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Abstract: In this paper, the electricity network automation based on Power Network Reconfiguration
(PNR) is implemented to improve the operational reliability of distribution systems using jellyfish
search algorithm. For this purpose, system average interruption frequency index (SAIFI), system
average interruption unavailability index (SAIUI) and total energy not supplied (TENS) are critical
measures. In this paper, a new optimization technique of jellyfish search (JFS) algorithm is employed
for distribution network reconfiguration for reliability improvement. It is concerned with the moving
patterns of jellyfish. They are divided into three categories. The jellyfish could flow towards the ocean
current or between its own swarm. Meanwhile, whenever the food supply is adequate, the jellyfishes
are attracted to its location. It is formulated considering the three reliability indices of SAIFI, SAIUI
and TENS, simultaneously in a multi-objective model based on the weight factors. The proposed
methodology based on the JFS optimizer is implemented on an IEEE 33-node distribution network.
According to the numerical results, the SAIFI, SAIUI and TENS is improved by 36.44%, 34.11% and
33.35%, compared to the initial condition. For comparison purposes, tuna swarm optimizer and
tunicate swarm algorithm, besides the JFS algorithm, are implemented as well. The simulation results
declare the significant outperformance of the JFS algorithm compared to TUNA and TSA in terms of
the obtained improvements and the regarding convergence properties.

Keywords: distribution systems; operational reliability; network reconfiguration; jellyfish search
algorithm

1. Introduction

Power outages are irregular in developed countries; notwithstanding, they have
severe consequences. A power system’s reliability is characterized by two parameters:
the frequency of outages and the duration of power outages [1]. A substantial amount of
research has been conducted to reduce the frequency of power outages. However, more
methods for reducing the duration of power outages by improving the distribution system
performance must be identified [2,3]. Additionally, it is critical to employ distribution
network reconfiguration to discover the optimum solutions according to the regulations
and limits given by the operators in an attempt to provide a safe and economically optimal
energy supply.

The Power Network Reconfiguration (PNR) is a method which helps mitigate the
impacts of the power outages and enhance the reliability parameters in distribution net-
works [4]. In latest years, operational research has grown progressively in identifying the
best PNR while considering a variety of objectives into care [5]. To reduce losses, the PNR
issue was explored in [6] that used a harmony search method for radial balanced distribu-
tion networks. In [2], the PNR process was created by closing and opening switches using
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a decision-making process to obtain the lowest possible losses. The distribution system
was configured using a heuristic method based on intelligence-based algorithms to achieve
the lowest possible losses [7]. All conceivable network modes are examined in the open
and closed states of the switches in the PNR approach, which is based on mathematical
optimization theory. As a result, they are more sophisticated than the heuristic technique
and take longer to run.

The reliability of an electricity system to serve consumers with uninterruptible and
adequate-quality electricity supply is defined as network reliability. Integrating additional
devices for protection, exact specific fault location procedures, rapid switching and re-
closing mechanisms, using more dependable equipment to avoid contingencies, and PNR
are some approaches for improving the reliability [4]. PNR is viewed as a cost-effective and
convenient method of increasing system reliability to solve these concerns. Currently, artifi-
cial intelligence methods and concepts have been employed to optimize the distribution
power networks [8]. In [9], an electric field algorithm has been merged with pattern search
approach and applied for the PNR in the distribution networks to enhance its performance.
However, the total energy not supplied (TENS) to customers only the index utilized to
represent the operational reliability in distribution networks.

In [10], power losses minimization and voltage profile improvement have been han-
dled via PNR in distribution systems using a stochastic fractal search optimizer. Distribu-
tion systems, on the other side, are typically run radially, that needs to be retained during
the PNR procedure [11]. In [12], a weight coefficient approach and cuckoo search opti-
mizer has been applied for the balanced PNR as a multi-criteria optimization utilizing the
power losses decrease, and voltage profile improvement. The described approach in [12]
examines network radiality throughout the reconfiguration process. In [13], a discrete
teaching–learning optimization has been carried out to handle the PNR of a distribution
system using the weight coefficient approach to reduce the losses and voltage variations.

