevant to the research
aim. An academic search engine provided by the library of Queensland University of
Technology was used to conduct the online search. This library search engine offered access
to all major databases. The search was carried out in April 2022 and used the following
query string: ((title OR abstract OR keyword) contains “urban heat” AND vulnerab* AND
(measur* OR assess* OR model* OR survey* OR map* OR evaluat* OR indicat* OR estimat*
OR analy* OR method* OR frame*)) to search titles, keywords, and abstracts of relevant
publications—i.e., journal articles. The publication date of the search was intentionally left
open to include as much literature as possible in the review. If the abstract of the article
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was associated with the research aim, it would be included in the full-text reading process
to determine whether it could be included in the final analysis.

Table 1. Exclusion and inclusion criteria.

Primary Criteria Secondary Criteria

Inclusionary Exclusionary Inclusionary Exclusionary

Academic journal articles Duplicate records Relevant to urban heat
vulnerability assessment methods

Irrelevant to urban heat
vulnerability assessment methods

Peer-reviewed Books and chapters Relevant to research objective Irrelevant to research objective
Full-text available online Industry reports

Published in English Government reports

At the review phase, a selected articles review was undertaken. A total of 368 records
were captured in the first search (Figure 1). The evaluation of these records against the
inclusion and exclusion criteria brought the number down to 298 articles. These articles
were carefully rechecked to ensure consistency with the keyword search. Additionally, the
abstracts of the pool of articles were evaluated against the question and aim of the research.
Following this, the duplicate records obtained from various databases were removed. This
process brought the number of articles down to the figure of 106. At the next stage the
full texts of all shortlisted articles were read and the ones that did not comply with the
question and aim were removed. This left us with 82 articles. After another round of
full-text screening, the number of articles were reduced to 76. Then this list was reviewed
and analyzed on three aspects—i.e., indicators and data, modelling approaches, validation
approaches. The categorization criteria are presented in Table 2.

Table 2. Categorization criteria.

Categorization Criteria

Determine the literature associated with the research aim by the eye-balling technique
Identify the potential literature focusing on methods to assess urban heat vulnerability after full-text reading
Group the identified types, application areas and effectiveness with similarities into broad categories
Narrow down the primary categories and crosscheck their reliability against other published literature
Final review of the selected literature and update the shortlisted categories if necessary
Confirm and finalize the categories selected for the classification of literature
Group the literature selected for the review under the selected categories

The final reporting phase concerned the reporting of the identified results and findings
from the systematic review of the final 76 journal articles. A list of these papers is provided
in Appendix A. A discussion of the prospects and constraints of urban heat vulnerability
assessment methods was outlined.
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Figure 1. Literature selection procedure.

3. Results
3.1. General Observations

The selected articles were categorized by publication year (Figure 2) to analyze the
trend of related publications before 2022, which disclosed how interest in heat vulnerability
assessment had changed during the last two decades. The earliest selected article was
published in 2006, with only three research articles being published from 2006 to 2011.
There was an increase to five articles in 2012, and the number of publications fluctuated
between two and seven until 2017. The number almost doubled in 2018 and stayed at a
stable level of 10–12 during 2018–2021.
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Figure 2. Publication distribution by year.

This review also classified the selected articles by research region and climate (Figures 3 and 4)
because geographic locations and climate status directly influence the research results. Most
studies were conducted in North America (27 articles, 36%) and Asia (23 articles, 30%),
followed by Europe (14 articles, 18%). Oceania and South America were the focus of four
and five research articles, respectively, while there were only two studies conducted in
Africa. The top-3 countries selected as research regions were America (22 articles, 29%),
China (11 articles, 14%), Canada (5 articles, 7%), and Australia (5 articles, 7%).
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Figure 4. Publication distribution by climate classification. Note: “Af: Equatorial rainforest, fully
humid; Am: Equatorial monsoon; Aw: Equatorial savannah with dry winter; BSh: Hot Steppe climate;
BWh: Hot Desert climate; BWk: Cold Desert climate; Cfa: Warm temperate climate, fully humid, and
hot summer; Cfb: Warm temperate climate, fully humid, and warm summer; Csa: Warm temperate
climate with hot and dry summer; Csb: Warm temperate climate with warm and dry summer;
Csc: Warm temperate climate with cool and dry summer and cold winter; Cwa: Warm temperate
climate with dry winter and hot summer; Cwb: Warm temperate climate with dry winter and warm
summer; Dfa: Snow climate, fully humid, and hot summer; Dfb: Snow climate, fully humid, and
warm summer; Dfc: Snow climate, fully humid, cool summer and cold winter; Dsb: Snow climate
with warm and dry summer; Dwa: Snow climate with dry winter and hot summer [36]”.

Publications were grouped by using the Köppen Climate Classification [36,37], which
is one of the most widely used climate classifications. As shown in Figure 4, almost 60%
of the reviewed articles were conducted in humid subtropical climates (Cfa, 30 articles,
39%) in temperate oceanic climates (Cfb, 17 articles, 22%). There were another 16 types of
climates listed which were involved in one to eight articles each.

3.2. Indicators and Data

Heat-related indicators reflecting human and environmental characteristics are essen-
tial for the construction of heat vulnerability models. The first step of model construction
is selecting influencing indicators associated with heat vulnerability and collecting cor-
responding available data which can quantitatively measure heat vulnerability levels to
increased extreme heat. This review collected the indicators reported in the selected articles
and grouped them into three categories: demographic and socioeconomic characteristics,
health conditions, and environmental factors. Environmental factors were grouped into
natural and built subcategories. Table 3 presents a summary of information on the common
indicators and data sources.
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Table 3. Common indicators and data sources.

Categories Indicators Descriptions Number of
Articles

Demographic and
socioeconomic
characteristics

Age % of population over 65, below 5 or in a specific range 61

Economic status % of population with high/low incomes; local financial
status 56

Social isolation % of elderly population living alone or living in a group 42

Education % of population with low education level 39

Population density number of population/households per study unit 32

Race % of population with a different skin color/race 29

Employment % of employed/unemployed or population with
high-heat-risk occupations 18

Housing condition % of population with/without house ownership or living
in adverse housing environment 18

Air conditioning % of household with/without air conditioning 15

Language ability % of population who speak one or more languages 11

Gender % of male/female population 9

Vehicle availability % of population/household with/without vehicles 7

Internet availability % of population with internet access 5

Household facilities % of household with home facilities, such as TV, fridge,
washing machine, etc. 5

Heat duration frequency of being outdoors; Time spent outdoors 4

Water/electricity supply % of household with/without drinking water/electricity 3

Composite indicators
indicators built by age, economic status, education etc.
such as Human Development Index and Human
Settlement Index

2

Health conditions

Personal illness status % of population with pre-existing physical/mental illness 22

Medical infrastructure Number of medical workers/facilities/institutions;
distance to medical institutions 18

Disability % of population with disability 11

Natality and mortality % of births/deaths 5

Healthcare services % of population with access to health care services 5

Health insurance % of population with health insurance 3

Environmental
factors (natural)

Land surface temperature Daytime/night-time land surface temperature 38

Vegetation cover %/area of vegetations 23

Air temperature Daytime/night-time mean/maximum/minimum
air temperature 20

Humidity Daily humidity 7

Heat events Days/frequency of heat events 7

Thermal radiation and
heat flux

Measuring heat vulnerability by surveying thermal
radiation and heat flux 5

Air condition Air quality or days with high air quality 4

Weather Weather conditions 3

Elevation Digital elevation model 2

Composite indicators Indicators built by temperature, humidity, wind etc. such
as Heat Index, Humidex and Wet Bulb Globe Temperature 1
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Table 3. Cont.

Categories Indicators Descriptions Number of
Articles

Environmental
factors (built)

Accessibility to
cooling space

Area of or distance to green space/open space/water
body/cooling facilities 20

Land cover/use Area of developed urban land cover 19

Building information Building density/height/type 14

Transportation
convenience Accessibility to roads and public transportations 6

Infrastructure
Accessibility to public infrastructures/services, such as
water network, sewage network, garbage service and
energy service

2

Urbanization Urbanization rate/level 2

3.2.1. Demographic and Socioeconomic Characteristics

Demographic and socioeconomic characteristics reflect the sensitivity and adaptive
capacity of the population who suffered or potentially suffer heat hazards, such as healthy
physiological conditions, adequate resources, and good living environments. There was a
total of 17 demographic and socioeconomic indicators that were used in the heat vulnera-
bility detecting studies (Table 3).

The top-5 most frequently used indicators in the studied reports were age, economic
status, social isolation, education, and population density. Age was the most widely used
demographic indicator, considered by 61 related articles, with an 80% usage rate. It was
often represented by percentages of elderly or young population over 65 years old or
below five years old. These people are more vulnerable to extreme heat during heat events
because of their degenerated or undeveloped ability of thermoregulation [38,39]. There are
higher heat-related morbidity and mortality and more hospitalization admissions for the
young and elderly population during days with high temperatures [40,41]. Moreover, the
chronic diseases of the elderly and the immature immune systems of children are likely to
further aggravate their sensitivity to the extreme thermal environment [42].

The second most considered indicator was the economic status, with 56 related articles
and a 74% usage rate. This indicator reflects the response capacity of individuals and
governments to mitigate the influence of extreme heat, which contains personal economic
status and local financial status. Personal economic status was usually depicted by income
level, while a few studies employed the percentage of the population living with adult
disability benefits and pension funds. If the income levels of people are below the poverty
line, they are more likely to be associated with high levels of heat stress and heat-related
disease [43] because they probably cannot afford cooling services and medical services.
A total 39 studies used education (51%) as an indicator for heat vulnerability detection.
It has been purported that people with a low education degree experience high heat-
related mortality as these people are more likely to live with a low income and work in an
environment without thermal isolation conditions [44].

Social isolation (42 articles, 55%) has been identified as one of the most significant
indicators to measure heat vulnerability, often delineated by percentages of the population
living alone (or combined with age and gender). People living alone, especially the elderly,
are more vulnerable during extreme heat events as they may have a limited ability to
deal with emergencies and may not receive timely support [42,45]. Population density
(32 articles, 42%) is considered one of the typical indicators for heat exposure, which is
often fused with the temperature data to measure the number of vulnerable people to
heat and their spatial distribution. Race (29 articles, 38%) is selected in the development
of heat vulnerability models due to racial disparities contributing to heat vulnerability.
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Minorities with different cultures lack resource access and are easy to be socioeconomically
and politically marginalized [46,47].

Other indicators with over 10 usage times included employment, housing condition,
air conditioning, and language ability. The other reported indicators included vehicle
availability, internet availability, household facilities, frequency/time of outdoor activities,
and water/electricity supply. In recent years, some studies have begun using composite
indexes built by age, economic status, and other demographic and socioeconomic indica-
tors to model heat risk, such as Human Development Index [48] and Human Settlement
Index [49,50].

In most studies, demographic and socioeconomic data were derived from national
census statistics, such as the China’s Sixth (2010) National Census Dataset [51] and the
American Community Survey [29,52], and local official socioeconomic datasets or pub-
lic themed datasets, such as the Beijing Statistical Yearbook [53] and WorldPop Global
Population Data [54].