Additionally, in the presence of distributed generations (DGs), electricity network
automation has been addressed based on the PNR and optimal operation of dispatchable
and non-dispatchable DGs [14]. Numerous research have also been conducted using
several objective features and optimization approaches such as Mixed-Integer Linear
Programming [15], equilibrium optimizer [16], hybrid of analytical approach and particle
swarm optimization [17,18], Water Cycle Algorithm [19] and Chaos Disturbed Beetle
Antennae Search [20].

In [21], the PNR problem in the distribution networks was handled in order to opti-
mally identifying its topology for minimizing the overall power losses. In this study, Harris
hawk’s algorithm was applied with higher performance contrasted to particle swarm opti-
mization algorithm and cuckoo search algorithm under distributed generation and load
variation. However, the operational reliability and voltage stability in distribution networks
were completely ignored. In [22], an algebraic modeling language of CPLEX solver was
applied for the PNR problem in the distribution networks. Despite the high robustness of
CPLEX solver, the minimization of power losses has been utilized as a single objective task.
In [23], the PNR problem of distribution networks with high wind power penetrations
was treated and solved based on Bayesian learning-based evolutionary algorithm. In [24],
a NoisyNet deep Q-learning network (DQN) has been carried out to the PNR issue for
minimizing the system losses and improving the voltage profile. In [25], AMPL solver as a
mathematical programming has been utilized for minimizing the active power losses of
distribution systems via PNR issue. In this study, the considered objective function was
conducted with uncertainty probability beside uncertain amounts in load demand. Despite
the effective implementations of [21–25], the operational reliability and voltage stability in
distribution networks were completely ignored.

Recently, a new optimization technique of JFS algorithm proposed in [26], is fascinated
by the moving patterns of jellyfish. They are divided into three categories. To begin, the
jellyfish could flow towards to the ocean current or between its own swarm. Meanwhile,
whenever the food supply is adequate, the jellyfishes are attracted to their locations. Fur-
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thermore, the numeric fitness function reveals the volume of food. The JFS was recently
applied in effective manner for several engineering problems such as selective harmonic
elimination in multilevel inverters [27], combined heat and power dispatching [28], maxi-
mum power point tracking (MPPT) of solar PV systems [29], design of a solar-powered
thermoelectric air-conditioning system [30], control of superconducting magnetic energy
storage system [31], PV parameter estimation [32], integration of renewable energy sources
in power systems [33].

Hence, in this paper, the JFS algorithm is employed for distribution network reconfigu-
ration for reliability improvement. In [14], the JFS algorithm was employed for addressing
the PNR in the distribution networks considering the dispatching of distributed generation
units and static Var compensators. The study in [14] was dedicated to the dynamic oper-
ation of distribution networks for the sake of minimizing the distribution losses and the
emissions. On the other side, the operational reliability indices in distribution networks
were not considered while its great importance of high impacts to guarantee the feeding
continuity to consumers. In this paper, the JFS algorithm is formulated considering three
reliability indices, simultaneously in a multi-objective model based on the weight factors.
In this model, the system average interruption frequency index (SAIFI), the system average
interruption unavailability index (SAIUI) and the total energy not supplied (TENS) are
comprised. The proposed methodology based on the JFS optimizer is implemented on
IEEE 33-node distribution network. According to the numerical results, the SAIFI, SAIUI
and TENS is improved compared to the initial condition. For comparison purposes, Tuna
swarm optimizer (TUNA) and tunicate swarm algorithm (TSA) besides the JFS algorithm
are implemented as well. The simulation results declare the significant outperformance of
the JFS algorithm compared to TUNA and TSA in terms of the obtained improvements and
the regarding convergence properties