3.2.2. Health Conditions

Health condition indicators can be classified into two categories—i.e., personal health
conditions and the availability of medical and healthcare resources. Personal physical and
mental conditions can significantly influence an individuals’ sensitivity to heat during
extreme heat events, which include personal health status, disability, natality, and mortality.
Personal illness status was the most employed health condition indicator with 22 related
articles and a 29% usage rate. The percentage of the population with a pre-existing illness
is employed as the representative of this indicator as illness, especially chronic diseases
(i.e., diabetes, asthma, hypertension, obesity, and cardiopathy), can increase the heat
vulnerability of individuals [55,56].

People with chronic diseases often have a limited response capacity to the frequently
changing thermal environment. Disable people suffer from the same situation, so disability
(11 articles, 14%) is also one of the frequently used indicators, which is captured by the
percentage of the population with disability. There were also five studies (7%) using
birth/death rate to reflect the heat effect on human health. Specifically, one of them
employed infant mortality rate [57] as a heat vulnerability indicator related to health
conditions, and another one selected birth rate [58].

The availability of medical and healthcare resources can greatly affect the adaptive
capacity to heat of an individual, which consists of medical infrastructure, healthcare ser-
vices, and health insurance. Medical infrastructure (18 articles, 24) is the second most
frequently considered health condition indicator, of which the number of medical work-
ers/facilities/institutions are one of the typical representatives. Some studies calculated
distances and time costs [23,24,58] to the nearest medical institution and considered them as
the proxies of the availability of public health resources. The rest of the less frequently used
indicators are healthcare services (5 articles, 7%) and health insurance (3 articles, 4%), both of
which reflect external support and assurance [59,60] for people to deal with extreme heat.

Health condition data were mainly collected from datasets released by national and
local health departments and medical institutions, such as datasets published by the
Ministry of Health Malaysia [61] and Toronto Public Health 2009 [62]. The data on the
distances to medical resources were derived from point of interest data and online map
platforms [54,63].

3.2.3. Environmental Factors

Environment factors are directly associated with harmful heat and related heat out-
comes [21]. Not only can they directly reveal the heat intensity such as the land surface
temperature (LST); air temperature and heat duration such as days/frequency of heat
events, but also reflect the ability to aggravate or reduce heat impacts, such as vegetation
cover, and accessibility to cooling spaces. Environmental indicators can be summarized
into two categories as natural environment and urban environment.
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The top-3 indicators concerning natural environment were LST (38 articles, 50%),
vegetation cover (23 articles, 30%), and air temperature and heat duration (20 articles,
26%). Landsat and MODIS satellite images with resolutions of 30 m, 60 m, and 1 km were
employed to derive daytime and night-time LST during the study period. Daytime and
night-time mean, maximum and minimum air temperatures were collected from meteoro-
logical observation stations [62,64]. The combined use of surface and air temperatures can
fully characterize the thermal space distribution near the ground.

Vegetation cover plays an important role in assessing the population’s heat vulnerabil-
ity due to the ability to adjust the temperature of the surrounding environment through
photosynthesis. The abundance of vegetation determines the local ability to adjust to
extreme heat to a certain extent [65,66]. MODIS satellite products were used to capture
vegetation covers, such as Normalized Difference Vegetation Index (NDVI), Enhanced
Vegetation Index (EVI), and Fractional Vegetation Cover (FVC) [67–69]. The less used
natural environment indicators are humidity, heat events, thermal radiation and heat flux,
air condition, and weather.

A total two studies attempted to employ the Digital Elevation Model (DEM) [49,68] as
an elevation indicator in heat vulnerability measurement because topographic relief can
affect the duration and intensity of heat exposure on a population. Heat-related composite
indexes built by temperature, humidity, and other weather variables have been proven to
have a high correlation with heat-related hospitalizations and death [70–72] and utilized in
the development of heat vulnerability frameworks, such as Heat Index (HI), Humidex, and
Wet Bulb Globe Temperature (WBGT).

The top-3 environmental factors reported concerning urban environment were accessi-
bility to cooling spaces (20 articles, 26%), land cover/use (19 articles, 25%), and building
information (14 articles, 18%). Green space, water bodies, and other cooling places can
provide people with free cooling services and relieve them from the thermal environ-
ment [73,74]. Impervious area extracted from land cover data has become one of the most
typical indicators of land cover/use as it is considered a contributor to exacerbating the
urban heat island (UHI) effects [75].

Other contributors to UHI, building information including building density, height,
and type was frequently used to demonstrate urban heat vulnerability due to the positive
association with the increased temperature [76–78]. Other studies also took transportation,
infrastructure, and urbanization into consideration [24,54,72].

Natural environmental indicators, such as LST, vegetation cover, and meteorological
data, were commonly derived from Landsat and MODIS satellite images and meteorologi-
cal observation datasets [56,79]. Urban environmental indicators are commonly calculated
from Landsat and MODIS satellite products or collected from public databases from na-
tional and local planning departments [80,81]. Moreover, other satellite products from
various sensors (e.g., Sentinel-2, DMSP/OLS, and NPP/VIIRS) were also utilized in some
studies [15,31,49,82].

3.3. Modelling Approaches

In the modelling process, after deciding on the heat-related indicators and collecting
corresponding data, the next step is to build an efficient model to measure extreme heat
vulnerability, which plays a fundamental role in the whole study process. Table 4 displays
a summary of information on the modelling and weighting methods and outputs.
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Table 4. Modelling and weighting methods and outputs.

Categories Methods/Outputs Descriptions Number of
Articles

Modelling
methods

Indexing methods Heat vulnerability
indexes

Indexes based on the population vulnerability
framework consisting of exposure, sensitivity, and
adaptive capacity

19

Heat risk indexes Indexes based on the risk triangle framework
consisting of hazard, exposure, and vulnerability 15

Other heat-related
indexes

Indexes developed by heat-related indicators but
not based on the two abovementioned frameworks,
such as biophysical and social vulnerability indexes

29

GIS techniques Models built by GIS techniques 6

Others Statistical methods, composite methods, and
survey data analytics 7

Weighting
methods

EW Equal weighting methods 37

PCA Principal component analysis 27

AHP Analytical hierarchical process 5

Others
Other weighting methods, such as expert
weighting methods, slope-weighted method, and
factor-weighted method

7

Model outputs Heat vulnerability
maps

Spatial scales

Census units 26

Administrative areas 25

Grid 17

Postal areas 6

Local climate zones 3

Study periods

1990s 4

2000s 32

2010s 34

2020s 3

3.3.1. Modelling Methods

The most frequently used modelling method was the indexing method (61 articles,
80%), which included three popular heat vulnerability models based on different con-
ceptual frameworks. Many heat-vulnerability indexes (19 articles, 25%) and heat risk
indexes (15 articles, 20%) were developed through two popular conceptual frameworks,
i.e., population vulnerability framework [83] and risk triangle framework [84]. Each of the
frameworks consisted of three separate components, which were represented by different
types of heat-related indicators.

In the population vulnerability framework, heat vulnerability is the summation of
exposure, sensitivity, and adaptive capacity. Exposure was referred to by direct or indirect
impacts on populations from the thermal environment. Direct risk of heat exposure mainly
comes from the natural environment, which can be represented by meteorological and
climatic indicators, such as daytime and night-time air temperatures and land surface tem-
peratures [61,85]. Indirect risk of heat exposure is mainly caused by the built environment,
which includes accessibility to cooling spaces, building information, and so on [59,77].

Sensitivity represented the extent to which populations are sensitive or susceptible
to increased extreme heat, which can be reflected by demographic and socioeconomic
indicators, such as age, social isolation, and economic status [86,87]. Adaptive capacity
to extreme heat exposure was usually depicted by the availability of facilities that reduce
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the risk of heat exposure, such as access to air conditions/personal vehicles/internet
services/water supply/medical services [54,68].

In the risk triangle framework, heat risk is calculated by summing up components
of hazard, exposure, and vulnerability. Hazard was considered as the spatiotemporal
distribution of heatwaves or extreme heat events, which was often depicted by mean daily
max temperatures, duration of heatwaves or heat events, and days with extremely high
temperatures [81,82].

Exposure was typically represented by land cover/use and population density, espe-
cially young and elder population density [88,89]. Vulnerability incorporates sensitivity
and adaptive capacity to extreme heat exposure, which is like those in population vulner-
ability frameworks. Indexes built by the two frameworks were often adjusted through
switching mathematical operations, like multiplication and division operations [90].

Many studies (29 articles, 38%) developed heat vulnerability indexes that were not
based on the above frameworks. These studies usually collected heat-related indicators,
ranging from two to 24, and fused them to build a new index. Heat-related indicators were
usually categorized according to the property characteristics, such as social, economic, and
environmental categories [91]. Several studies (6 articles, 8%) selected GIS techniques to
map and visualize the spatial distributions of heat vulnerability.

Macintyre et al. [76] utilized GIS techniques to calculate and estimate the ambient
temperatures corresponding to potential heat risk indicators, such as age, housing condi-
tion, and economic status. The other methods included composite methodologies (e.g.,
the multicriteria outranking framework [26] and the decision support system [92]), sta-
tistical analysis models (e.g., Poisson regression models [29]), and questionnaire/survey
analytics [53].

3.3.2. Weighting Methods

Once the indicators and modelling methods are established, the next step is to deter-
mine the weight assigned to each indicator or category, which is essential to determine
their importance or contribution to the heat vulnerability. Weight allocation follows the
principle that weights correspond to the degrees of impact on heat vulnerability. Of the
collected studies, the top-2 weighting methods were the equal weighting (EW) method
(37 articles, 49%) and the principal component analysis (PCA) (27 articles, 36%).

EW is widely used in many studies and developed on the assumption that each
indicator or category has the same influence on the subject matter [93]. It ensures that
both each category and each indicator in the same category are allocated equal weights.
PCA is often employed in studies with numerous indicators to group them into fewer
categories and reduce the analysis dimensions. It is worth noting that principal components
statistically calculated by PCA are less readable and interpretable than original indicators.

Liu et al. [94] built HVIs via EW and PCA and compared the separate performance
in Hangzhou, China. The results revealed that equal-weighted HVI performed better
than HVI calculated by PCA in terms of correlation with heat-related death. Nevertheless,
Tate. [30] demonstrated PCA performed better than other methods, with higher precision
and sensitivity to indicators and analysis scales. This means weighting methods depend on
contexts and the determination of weighting methods should be with more caution.

Another statistical method applied in weighting assignment is AHP (5 articles, 7%),
which obtains weights based on the experience and judgment of a panel of experts. The
other weighting methods (7 articles, 9%) consist of expert weighting methods, slope-
weighted methods, and factor-weighted methods. Sometimes, multiple methods are com-
bined to find out reasonable weights. For example, Song et al. [78] first used PCA to obtain
all principal components and then allocated equal weights to them to build composite HVI
in Hongkong, China.
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3.3.3. Modelling Outputs

Heat vulnerability maps reflecting spatial distributions of heat exposure and hazard
were the most common outputs in the selected articles. Once heat vulnerability maps
were created, the indexes were normally rescaled into 3 to 10 vulnerability levels by equal
intervals, typically five or seven evaluation scales (e.g., very low, low, moderate, high,
very high), to reflect the degree of localized heat exposure [95,96]. Sometimes, the indexes
were calculated and presented as continuous numerical values, in which case high values
represented high heat vulnerability and vice versa.

The model outputs varied across studies from spatial units to temporal scales due to
the spatiotemporal resolutions of proxy data. This review classified selected articles into
the different categories according to spatial and temporal scales to evaluate the dimensions
of the outputs. The top-3 spatial scales employed in the selected articles were census units
(26 articles, 34%), administrative areas (25 articles, 33%), and grid (17 articles, 22%). Census
units incorporated census blocks [82], census block groups [88], and census tracts [97].
Administrative areas ranged from states/provinces to communities/counties [21,98]. The
reason for this popularity is that heat-related indicators at the scales, such as demographic,
socioeconomic, and health-related, can be easily obtained from national and local demo-
graphic datasets. The application of satellite products contributed to the increased use of
grid-scale, such as LST, NDVI, and land cover/use products from Landsat and MODIS
datasets. The spatial resolutions of these studies were consistent with that of the satellite
product used, from 100 m to 1 km. The less frequently used spatial units were postal areas
and local climate zones [79,99].

Basically, there were no explicit study years in the heat vulnerability studies because
they commonly used data from different years due to limited data availability. Hence,
model outputs reflected the situation of heat vulnerability in a period, not in an explicit year.
Model outputs concentrated in two periods 2000–2009 (32 articles, 42%) and 2010–2019
(34 articles, 45%) because of more frequent extreme heat events occurred after 2000 and
data availability. Only 3 studies [50,67,87] focused on mapping long time-series heat
vulnerability. Weber et al. [67] identified localized trends of increased urban extreme heat
and spatiotemporal distributions of heat exposure over 1980 and 2013 with ground- and
satellite-based data. Wilson et al. [87] proposed a novel methodology to locate the most
vulnerable populations and analyzed the changing trends of these locations from 1990
to 2010 with an interval of 10 years. Rao et al. [50] conducted a gridded analysis based
on MODIS LST images to compute heatwave indicators and explore the temporal and
geographical variation of heat risk and vulnerability in Indo-Gangetic Plains in India from
2003 to 2019.

It is worth noting that only three articles focused on predicting future heat vulnerability.
Oh et al. [98] built a climate change vulnerability assessment tool and applied it to assess the
province-level heat vulnerability in Korea for the 2040s. Prosdocimi et al. [24] developed
a spatially explicit index for measuring heat stress risk and used it to assess heat risk
in Dublin, Ireland from 2020s to 2050s. Loughnan et al. [63] mapped the population
vulnerability in Australia’s capital cities with an HVI to extreme heat events and projected
the future population changes during 2020–2030. Both results were combined to map
future changes in population vulnerability. Mapping future spatial distributions of heat
vulnerability are also important because it benefits grasping the changes and preparing
countermeasures in advance. More attention needs to be paid to the predictive assessment
of heat vulnerability.

3.4. Validation Approaches

It is indispensable for newly developed heat vulnerability assessment models to
conduct validation experiments to demonstrate their capabilities in evaluating potential
heat vulnerability and risk during extreme heat events. Nevertheless, only 20 selected
articles (out of 76) involved validation parts, accounting for 26%. Some research [54,98–100]
adjusted validated heat vulnerability models and applied them to new study areas, so
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the validation parts were disregarded. Many studies [67,77] mentioned the limitation
of lacking validation and described future validation plans. They explained the main
reason was validation data dearth. If enough validation indicators were available, further
validation analyses would be undertaken. Table 5 shows the summary of information on
the validation indicators, methods, and study performance.

Table 5. Validation indicators, methods, and study performance.

Categories Particulars Descriptions Number of
Articles

Validation
indicators

Mortality

All-cause mortality Deaths caused by all diseases except accidents 8

Heat-related
mortality

Deaths caused by heat-related diseases, e.g.,
respiratory, cardiovascular, and
cerebrovascular diseases.

7

Morbidity Hospital/Emergency department visits
and admissions 7

Accessibility to medical institutions Distance to the nearest hospital and clinic 1

Validation
methods

Regression
models

Linear regressions Univariate or multivariate linear regression; 11

Poisson regression Poisson or adjusted Poisson regression 5

others Multinomial logistic regression model 1

Correlation coefficients Pearson/Spearman’s correlation coefficient 3

spatial analysis Comparison between spatial distributions of HVI
and heat-related health outcomes 2

Others
Critical Success Index (CSI); Statistical significance
test; Case-crossover and threshold-OR curve
analyses; Root Mean Square Error

4

Study
performance

Satisfactory

Showing non-significant correlations between heat
vulnerability model outcomes and heat-related
health outcomes, which indicated the models may
not accurately reflect the levels and spatial
distributions of heat vulnerability

10

Unsatisfactory

Showing significant correlations between heat
vulnerability model outcomes and heat-related
health outcomes, which indicated the models could
accurately reflect the levels and spatial
distributions of heat vulnerability

6

Mixed
Varying performances at different scales, in
different spatial units, and based on
different methodologies

4

3.4.1. Validation Indicators

The most frequently used validation indicator in the studied literature was mortality
with 15 related articles (about 20% of all reviewed articles). These researchers argued
mortality can directly depict the impacts of heat exposure on humans and the association
between population health and extreme heat with less bias. Mortality indicators can be
classified into two categories—i.e., heat-related mortality [101] and all-cause mortality [102]
during summer or heat events.

On the one hand, some studies used deaths caused by diseases sensitive to the ex-
treme thermal environment as the mortality indicator. Kwon et al. [101] selected mortality
data related to respiratory, ischemic heart disease, and cerebrovascular disease as ther-
mal disease-related mortality. Hu et al. [49] and Liu et al. [94] also considered deaths
caused by heat stroke, dehydration, and hyperpyrexia as heat-related mortality. Moreover,
Kim et al. [103] and Song et al. [78] took the deaths caused by exposure to excessive natural
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or artificial heat into consideration, such as sunlight and artificial light. To evaluate the
effectiveness of the extreme heat vulnerability index (EHVI) proposed, Johnson et al. [104]
predicted heat-related mortality based on the total population number of each block group
and the overall death rate in Chicago during the extreme heat event that happened in 1995.

On the other hand, some studies employed all-cause deaths during hot seasons as a
mortality indicator. Conlon et al. [52] estimated the proportion of all-cause deaths during
extremely hot days and explore the relationship with HVI developed. Considering the data
availability, Estoque et al. [27] selected all-cause mortality data at the province level during
hot dry seasons to validate the heat vulnerability outcomes. Krstic et al. [71] used deaths
on six extremely hot days from 1984 to 2014 to conduct an index assessment and evaluate
the index performance. Maier et al. [102] and Wang et al. [51] also collected daily mortality
monitoring to verify whether heat vulnerability levels reflected health outcomes of extreme
heat exposure. Mallen et al. [105] estimated mortality from related observed temperatures
and all-cause death rates with a distributed lag non-linear model.

The second frequently used validation indicator in the collected studied was heat-related
morbidity, including hospital and emergency department visits and admissions [106–108].
Chuang & Gober [65] calculated diabetes hospitalization by using census-tract population
data and previous hospitalizations for diabetes and used this as a validation indicator.
Zhang et al. [68] obtained summer hospital visit data at the county level from the local
statistical department for validation. Other studies [107,108] used emergency service
demand data to evaluate the model performance, such as ambulance calls, hospital and/or
emergency department visits and admissions. Apart from mortality and hospital visits
and admissions, Loughnan et al. [63] combined emergency ambulance callouts, emergency
department presentations and corresponding triage categories, and emergency hospital
admissions to measure morbidity data and used the morbidity outcomes for validation.

Multiple validation indicators were commonly used in the same study. Morbidity and
mortality were often combined as validation indicators to evaluate model efficiency [106,107].
Moreover, accessibility to medical institutions was also taken into consideration. Pros-
docimi et al. [24] selected the distance to the nearest hospital and clinic and health record
data as instrumental variables to evaluate the HVI model performance.

3.4.2. Validation Methods

As mentioned above, many studies tested whether the models were efficient enough
to predict heat vulnerability by using the correlation between heat-related health outcomes
and heat vulnerability results. A high positive correlation result meant high model efficiency
and the possibility of being a useful urban planning tool. A variety of mathematical
and statistical models, especially regression models (14 articles, 18%), were applied to
performance evaluations of the proposed heat vulnerability assessing methods. Poisson
regression (5 articles, 7%) and linear regression (11 articles, 14%) were commonly used in
model evaluations, and the less-used regression models included logistic regression [65].

Maier et al. [102] selected multivariate Poisson regression to explore the interaction
of HVI and oppressive heat on mortality in Georgia. Reid et al. [106] tried to demon-
strate how the increases in HVI and deviant days influence the hospitalizations and mor-
tality in five American states from 2000 to 2007 by using Poisson regression analysis.
Wolf et al. [107] utilized Poisson regression to predict the associated heat risk with mortality
and ambulance calls as the response variables and the HVI as the predictive variable.
Hu et al. [27,49,68,78,94,103,109] employed linear regression models to assess the cor-
relation between HVI values and heat-related mortality and used scatter plots and the
coefficient of determination to evaluate the extent to which a higher value of HVI can
produce more related deaths. In addition, spatial distribution comparison between HVI
and heat-related outcomes was often used as a qualitative analysis to assess the efficiency
of proposed models [65,103].

Some studies used multiple methodologies to validate the effectiveness and efficiency
of the developed models. Wang et al. [51] firstly employed quasi-Poisson regression
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and distributed lag nonlinear models to estimate the relationships between temperature
and mortality at the county level, then calculated the heat-attributed mortality fraction,
and finally used a meta regression model to explore the correlation between mortality
fraction and the HVI values. Prosdocimi et al. [24] combined linear regression, zero-
inflated Poisson regression, and zero-inflated negative binomial regression. Then they
conducted a difference-in-difference analysis to validate the HVI against heatwave-related
excess mortality.

Apart from statistical regression models, Pearson correlation and Spearman’s rank-
order correlation were often calculated to reflect whether there was a significant correlation
between heat vulnerability outcomes and heat-related health outcomes [49,63,68]. Critical
success index (CSI), statistical significance test, case-crossover and threshold or curve
analyses, and root mean square error [71,101,104,109] were also employed in the validation
of the HVI models.

3.4.3. Study Performance

As mentioned in Section 3.3.3, there was a consensus among most heat vulnerability
assessing studies that a higher value of HVI meant an increased heat risk. Although
the selected articles claimed that the heat vulnerability models can be utilized for urban
planning and decision-making, the validation performances significantly varied across
the heat-related studies. Some studies (6 articles, 8%) achieved satisfactory validation
outcomes, while many studies (10 articles, 13%) did not obtain ideal results that indicated a
significant relationship between HVI values and heat-related outcomes.

Based on the heat risk triangle framework, Zhang et al. [68] developed an HVI for
elderly people at a raster scale in Chongqing, China. The calculated result showed the Pear-
son correlation coefficient between the HVI values and summer hospital visits was 0.924,
which indicated the heat vulnerability model performed satisfactorily. Mallen et al. [105]
developed an HVI based on PCA at the census tract level in Dallas, US, and then used
bivariate and multivariate regression models to compare estimated mortality and HVI
results. However, the results of both regression models were unsatisfactory. Especially,
the R squared value between total deaths and HVI scores was 0.03 by using the bivariate
regression, potentially indicating the HVI model was not capable of locating and predicting
the heat risk.

The heat vulnerability models also had varying performances at different scales, in dif-
ferent spatial units, and based on different methodologies. For example, Jänicke et al. [109]
quantitatively assessed heat-stress impacts through heat hazard, vulnerability, and risk
models at the district scale in Seoul, Korea, and conducted an evaluation of the assessment
outcomes by linear correlations. The heat-related mortality showed a significant correlation
with HVI values at the city level, while the result was opposite at the district scale. The
supervised HVI performed better than the unsupervised HVI, with a high positive associa-
tion with increased mortality during extremely hot days in Detroit, Michigan, USA. [52].
The equal-weighted HVI performed better than the HVI calculated by PCA in terms of
correlation with heat-related death in Hangzhou, China [94].

To sum up, the performance of a generic HVI depends on scale, measurement, and
context, which to a certain degree implies heat vulnerability models should be established
with thorough caution. Furthermore, under the circumstance of only employing statis-
tical analyses and using heat-related morbidity and mortality, it is difficult to verify the
effectiveness of the validation results for the proposed heat vulnerability methodologies.
More qualitative and quantitative methodologies need to be introduced as validation meth-
ods, such as questionnaire surveys on vulnerable populations and field measurements on
vulnerable areas.

4. Findings and Discussion

This review attempted to address the research question of ‘what are the methods to
assess urban heat vulnerability’ from three aspects, i.e., indicators and data, modelling
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approaches, and validation approaches, by undertaking a systematic review of the literature.
The summarized highlights of the reviewed literature are presented in Appendix A. Main
findings and some other critical issues are discussed further in this section.

Indicator selection is an essential part of heat vulnerability assessment research be-
cause all the results and analyses are based on the selected indicators. Introducing as
many relevant indicators as possible into assessment models contributes to accurately and
comprehensively grasping the urban heat vulnerability [33,110]. According to the reviewed
literature, it was found that three types of indicators are commonly used—i.e., demographic
properties and socioeconomic status, health conditions and medical resources, and natural
and built environmental factors. These indicators directly or indirectly influence the sensi-
tivity and adaptive capacity of urban residents to increased extreme heat and reflect the
frequency, duration, intensity, and distribution of heat exposure. The top-5 most frequently
used indicators in the studied reports were age, economic status, social isolation, education,
and land surface temperature.

From the perspective of indicator categories, there are four demographic and so-
cioeconomic indicators and only one environmental indicator. In terms of the impact
on urban heat vulnerability, only land surface temperature belongs as a direct indicator,
which can capture the intensity, magnitude, and spatiotemporal distribution of extreme
heat. Two main factors contributing to the popularity of the indicators were the verified
significant relationship between urban heat vulnerability [19,29,86] and the indicators and
the easy availability of corresponding data [21,33]. The popularity indicates that current
vulnerability studies put over-reliance on indirect socio-demographical indicators. More
attention should be paid to personal health conditions, public medical services, natural
environmental hazards, and urban planning and governance for a comprehensive concep-
tual framework.

Although using heat-related indicators to measure urban heat vulnerability has been a
consensus, there were no universal criteria or specifications in the selection of input metrics
in terms of quantities, varieties, theoretical fundamentals of selections, and data proxies.
According to the reviewed literature, the number of indicators ranged from 2 to 30, and the
categories ranged from 2 to 7. For example, Prosdocimi & Klima [24] collected 24 indicators
from the Brazilian national census database based on a hypothesis that the indicators had
an impact on heat vulnerability, while Yin et al. [111] selected only 2 indicators, i.e., ambient
air temperature and noontime foot traffic time, to build an index to capture urban heat
exposure patterns. However, both studies incorporated 2 categories. Yin et al.’s study [111]
only focused on exposure and hazard, while Prosdocimi’s study [24] only concentrated
on socioeconomic factors and urban form. This means the number of indicators does
not always reflect the assessment dimensions, even though studies with many indicators
involved cannot ensure the diversity and comprehensiveness of analysis dimensionality.

On the one hand, the research considering inadequate indicators will inevitably miss
some characteristics related to heat vulnerability. Kershaw et al. [62] took apparent tem-
perature intensity, exposure duration, and humidity into consideration, only focusing
on the natural environment without any demographic and socioeconomic properties.
Barron et al. [16] employed 5 commonly used indicators, i.e., age, race, economic status,
education level, and social isolation, incorporating demographic characteristics and so-
cioeconomic properties but without environment-related considerations. On the other
hand, the same circumstance also occurred in the assessment studies with many indicators.
For example, several studies [29,87,104] involved 16–30 indicators covering characteristics
of population and environment, but without indicators capturing the impacts of public
medical facilities and institutions.

In the studies, individual health conditions and available public medical resources are
the easily neglected elements. Moreover, by involving numerous metrics in an assessment
it is inevitable to incorporate less relevant indicators. For instance, in Harlan’s study [19],
8 out of 14 indicators were not significantly correlative with human thermal comfort index
(HTCI), particularly the distance from the city center and the mean roof reflectivity, which
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have no statistical correlation with HTCI. Wolf et al. [107] discovered that univariate and
multivariate HVI had similar performances in predicting health outcomes. It inspired
researchers that parsimony might be a significant factor to consider in their study design.

The lack of generic standards also led to mismatches between indicators and categories.
Taking the two most popular theoretical frameworks for example, both frames interpreted
selected indicators in different ways, which led to a consequence that even the same
indicators had different interpretations and meanings and reflected varied components of
heat vulnerability. Specifically, LST was referred to as an exposure element in the population
vulnerability framework [54,80,87], while the risk triangle framework considered it as a
representative of hazard element [11,81,88]. Kwon et al. [101] classified population density
as a proxy for the sensitivity element while using the population vulnerability framework,
but Dong et al. [82] interpreted it as the representative of the exposure element in the risk
triangle framework.

Even in the same conceptual frame, there were different interpretations and classifica-
tions for the same indicators. For instance, an individuals’ economic status and education
levels were categorized into the sensitivity category by Zhang et al. [14], Wilson et al. [87],
and Wu et al. [54], yet considered as adaptive capacity indicators by El-Zein & Tonmoy [26],
Hulley et al. [77], and Mallen et al. [105] while all using the population vulnerability frame-
work. Under the risk triangle framework, Lapola et al. [48] and Zhang et al. [68] categorized
the elderly population as the exposure indicator, while other studies [31,49,78] commonly
used it as a proxy of vulnerability component.

The great differential in numbers and categories of indicators is mainly caused by
the lack of universal selection theories and criteria. Current indicator selection relies
critically on local contexts [28,29]. On the one hand, local characteristics of the population,
infrastructure, and ecosystem have a significant impact on urban heat vulnerability. For
example, Azhar et al. [95] included scheduled castes and scheduled tribes in the study
mapping heat vulnerability in India, due to the existence of social class systems. In counties
with a high proportion of immigrants like America, ethnicity was commonly taken into
consideration while measuring heat vulnerability, such as Latino immigrants, Hispanics,
and races other than white [19,102,108].

On the other hand, local data availability also plays an essential role in heat vulnerabil-
ity assessment. Current studies put an over-reliance on census datasets because of the easy
availability [110]. Census datasets freely provide abundant and comprehensive sociodemo-
graphic metrics for heat-related assessments to capture the sensitivity and adaptive capacity
of vulnerable people. The lack of data availability could alter indicator selection to a large
extent. For instance, studies substituted the missing data in the study period with data
from years when the targeted indicators could not be found [17,76,77]. If the substituted
data were not available either, the amount of indicators would be reduced correspondingly.

The determination of indicators was constrained by either data availability or the
researchers’ subjective judgment [30,31]. Without the guidance of universal selection cri-
teria, most studies selected indicators grounded on conclusions of previous studies, data
availability, and personal view of the theoretical relationship between potential indicators
and the local context [14,21]. Researchers’ subjective discretion was bound to impair the
credibility and validity of the selected indicators. In most heat vulnerability research, the
representativeness and relevance have not been demonstrated through scientific quantita-
tive and qualitative methodologies [29,69,91]. Although some studies conducted sensitivity
analyses to explore the relationship between selected metrics and heat vulnerability out-
comes, from the results, not all indicators had a significant statistical relationship with
measured heat vulnerability [47,86]. Whether the selected indicators are explicitly relevant
to heat vulnerability needs further verifications. Thus, it raised doubt about the credibility
and authenticity of selected metrics and achieved results.

While ensuring enough relevant indicators are involved in the assessment, it is nec-
essary for researchers to select data proxies that can accurately represent corresponding
indicators. However, according to reviewed literature, it was common that the same in-
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dicators had different data proxies with varied resolutions [21], and accuracy verification
of selected proxies was not included before developing assessment models. Taking the
most frequently used environmental indicator LST for example, it has been measured by
satellite products and data from meteorologic observation sites [46,61,63]. Satellite products
included LST images from Landsat and MODIS sensors with spatial resolutions of 120 m
and 1 km, respectively.

Higher resolutions mean more spatial characteristics of the temperature distribution,
so studies [70,75,97] using Landsat images were conducted on a coarser scale and generated
more detailed information. This was not absolute because the cloud cover of satellite images
directly reduces the accuracy of capturing surface temperature distributions [104,110].
Therefore, satellite images with high resolution are imperative when using remote sensing
to depict extreme heat events. Moreover, it is worth noting that studies often used several
satellite images, each covering 8–16 days, to reflect the LST spatial distribution in a whole
year. It is unclear whether the operation would reduce the accuracy of the data proxy and
even have a negative impact on the credibility of final heat vulnerability results.

According to the reviewed literature, we found heat vulnerability indexing models
were the most popular modelling methods. The modelling methods incorporated indexing
models based on the population vulnerability framework, the risk triangle framework
and other heat-related indexing models. Despite the consistent increment of HVIs, the
conceptualization of the index remained incomplete and required further development.
From Table 4, the number of studies using other heat-related indexing models is close to
the summation of studies based on the two popular frameworks. According to the differ-
ence in focus on vulnerability characterization, the model developed two types of HVI,
i.e., biophysical vulnerability index and social vulnerability index. The biophysical vulner-
ability index was proposed to depict precise characteristics of vulnerability to biophysical
exposure, which encompassed environmental factors such as temperature distribution and
urban form.

The social vulnerability index was meant to capture human health and well-being in
aspects of society, economy, policy, and culture for estimating to what extent people are
susceptible and whether they have adequate capacity to heat vulnerability. Incomplete
indicator systems indicated that these indexes were incapable of reflecting integral charac-
terizations of heat vulnerability due to the missing depiction of imperative features. Further,
Johnson et al. [104] and Macnee & Tokai [59] argued that both socioeconomic vulnerability
and biophysical exposure were complementary components of heat risk, which cannot be
completely grasped in the absence of any component.

To fill the lacuna of integrative approaches, composite HVIs combined with biophysical
and sociodemographic indicators have been developed and broadly applied. As mentioned
above, composite HVIs developed on the two popular frames all comprised 3 components
and were commonly combined with additive approaches. However, it is unclear whether
there is an additive effect among different assessment dimensions and indicators under each
dimension. Some studies opted to use other arithmetic means to calculate HVIs [80,82,98],
i.e., subtraction, multiplication, and division, but they failed to adequately demonstrate
the underlying logical relationships between constituent elements either. The logicality
and adequacy of the commonly used equations have not been examined before in heat
vulnerability assessments. This is urgently needed to discover theoretical constructs for
supporting developments of HVIs, not just based on subjective assumptions.

The same controversy persisted in several studies [11,76,92] which applied GIS tech-
niques, i.e., the overlay analysis approach, to obtain heat vulnerability maps because they
were also grounded on the assumption of additive effects. No matter indexing models,
GIS techniques, or other statistical methods applied are all quantitative approaches. Those
approaches failed to accommodate qualitative analysis approaches which are complemen-
tary to quantitative methods because qualitative components are usually non-measurable.
However, the integration of quantitative and qualitative perspectives is necessary for pol-
icy formulation in the mitigation of heat vulnerability. It is challenging to qualitatively
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capture heat vulnerability and rationally integrate qualitative and quantitative elements.
Cheng et al. [21] attempted to apply questionnaire surveys to qualitatively capture people’s
heat risk perception and integrate it with quantitative spatial analysis to identify and assess
heat vulnerability in Beijing, China. More qualitative components and approaches to heat
vulnerability should be explored and checked in the assessment to provide guidelines for
scientific decision-making.

Once the sets of indicators and the theoretical framework are determined, the weight
assignment between each indicator or component is the next quite important step, which
needs selecting an objective and effective weighting tool. This review found EW and PCA
were the most frequently used weighting methods in heat vulnerability studies. Substantial
studies [16,85,99] asserted that they decided to allocate all indicators or components with
equal weights by referring to literature reviews on previous heat-related research. They
assumed that each element is independent and represented a separate dimension of vul-
nerable targets to heat exposure. Nevertheless, there are no theoretical fundamentals to
support the authenticity and credibility of this assumption. In contrast, it was discovered
that the effects of vulnerability indicators might be altered as geographical scales and
distances to metropolitan centers change [20,108].

Therefore, it is less convincing to distribute equal weights to selected indicators
without any further examinations or scientific justifications. Another doubt is whether the
hierarchical scheme is reasonable and valid, which allocates equal weights to indicators
under the same subcategories. Ho et al. [55] and Mushore et al. [75] assigned equal
weights to the indicators under dimensions of biophysical exposure and social vulnerability.
However, the indicators under different evaluation dimensions had no equal weights
because of the difference in original weights assigned to dimensions and the number of
indicators of each dimension. It is unclear whether the consistency without any theoretical
construct can possibly affect the accuracy and precision of vulnerability assessment results.
Consequently, the decision on the selection of the EW method is totally at the author’s
discretion from the subjective understanding of the relationships between each element.

The controversy of equal weights also occurred while applying PCA. Although PCA al-
locates weights to the variables under components according to the explained variances [61].
It was quite common for the studies which applied PCA to distribute equal weights to
separate components. The implication of equal weighting mechanics also lacks adequate
evaluations and supporting theories. PCA was commonly applied to reduce the number of
indicators and identify principal components according to the statistical relationships be-
tween screened indicators. For instance, Cutter et al. [112] reduced 42 original indicators to
11 eligible indicators by PCA. Johnson et al. [104] obtained 19 variables from 25 well-known
indicators by iteratively removing 6 variables exhibiting complex structures with PCA.
The final obtained components without titles are less interpretable and comprehensible. It
is unknown whether each component made up of a set of indicators that have statistical
relationships can explicitly reflect varied vulnerability dimensions.

For example, Johnson et al. [104] obtained 4 components by PCA, one of which
is made up of indicators of the black population and land surface temperature. What
vulnerability characteristics does the combination of demographical properties and natural
environment metrics indicate, although it can explain approximately 7% of the variance?
Nayak et al. [108] entitled each component according to the commonality of indicators
included. However, the socioeconomic component contained an indicator of personal
health condition, i.e., the population with a disability, and race indicators of Hispanic
and Black are classified into separate components. The mismatch between components
and indicators has led to clutters in the analysis logicality. Consequently, whether the
components obtained based on statistical relationships have rational practical meanings
remains doubtful. Moreover, the application of PCA has a strict requirement for proxy
data, which must ensure data integrity without any missing data. The restriction further
limits the application of available datasets. Despite the limitation mentioned, PCA is still
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the most acknowledged and applicable statistical weighting method in the field of heat
vulnerability assessment.

The results of the review disclosed that nearly 70% of the included vulnerability
studies selected census tracts and administrative areas as spatial units to map urban heat
vulnerability. Those studies over-relied on easily available census datasets and statistical
data from official departments. However, varying heat vulnerability indicators interact
across the boundaries of geographical units, which experience consolidations, revisions,
and splits in urbanization. The selection of spatial scales may not draw rational conclusions
due to underestimating the influence of interactions between administrative units on heat
vulnerability and the accompanying modifiable areal unit problem (MAUP). MAUP is a
statistical bias caused by aggregating types of indicators with different spatial features
in a specific spatial scale [113]. After all, it is difficult to adequately capture geographi-
cal features with simple mean values on a coarse spatial scale. Additionally, the coarse
granularity of distractive areas cannot meet the demand of contemporary urban planning
and policymaking.

For avoiding MAUP and improve the accuracy of vulnerability assessment, many
studies [27,50,71] attempted to harmonize spatial characteristics of human sensitivity and
environmental exposure on a grid-scale with resampling approaches, which benefited from
the development of related satellite techniques and available products. The application
of remote sensing in heat-related research greatly improves the spatial resolution, which
makes it possible to capture the difference between communities. Nevertheless, the quality
of satellite images is influenced by atmospheric conditions during the imaging period,
particularly the cloud cover. If the quality was not guaranteed, the improvement of spatial
scale would not bring more precise and accurate vulnerability results. As there is a broad
application of heat-related satellite products, assessing urban heat vulnerability on a finer
grid scale with remote sensing data is becoming a trend for urban planning. Moreover,
census datasets solely incorporate static data based on households, which cannot reflect
the dynamic properties of individuals. Current studies rarely provide insight into how to
assess urban heat vulnerability on the premise of considering a subjects’ location dynamic
changes due to daily activities [111].

From a temporal perspective, most studies focused on the measurement and analysis
of historical heat vulnerability in an implicit short term. These studies attempted to
investigate how and why vulnerability patterns exist and distribute in a specific time after
the 1990s. However, knowledge of only the spatial distributions and drivers of increased
heat vulnerability is insufficient. The cross-sectional studies failed to capture the evolution
and development of urban heat vulnerability in a long-term series and lacked the projection
of potential heat risk. Thus, it is necessary to involve the time dimension in the assessing
system. Furthermore, the lacunae of longitudinal and predictive research may impede
the development and application of a broader applicable and comprehensive theoretical
framework. On the one hand, longitudinal studies can adequately reflect the heterogeneity
and dynamic evolution of heat vulnerability in the spatiotemporal dimension [50,67,87].

Evolution information is essential for urban planners to design mitigation strategies and
examine the validity of previous measures. On the other hand, predictive studies are beneficial
to grasp the potential trend of heat vulnerability in the future and provide guidelines for poli-
cymakers to formulate effective and efficient precautionary measures [24,63,98]. Interventions
and policies anchored on historical knowledge have hysteretic nature, the reason for which
is that they are formulated and applied after the occurrence of extreme heat vulnerability.
For the prevention of potential heat risk, the prediction of heat vulnerability characteristics
and corresponding preventive strategies from divergent scientific perspectives is particu-
larly significant. To scientifically mitigate the extreme heat vulnerability, we call for more
attempts and achievements in longitudinal and predictive research.

Validation is a dispensable process for heat vulnerability measurement and assess-
ment [106,107]. However, according to the results of validation approaches, only 20 studies
validated the research achievements, accounting for under a quarter of the selected articles.
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The lack of validation procedures may undermine the authenticity and credibility of the
results and conclusions. Some research [54,98,100] argued that the vulnerability model
applied has been validated by previous studies. However, the applicability and validity
were only evaluated in specific study regions, which are insufficient as the theoretical
underpinnings for the adjustment and application in the context of new studies.

The validation part is still imperative to broaden the applicability and enhance the
conceptual comprehensiveness of current popular theoretical frameworks [102]. Moreover,
many studies [67,77] mentioned the limitation of lacking validation and described future
validation plans. They explained the main reason was the lack of corresponding validation
data. If enough validation indicators are available, further validation analyses will be taken.
However, only a few studies [106,107] conducted performance assessments to provide a
solid support for the previous conclusions. Therefore, future heat vulnerability assessments
should adequately consider and check the feasibility of validation experiments while
designing study constructs.

All the studies with validation selected adverse heat-related health outcomes as val-
idation variables, which is based on the empirical understanding that there is a causal
relationship between HVIs and physical health consequences. Since Reid et al. [106] used
hospitalizations and mortality counts to evaluate the proposed HVI before, it has been
acknowledged by following related research to assess the performance of heat vulnerability
results by using heat-related morbidity and mortality. The geographical area with a high
HVI value may experience the potential risk of high morbidity and mortality [106]. How-
ever, although more frequent and intense extreme heat is associated with individual health
conditions and contributes to increased morbidity and mortality [114,115], the stability and
efficiency of the relationship has not been stated or examined in any reviewed articles.

It is unclear whether the heat-related morbidity and mortality of subjects are eligible
to be the validation indicator and to what degree it can reflect the population’s heat vul-
nerability. For instance, Conlon et al. [52] obtained extremely low R2 values both in census
tracts and blocks when regressing calculated HVIs with mortality during heat extremes,
which potentially indicates that heat-related outcomes inadequately reflect heat vulnera-
bility. Furthermore, multiple factors may influence heat-related morbidity and mortality.
Zafeiratou et al. [115] discovered that cold weather contributed more to cardiovascular mor-
tality rather than hot temperature. Although Sun et al. [116] found that increased extreme
heat exacerbated the susceptibility and incidence of respiratory patients, Zafeiratou et al. [115]
argued that the effect of air conditions on respiratory outcomes could not be ignored. It is
extremely significant to excise the interferences from other attributes while using morbidity
and mortality as validation variables.

While using morbidity and mortality as validation variables, the validation process
was often constrained by local data availability, which led to spatiotemporal mismatches be-
tween assessment results and validation data, and substitution of all-cause health outcomes
for heat-related morbidity and mortality. In terms of spatiotemporal mismatches, due to
the lack of appropriate data, Estoque et al. [27] substituted city-level validation datasets for
2015 with province-level mortality during hot seasons from 2009 to 2011. Evaluating and
validating heat vulnerability results with data for similar years on a coarser scale inevitably
fails to capture adequate detailed information and harms the accuracy of validation results.
Several studies [51,52,71,102] opted to use all-cause morbidity and mortality instead of
heat-related ones because of data availability. Numerous factors contribute to adverse
health outcomes besides extreme heat, such as individual habits, other meteorological
factors, mental health status, etc. Therefore, it raises doubt whether all-cause morbidity
and mortality are adequately eligible for validation data and likely to affect the accuracy of
validation results.

Another point worth noting is that extreme heat not only poses a salient risk to human
physical health, but also threatens the well-being of their mental status [117,118]. However,
the selected studies solely concentrated on people’s physical health conditions, so we
call for more indicators of mental and perceptual reactions to increased extreme heat.
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Ultimately, current validation indicators are from a statistical perspective without in situ
measurements. Although statistical datasets are convenient and cost-effective, they have
an inherent error and hysteresis nature due to the way of measurement and statistics.

Due to this circumstance, it is recommended to collect and survey personal feelings
and perceptions in increased extreme heat and vulnerability parameters of the thermal
environment from targeted vulnerable people and regions located by assessment outputs.
In situ measurements of personal perceptions and ambient thermal environment during
extremely hot days are appropriate complements to medical recordings [119]. Heat vul-
nerability is not bound to cause diseases and deaths, but the knowledge of individual
feelings and perceptions in extreme heat is a precise reflection of biophysical exposure
and social sensitivity. Moreover, field observations of the thermal environment, especially
temperatures, cooling infrastructures, and green spaces, are complementary to a human
perspective. It helps evaluate and examine heat vulnerability assessment outcomes from
an angle of environmental exposure and resilience.

Multinomial regression models and Poisson regression models are the most frequently
used validation models. Most reviewed studies selected simple linear regression models
grounded in the assumption of the existing linear relationship between HVI and adverse
health outcomes [49,103,109]. They utilized the accuracy of prediction of heat-related health
outcomes with HVI to assess the performances of the studies. The facticity and stability of
the assumed linear relationship have a direct impact on validation results. The introduction
of Poisson regression models was anchored in the fact that heat-related morbidity and
mortality during extreme heat periods fit to Poisson distribution. Poisson regression models
are often used to examine contributing factors of diseases in the medical field [120]. The
results of Poisson regression models illustrate what extent HVI explains the variation in
heat outcomes.

Moreover, Pearson’s correlation and Spearman’s correlation were introduced to val-
idate sections by measuring the linear or monotone relationships between HVI values
and health outcomes. This review found that those validation methods were limited to
statistical and quantitative aspects without any field investigations or qualitative methods,
which is likely to undermine the accuracy and credibility of the validation. The field
observation of temperatures in the thermal environment and the adequacy of cooling
resources is beneficial to evaluate and validate the risk of biophysical heat exposure. The
socioeconomic vulnerability can be qualitatively analyzed and verified by questionnaires
and interviews with populations in vulnerable areas characterized by heat vulnerability
outputs [21]. This method helps to grasp people’s perceptions and opinions of extreme
heat and corresponding behavioral and habitual reactions to mitigate heat risk. It is an
effective way to qualitatively analyze and validate whether the targeted populations are
vulnerable to or feel worried about increased extreme heat.

As discussed above, selections of indicators, scales, and methods in processes of
modelling and validation all have an impact on the performances of heat vulnerability
measurement studies. It is essential for future research to select the elements suitable
to local contexts. According to validation results, only 50% of studies with validations
had relative great evaluation performances. The rate indicates that it is urgent for studies
without validations to evaluate and validate their results to support the credibility of their
conclusions and the applicability of methods. None of the other 50% of studies obtained
satisfactory results which indicating a significant and strong correlation between heat
vulnerability values and adverse health outcomes. Despite the lack of solid support for
validation results, some studies [27,105] asserted that the results were quite important and
useful in heat risk profiling and policymaking.

Thus, it is worth doubting whether the results and conclusions are credible and mean-
ingful without the support from a good validation performance. Moreover, the difference
in correlations at the different scales indicates the limited applicability of the developed
methods. The overall validation performances reveal that HVI values alone may not suffice
when measuring urban heat vulnerability [27,101]. Urban planners and policymakers
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should integrate multiple measuring and assessing approaches in the planning, concep-
tion, and design process of mitigation and intervention strategies. It is worth noting that
validation approaches also affect performance outcomes. The differences between study
performances may not precisely reflect the method accuracy and heat vulnerability gap due
to the incomprehensiveness of validation methods. In situ measurements and qualitative
analyses are necessary to examine and verify the effectiveness and authenticity of valida-
tion results. In this way, it is possible to evaluate the heat vulnerability results objectively
and accurately, and substantially promote the development of methods measuring urban
heat vulnerability.

5. Conclusions

As global warming, because of anthropogenic climate change, has been intensifying
due to human activities, more and more people are inevitably becoming exposed to extreme
heat, and the lack of or highly limited effective ecological planning is not helping [121–125].
The UHI effect exacerbates the circumstance, which leads to urban residents being more
vulnerable to extreme heat than people in the surrounding areas. An increasing number of
methods are thus being developed to measure urban heat vulnerability in various regions
worldwide, to guide urban planning and policymaking. Nevertheless, thorough review
studies that compare, contrast, and help in understanding the prospects and constraints
of urban heat vulnerability assessment methods are scarce. The objective of the review
was to bridge this gap by using the PRISMA approach. The results were analyzed and
discussed from three aspects of indicators and data, modelling approaches, and validation
approaches to assess the validity and limitations of these methods.

The results disclose that demographic properties and socioeconomic status, health con-
ditions and medical resources, and natural and built environmental factors are commonly
used indicator types. However, there seems to be no universal criteria and specifications
in the selection of input metrics in terms of quantities, varieties, theoretical fundamentals,
and data proxies. It is essential to incorporate as many key factors as possible according to
supporting theories and local contexts to avoid subjective discretions. Meanwhile, control-
ling number of indicators by eliminating less relevant ones and keeping the consistency
between indicators and categories is also important. Ultimately, researchers should select
data proxies with high quality and adequate representativeness.

Another finding is that heat vulnerability indexing models, the equal weighting
method, and the principal component analysis are commonly used modelling and weight-
ing methods. Biophysical exposure and socioeconomic vulnerability are two main aspects
captured by heat-related indexes. The heat vulnerability framework and risk triangle frame-
work integrate the aspects of heat vulnerability for the comprehensiveness of assessments.
However, further explanation of the underlying logicality is lacking, which is likely to
undermine the reliability of the frameworks. Moreover, more attention should be paid to
qualitative methods, though assessment from a qualitative perspective is quite difficult.
EW and PCA methods are frequently used to allocate weights to indicators, while they
have inherent limitations. The assumption of equal weighting seems to be untenable in
some situations, and the PCA methods make indicators less readable and interpretable.
Model outputs are mainly concentrated in administrative scales and historical short-term
cross-sectional perspectives. Although it helps to capture the spatial variance of heat vulner-
ability, the evolution and trend of heat risk cannot be measured. To scientifically mitigate
and intervene in extreme heat vulnerability, we call for more attempts and achievements in
longitudinal and predictive research at finer scales.

In aspects of validation processes, slightly more than a quarter of all studies involved
model validation. The results revealed that statistical regressions and correlation coef-
ficients between heat vulnerability results and adverse health outcomes are commonly
used validation approaches. Nevertheless, the relationship between HVI values and health
consequences was not stable or strong enough in some studies. Both the substitution of
all-cause health outcomes for heat-related morbidity and mortality spatiotemporal mis-
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matches between assessment results and validation data had an impact on the accuracy
and reliability of validation results. Moreover, validation methods are limited to statistical
and quantitative perspectives without any field investigations and qualitative methods.
Thus, more indicators, such as people’s perceptions and mental health and in situ data
of thermal environment, and multiple qualitative methods, such as questionnaires and
interviews, should be involved in model validation. Overall validation performances
imply that HVI values alone may not suffice, and urban planners and policymakers should
integrate multiple measuring and assessing approaches while formulating mitigation and
intervention strategies.

In conclusion, there is a lack of a comprehensive and systematic framework in the devel-
opment and validation of heat vulnerability assessment methods, which is adjustable to the
local context. The findings and discussions are helpful for the establishment of an acknowl-
edged framework in the future. This study informs urban policy and generates directions for
prospective research and more accurate vulnerability assessment method development.
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Appendix A

Table A1. The list of articles reviewed.

Author Year Title Journal Aim Relevance

Wu et al. [54] 2022
“Mapping Heat-Health
Vulnerability Based On Remote
Sensing: A Case Study In Karachi”

Remote Sensing
To develop an assessment
framework for
developing countries

Provides insights into how to use
remote sensing data to map
Heat-Health Vulnerability

Chen et al. [53] 2021
“Heat Risk Of Residents In
Different Types Of Communities
From Urban Heat-Exposed Areas”

Science Of The Total
Environment

To assess heat risk of residents in
different types of communities

Generates knowledge on how to
use questionnaire surveys and RS
analysis to identify heat
exposure areas

Ferreira et al. [69] 2021

“An Explicitly Spatial Approach
To Identify Heat Vulnerable
Urban Areas And
Landscape Patterns”

Urban Climate

To develop an explicitly spatial
approach to identify heat
vulnerable urban areas and
landscape patterns

Provides insights into how to
identify vulnerable urban areas
by considering the land surface
temperature (LST) distribution
and landscape patterns

Holec et al. [15] 2021
“Heat Risk Assessment Based On
Mobile Phone Data: Case Study
Of Bratislava, Slovakia”

Natural Hazards To assess the heat risk for
Bratislava

Generates insights into how to
use mobile data to assess heat
risk based on a risk index

Kamal et al. [61] 2021
“Extreme Heat Vulnerability
Assessment In Tropical Region: A
Case Study In Malaysia”

Climate And
Development

To assess the extreme heat
vulnerability distribution across
Peninsular Malaysia

Discusses how to assess extreme
heat vulnerability distribution by
using an EHVI

Li et al. [25] 2021

“Investigating The Spatial
Distribution Of Resident’s
Outdoor Heat Exposure Across
Neighborhoods Of Philadelphia,
Pennsylvania Using Urban
Microclimate Modeling”

Sustainable Cities
And Society

To study the spatial distribution
of human outdoor heat exposure
in Philadelphia, Pennsylvania

Describes by using mean radiant
temperature calculated by a
SOLWEIG model how to map
heat exposure

Liou et al. [17] 2021

“Altering Urban Greenspace
Patterns And Heat Stress Risk In
Hanoi City During Master Plan
2030 Implementation”

Land Use Policy
To develop a method to map
local-level heat stress risk at
Hanoi City

Describes how to generate heat
risk patterns by combining
environmental and UGS factors
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Paranunzio et al. [81] 2021
“Assessing Current And Future
Heat Risk In Dublin
City, Ireland”

Urban Climate To propose an approach to assess
heat risk for Dublin

Develops an extreme heat stress
risk index for Dublin city across
multiple decades (2020s–2050s)
and for two representative
concentration pathways (RCPs)

Rao et al. [50] 2021

“Spatio-Temporal Analysis Of
Land Surface Temperature For
Identification Of Heat Wave Risk
And Vulnerability Hotspots In
Indo-Gangetic Plains Of India”

Theoretical And
Applied Climatology

To identify the risk and
vulnerability hotspots in the
western IGP of India

Provides insights into how to use
LST on GEE platform to build
HW indicators for spatiotemporal
analysis of heat risk

Wang et al. [51] 2021

“The Relationship Between
Population Heat Vulnerability
And Urbanization Levels: A
County-Level Modeling Study
Across China”

Environment
International

To develop an HVI for China to
identify the most vulnerable

Uses an HVI to map heat
vulnerability of China and its
relationship with urbanization

Yin et al. [111] 2021
“Dtex: A Dynamic Urban
Thermal Exposure Index Based
On Human Mobility Patterns”

Environment
International

To develop and test a Dynamic
Thermal Exposure index (DTEx)

Takes human movement into
consideration while developing
an HVI

Alonso & Renard [58] 2020

“A Comparative Study Of The
Physiological And
Socio-Economic Vulnerabilities
To Heat Waves Of The
Population Of The Metropolis Of
Lyon (France) In A Climate
Change Context”

International Journal
Of Environmental
Research And
Public Health

To compare physiological
vulnerability and socioeconomic
vulnerability in Lyon city

Discusses the performance of two
different indexes in heat
vulnerability assessment

Conlon et al. [52] 2020

“Mapping Human Vulnerability
To Extreme Heat: A Critical
Assessment Of Heat Vulnerability
Indices Created Using Principal
Components Analysis”

Environmental
Health Perspectives

To evaluate the effectiveness of
HVIs using PCA

Discusses the performance of the
PCA method in assessing
heat vulnerability

Dong et al. [82] 2020

“Heatwave-Induced Human
Health Risk Assessment In
Megacities Based On Heat
Stress-Social
Vulnerability-Human
Exposure Framework”

Landscape And
Urban Planning

To develop a new
heatwave-induced human health
risk framework for Wuhan City

Uses UTCI to assess
heatwave-induced health risk

Estoque et al. [27] 2020

“Heat Health Risk Assessment In
Philippine Cities Using Remotely
Sensed Data And
Social-Ecological Indicators”

Nature
Communications

To assess the current heat health
risk in 139 Philippine cities

Identifies the city-level heat risk
by using a framework of IPCC

Hammer et al. [56] 2020

“Local Extreme Heat Planning:
An Interactive Tool To Examine A
Heat Vulnerability Index For
Philadelphia, Pennsylvania”

Journal Of
Urban Health

To develop an HVI to classify the
most at-risk
Philadelphia neighborhoods

Uses an HVI to identify priority
areas for extreme heat planning

Kwon et al. [101] 2020
“Is Sensible Heat Flux Useful For
The Assessment Of Thermal
Vulnerability In Seoul (Korea)?”

International Journal
Of Environmental
Research And
Public Health

To identify a more reasonable
method (TVI) for evaluating
thermal vulnerability

Provides insights into how to use
sensible heat flux to assess
thermal vulnerability

Liu et al. [94] 2020

“Mapping Urban Heat
Vulnerability Of Extreme Heat In
Hangzhou Via Comparing
Two Approaches”

Complexity To compare two approached in
evaluating heat vulnerability

Discusses which method can
better be used to evaluate the
heat vulnerability

Maragno et al. [90] 2020

“Mapping Heat Stress
Vulnerability And Risk
Assessment At The
Neighborhood Scale To Drive
Urban Adaptation Planning”

Sustainability
To develop a methodology for
heat stress vulnerability and
risk assessment

Discusses how to support local
apartments in developing
adaptation strategies without
high-resolution climate data

Navarro-Estupiñan
et al. [97] 2020

“Heat Risk Mapping Through
Spatial Analysis Of
Remotely-Sensed Data And
Socioeconomic Vulnerability In
Hermosillo, México”

Urban Climate

To develop a method combining
satellite data and socioeconomic
data for heat
vulnerability assessment

Describes how to map heat risk
by combining LST and census
data with stability and hot
spot analysis

Prosdocimi &
Klima [24] 2020

“Health Effects Of Heat
Vulnerability In Rio De Janeiro: A
Validation Model For
Policy Applications”

SN Applied Sciences
To develop a heat vulnerability
index for the city of Rio
de Janeiro.

Constructs and validates a heat
vulnerability index given
uncertainty ranges in data for the
city of Rio de Janeiro

Song et al. [78] 2020

“Fine-Scale Mapping Of An
Evidence-Based Heat Health Risk
Index For High-Density Cities:
Hong Kong As A Case Study”

Large Tertiary
Planning Units

To provide an evidence-based
HVI to explicitly assess heat risk
at the community level

Explores the spatial and temporal
variations of heat risk in Hong
Kong based on
various indicators.
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Zemtsov et al. [64] 2020

“Intraurban Social Risk And
Mortality Patterns During
Extreme Heat Events: A Case
Study Of Moscow, 2010–2017”

Health Place To assess the social risk during a
heat wave in Moscow

Discusses how to assess social
risk based on the COSMOCLM
and PET

Agathangelidis
et al. [91] 2019

“Integrating Urban Form,
Function, And Energy Fluxes In
A Heat Exposure Indicator In
View Of Intra-Urban Heat Island
Assessment And Climate
Change Adaptation”

Climate To develop the Urban Heat
Exposure (UHeatEx) indicator

Uses the physical processes
which drive the urban heat island
(UHI) to build an HVI

Cai et al. [80] 2019

“Assessing The Heat
Vulnerability Of Different Local
Climate Zones In The Old Areas
Of A Chinese Megacity”

Sustainability
To investigate a heat vulnerability
assessment methodology for
different LCZ classes

Provides insights into how to
assess urban heat vulnerabilities
based on LCZ classification

Guo et al. [96] 2019

“Estimating Fine-Scale Heat
Vulnerability In Beijing Through
Two Approaches: Spatial
Patterns, Similarities,
And Divergence”

Remote Sensing

To compare the performance of
two commonly used approaches,
PCA and EWI in assessing the
urban heat vulnerability

Discusses which method is more
effective in assessing urban
heat vulnerability

He et al. [23] 2019

“Exploring The Mechanisms Of
Heat Wave Vulnerability At The
Urban Scale Based On The
Application Of Big Data And
Artificial Societies”

Environment
International

To analyze how urbanization
influences heat vulnerability and
how urban vulnerability
influences heat-related mortality

Provides insights into exploring
the relationship between
urbanization and heat
vulnerability by big data and
artificial societies

Hulley et al. [77] 2019

“New ECOSTRESS And MODIS
Land Surface Temperature Data
Reveal Fine-Scale Heat
Vulnerability In Cities: A Case
Study For Los Angeles
County, California”

Remote Sensing To develop an HVI to map heat
vulnerability for LA county

Describes using socioeconomic
and environmental variables to
measure heat exposure

Jacobs et al. [72] 2019
“Patterns Of Outdoor Exposure
To Heat In Three South
Asian Cities”

Science Of The
Total Environment

To characterize intra-urban
differences in exposure to heat in
three major cities in the South
Asian region

Identifies how enhanced
exposure to outdoor heat in
informal urban neighborhoods

Jänicke et al. [109] 2019
“Quantification And Evaluation
Of Intra-Urban Heat-Stress
Variability In Seoul, Korea”

International Journal
Of Biometeorology

To assess intra-urban heat-stress
variability in Seoul, Korea

Describes ways to use an HVI
and age scores to assess
heat stress

Lapola et al. [48] 2019
“Heat Stress Vulnerability And
Risk At The (Super) Local Scale
In Six Brazilian Capitals”

Climatic Change
To assess the heat stress
vulnerability and risk for six
Brazilian capitals

Identifies heat vulnerability for a
population by using HVIs
calculated by high
resolution data

Mallen et al. [105] 2019

“A Methodological Assessment
Of Extreme Heat Mortality
Modeling And Heat Vulnerability
Mapping In Dallas, Texas”

Urban Climate
To assess the performance of
different HVI techniques in
assessing vulnerability

Identifies to what extent a
common HVI model can
reproduce exposure-response
model results in the City of
Dallas, Texas

Wilson &
Chakraborty [87] 2019

“Mapping Vulnerability To
Extreme Heat Events: Lessons
From Metropolitan Chicago”

Journal Of
Environmental
Planning And
Management

To develop an approach to locate
vulnerable populations and
identify how the locations change

Discusses how the locations of
vulnerable populations change
and what factors lead to it

Zhang et al. [68] 2019

“Mapping Heat-Related Health
Risks Of Elderly Citizens In
Mountainous Area: A Case Study
Of Chongqing, China”

Science Of The Total
Environment

To assess and map heat-related
health risks of elderly citizens at
a raster scale

Explores how to map the heat
health risk of the elderly
population in Chongqing by a
developed method

Barron et al. [16] 2018
“Assessing Vulnerability To Heat:
A Geospatial Analysis For The
City Of Philadelphia”

Urban Science
To map UHI health risks of
Philadelphia for the planning of
street trees

Describes by using geospatial
analysis a way to map highly
vulnerable locations for
resources allocations

Chen et al. [31] 2018

“Spatially Explicit Assessment Of
Heat Health Risk By Using
Multi-Sensor Remote Sensing
Images And Socioeconomic Data
In Yangtze River Delta, China”

International Journal
Of Health
Geographics

To assess heat-related health risks
at a regional scale and explore the
driving factors in Yangtze River
Delta, China

Demonstrate by using a spatial
heat health risk assessment
framework how to assess
heat vulnerability

Dongo et al. [126] 2018
“Mapping Urban Residents’
Vulnerability To Heat In Abidjan,
Côte d’Ivoire”

Climate And
Development

To assess the social vulnerability
of the inhabitants of Cocody to
heat

Discusses the urban residents’
vulnerability to heat in the
context of rapid urbanization and
lack of green spaces

Ho et al. [55] 2018

“Spatiotemporal Analysis Of
Regional Socio-Economic
Vulnerability Change Associated
With Heat Risks In Canada”

Current Climate
Change Reports

To develop a novel design to
compare spatiotemporal changes
of heat vulnerability

Uses a new method to identify
locations that may be
increasingly vulnerable to heat
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Karimi et al. [22] 2018

“A Conceptual Framework For
Environmental Risk And Social
Vulnerability Assessment In
Complex Urban Settings”

Urban Climate To assess the impact of each land
cover type on Urban Heat Island

Proposes a conceptual framework
to estimate environmental risk
and social vulnerability

Kazak et al. [92] 2018

“The Use Of A Decision Support
System For Sustainable
Urbanization And Thermal
Comfort In Adaptation To
Climate Change Actions—The
Case Of The Wrocław Larger
Urban Zone (Poland)”

Sustainability
To develop a method for
mapping urban heat exposure to
the UHI effect

Provides insights into how to
apply a decision support system
to measure exposure to
UHI effect

Macintyre et al. [76] 2018

“Assessing Urban Population
Vulnerability And Environmental
Risks Across An Urban Area
During Heatwaves: Implications
For Health Protection”

Science Of The
Total Environment

To develop a novel risk mapping
methodology during heatwaves

Provides insights into how to use
high spatial resolution modelling
of temperature, population age,
and building types to identify
vulnerable populations
and locations

Nayak et al. [108] 2018
“Development Of A Heat
Vulnerability Index For New
York State”

Public Health

To develop a heat vulnerability
index (HVI) to identify
heat-vulnerable populations and
regions in New York

Describes how to observe
geographical variability of heat
vulnerability by
HVI development

Verdonck et al. [99] 2018

“The Potential Of Local Climate
Zones Maps As A Heat Stress
Assessment Tool, Supported By
Simulated Air Temperature Data”

Landscape And
Urban Planning

To evaluate whether LCZ maps
can serve as a tool for heat
stress assessment

Explores how LCZ maps perform
in heat stress assessment by
using LCZs as an indicator

Voelkel et al. [47] 2018

“Assessing Vulnerability To
Urban Heat: A Study Of
Disproportionate Heat Exposure
And Access To Refuge By
Socio-Demographic Status In
Portland, Oregon”

International Journal
Of Environmental
Research And
Public Health

To determine which
socio-demographic populations
experience disproportionate
exposure to extreme heat in
Portland city

Identifies hottest areas and trends
of socio-demographic disparity
by using spatial
statistical methods

Zhang et al. [14] 2018

“A Raster-Based Subdividing
Indicator To Map Urban Heat
Vulnerability: A Case Study In
Sydney, Australia”

International Journal
Of Environmental
Research And
Public Health

To propose a raster-based
subdividing indicator to map
urban heat vulnerability

Discuss how to improve the
accuracy and enhanced the
comparability of urban heat
vulnerability assessment

Azhar et al. [95] 2017 “Heat Wave Vulnerability
Mapping For India”

International Journal
Of Environmental
Research And
Public Health

To develop an integrated district
level heat vulnerability index
for India

Conduct a country-wide
assessment of heat vulnerability
in India.

Christenson et al. [60] 2017
“Heat Vulnerability Index
Mapping For Milwaukee
And Wisconsin”

Journal Of Public
Health Management
And Practice

To develop two HVIs for
Milwaukee and Wisconsin to
cope with extreme heat events

Use HVIs to identify areas of
greatest risk for negative health
impacts due to extreme heat

Hu et al. [49] 2017

“Spatially Explicit Mapping Of
Heat Health Risk Utilizing
Environmental And
Socioeconomic Data”

Environmental
Science
And Technology

To improve spatial delineation of
health risk from EHEs

Provides insights into how to use
ultisensory remote sensing data
to assess heat exposure on a
per-pixel basis

Kim et al. [103] 2017 “Mapping Heatwave
Vulnerability In Korea”

Natural Hazards

To identify the heat vulnerability
factors and their correlation with
mortality, evaluate the developed
HVI, and to assess the impact of a
heat wave at the national level

Describes creating a spatial
heatwave vulnerability map to
identify the distribution of
heatwave risk

Krstic et al. [71] 2017

“The Heat Exposure Integrated
Deprivation Index (HEIDI): A
Data-Driven Approach To
Quantifying Neighborhood Risk
During Extreme Hot Weather”

Environmental
International

To identify areas of high risk by
using the developed
data-driven approach

Describes a data-driven approach
to selection and weight HVI
variables and creates a heat
exposure integrated deprivation
index (HEIDI)

Mushore et al. [75] 2017

“Determining Extreme Heat
Vulnerability Of Harare
Metropolitan City Using
Multispectral Remote Sensing
And Socio-Economic Data”

Journal Of
Spatial Science

To derive detailed area-specific
spatial information on the
distribution of heat vulnerability
in Harare city, Zimbabwe

Identifies potential vulnerable
residents by using an HVI which
integrates physical heat
exposure indexes

Oh et al. [98] 2017

“Development Of The Korean
Climate Change Vulnerability
Assessment Tool
(VESTAP)—Centered On Health
Vulnerability To Heat Waves”

Sustainability
To develop the GIS-based
VESTAP system to assess climate
change vulnerability

Assesses the heat wave
vulnerability of Korea by
administrative district

Aminipouri et al. [70] 2016

“Using Multiple Disparate Data
Sources To Map Heat
Vulnerability: Vancouver
Case Study”

The Canadian
Geographer

To develop a method to map
heat-vulnerable populations by
using multiple disparate data

Discusses the effectiveness of
spatially overlaying multiple
disparate data to map
heat-vulnerable populations
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Macnee &
Tokai [59] 2016

“Heat Wave Vulnerability And
Exposure Mapping For Osaka
City, Japan”

Environment Systems
And Decisions

To develop a heat wave
vulnerability index for
Osaka City

Estimates the heat vulnerability
of Osaka City by combining an
HVI and a heat exposure analysis

Chuang &
Gober [65] 2015

“Predicting Hospitalization For
Heat-Related Illness At The
Census-Tract Level: Accuracy Of
A Generic Heat Vulnerability
Index In Phoenix,
Arizona (USA)”

Environmental
Health Perspectives

To test a heat vulnerability index
by using data on heat-related
hospitalizations in
Phoenix, Arizona.

Discusses the HVI’s ability to
predict heat-related
hospitalizations and explores the
potential heat risk factors

El-Zein &
Tonmoy [26] 2015

“Assessment Of Vulnerability To
Climate Change Using A
Multi-Criteria Outranking
Approach With Application To
Heat Stress In Sydney”

Ecological Indicators

To develop an approach for
teasing out policy-relevant
information from uncertain
vulnerability data

Provides insights into how to use
outranking procedures for heat
vulnerability assessment

Mitchell &
Chakraborty [46] 2015

“Landscapes Of Thermal
Inequity: Disproportionate
Exposure To Urban Heat In The
Three Largest US Cities”

Environmental
Research Letters

To develop an urban heat risk
index (UHRI) to map
thermal inequity

Describes using UHRI to
determine how racial and
socioeconomically disadvantaged
residents are distributed

Weber et al. [67] 2015

“Policy-Relevant Indicators For
Mapping The Vulnerability Of
Urban Populations To Extreme
Heat Events: A Case Study
Of Philadelphia”

Applied Geography
To develop indicators of urban
heat vulnerability to support
policy decisions

Discusses how to map urban heat
vulnerability by integrating
satellite data and local indicators

Boumans et al. [13] 2014

“Developing A Model For Effects
Of Climate Change On Human
Health And Health–Environment
Interactions: Heat Stress In
Austin, Texas”

Urban Climate

To develop a broadly applicable
support platform for
decision-making by
local government

Discusses how the model maps
heat health risk and evaluates the
effectiveness of
mitigation options

Dong et al. [127] 2014
“Assessing Heat Health Risk For
Sustainability In Beijing’s Urban
Heat Island”

Sustainability
To develop a methodology to
assess heat health risk at the
sub-district level

Develops a heat health risk index
integrated with the UHI effect

Dugord et al. [89] 2014

“Land Use Patterns, Temperature
Distribution, And Potential Heat
Stress Risk: The Case Study
Berlin, Germany”

Computers,
Environment And
Urban Systems

To identify sites of potential heat
stress risk in Berlin, Germany

Discusses the drivers influencing
the temperature distribution
based on the LU patterns,
especially green space

Heaton et al. [29] 2014

“Characterizing Urban
Vulnerability To Heat Stress
Using A Spatially Varying
Coefficient Model”

Spatial And
Spatiotemporal
Epidemiology

To identify and characterize
vulnerability to heat using
non-accidental mortality data in
Houston, Texas

Describes how to use a spatially
varying coefficient model to
characterize heat vulnerability
among census block groups

Loughnan et al. [63] 2014

“Can A Spatial Index Of
Heat-Related Vulnerability
Predict Emergency Service
Demand In Australian
Capital Cities?”

International Journal
Of
Emergency Services

To develop a heat vulnerability
model to map areas with high
emergency service demand

Explores the performance of the
index developed in Australian
capital cities by using Spearman’s
rank correlation

Maier et al. [102] 2014

“Assessing The Performance Of
A Vulnerability Index During
Oppressive Heat Across Georgia,
United States”

Weather, Climate,
And Society

To compute heat vulnerability
across the state of Georgia

Discusses if counties with high
HVI values experience high
heat risk

Wolf et al. [107] 2014

“Performance Assessment Of A
Heat Wave Vulnerability Index
For Greater London,
United Kingdom”

Weather, Climate,
And Society

To assess of a multivariate HVI
developed for London, UK

Discusses the HVI’s ability to
predict whether mortality and
ambulance callout attain above
average levels during a heat
wave event

Depietri et al. [86] 2013

“Social Vulnerability Assessment
Of The Cologne Urban Area
(Germany) To Heat Waves: Links
To Ecosystem Services”

International Journal
Of Disaster
Risk Reduction

To assess the vulnerability of the
Cologne urban population to
heat waves

Identifies urban residents’
vulnerability based on the
MOVE framework

Harlan et al. [128] 2013

“Neighborhood Effects On Heat
Deaths: Social And
Environmental Predictors Of
Vulnerability In Maricopa
County, Arizona”

Social Science &
Medicine

To estimate neighborhood human
and environmental effects on
heat-related deaths in Maricopa
County, Arizona

Identifies locations of
vulnerability and heat-related
deaths and uses binary logistic
regression and spatial analysis to
estimate neighborhood effects

Wolf &
McGregor [100] 2013

“The Development Of A Heat
Wave Vulnerability Index For
London, United Kingdom”

Weather And
Climate Extremes

To develop an HVI for
Greater London

Develop an HVI with a particular
focus in London and test it with
mortality and ambulance call
out data

Buscail et al. [88] 2012
“Mapping Heatwave Health Risk
At The Community Level For
Public Health Action”

International Journal
Of
Health Geographics

To develop a conceptual
framework adopted to a variety
of urban configurations

Provides insights into how to use
satellite thermal data and other
digital data to map
heat-health vulnerability
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Johnson et al. [104] 2012

“Developing An Applied
Extreme Heat Vulnerability Index
Utilizing Socioeconomic And
Environmental Data”

Applied Geography
To further understand the
heat-related risk and promote the
development of heat risk model

Provides insights into how to
incorporate socioeconomic and
environmental indicators to
measure extreme
heat vulnerability

Kershaw &
Millward [62] 2012 “A Spatio-Temporal Index For

Heat Vulnerability Assessment”

Environmental
Monitoring
And Assessment

To develop a metric for mapping
exposure to heat

Provides insights into how to use
meteorological data to identify
heat exposure

Loughnan et al. [79] 2012 “Mapping Heat Health Risks In
Urban Areas”

International Journal
Of
Population Research

To develop an index of the spatial
variation of vulnerability
for Melbourne

Provides insights regarding how
to map the health risk of
hot weather

Reid et al. [106] 2012

“Evaluation Of A Heat
Vulnerability Index On
Abnormally Hot Days: An
Environmental Public Health
Tracking Study”

Environmental
Health Perspectives

To understand the effectiveness
of the HVI in assessing urban
heat vulnerability

Discusses whether areas with
higher HVI values experienced
higher rates of morbidity
and mortality

Tomlinson et al. [11] 2011

“Including The Urban Heat
Island In Spatial Heat Health Risk
Assessment Strategies: A Case
Study For Birmingham, UK”

International Journal
Of
Health Geographics

To develop a spatial risk
assessment methodology to
highlight potential heat health
risk areas

Describes how to carry out a
climate change risk assessment
by integrating RS UHI data and
commercial social
segmentation data

Rinner et al. [85] 2010

“The Role Of Maps In
Neighborhood-Level Heat
Vulnerability Assessment For The
City Of Toronto”

Cartography And
Geographic
Information Science

To develop mapping tools to
identify vulnerable populations
and places

Discusses the effectiveness of
cartographic design decisions in
creating heat vulnerability maps

Harlan et al. [19] 2006 “Neighborhood Microclimates
And Vulnerability To Heat Stress”

Social Science &
Medicine

To investigate if warmer
environments and lack of
resources lead to adverse
heat-related outcomes

Presents how to examine
heat-related health inequalities in
a city with HTCI
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