2. Distribution Network (DN) Reliability Indices

The reliability indices approved by Chilean law for a DN with multiple laterals and
multi-feeding nodes are specified by the Inter-American Committee of Regional Electricity—
CIER and are stated as follow [2]:

SAIFI =

Nn
∑

n=1
S n τ n

Nn
∑

n=1
S n

(1)

SAIUI =

Nn
∑

n=1
S n U n

Nn
∑

n=1
S n

(2)

TENS =
Nn

∑
n=1

ENSn =
Nn

∑
n=1

P n τ n (3)

SAIDI =

Nn
∑

n=1
S n r n

Nn
∑

n=1
S n

(4)

U n = τ n × r n n =1, 2, . . . .., Nn (5)

where SAIFI is the DN’s average interruption frequency index, SAIUI is the DN’s average
interruption unavailability index, SAIDI is the DN’s average interruption duration index
and TENS is the total energy not supplied in the DN. ENSIn is the ENS related to each
distribution node (n) to be not supplied. Sn and Pn are the apparent and active load demand
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of the DN at the distribution node (n) to be not supplied; Nn is the number of DN nodes; τn
and rn are the failure rate and the repair time of each DN node (n). Un is the unavailability
of each distribution node (n).

3. Problem Formulation

Based on the three reliability indices of SAIFI, SAIUI and TENS, the problem formula-
tion of reliability improvement in DNs is formulated to solve a multi-objective optimization
function (MOF) as follows:

MOF = ω1
SAIFI

SAIFImax +ω2
SAIUI

SAIUImax +ω3
TENS

TENSmax (6)

where, ω1, ω2 and ω3 are weighting factors to be specified by the DN operator according
to their preference. In Equation (6), the parameters weighting factors are considered similar
to each other and equivalent to (1/3) which represents the same priority for all indices. The
superscript “max” indicates the maximum value to be specified.

The multi-objective model presented in Equation (6) seeks the best selection for the
open links for reconfiguration. As a result, the vector of the independent variables (VI)
looks like this:

VI = {[OT1 OT2 . . . . . . OT No︸ ︷︷ ︸
Open Tie branches

]} (7)

where, OT is the tie lines to be open and No is their number.
The open tie links must always be assigned an integer value that is limited by the total

number of DN lines, as shown below:

1 ≤ OT j ≤ No j = 1, 2, . . . . . . .No (8)

The voltage at all DN nodes must be bounded by the permissible bounds related to
the distribution code as follows:

Vmin
n ≤ Vn ≤ Vmax

n n = 1, 2, . . .. Nn (9)

where, Vn is the voltage magnitude at each DN node (n); Nn is the number of the DN nodes.
The superscripts “min” and “max” refer to the minimum and maximum of each variable.

The current flow at all DN lines must be bounded by the permissible bounds related
to the current capacity of each one as follows:

|Ibr| ≤ Imax
br br = 1, 2, . . .. Nbr (10)

where, Ibr is the current flow in the branch (br) which is limited by the regarding thermal
capacity (Imax).

The power balance constraints at each distribution node must be maintained as equal-
ity constraints which guarantee the convergence of the load flow as follows:

Pj + Qj = Vj
[
Ij
]∗ n = 1, 2, . . .. Nn (11)

where, Pj and Qj are the real and reactive power at each DN node (j); Vj and Ij is the voltage
magnitude and the current injected at each DN node (j).

Furthermore, the DN’s radial structure is kept in operating service, with a branch–bus
incidence matrix generated as regards:

Aij =


0, if line i isn′t connected to bus j

−1, if the line i enter to bus j

1, if the line i exits from bus j

(12)
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This matrix has the dimensions of Nn × Nbr. The DN configuration is radial in form if
their determinant is −1 or 1, but the DN is not radial if the is zero [34].

4. JFS Optimizer

The JFS algorithm is a new optimization technique which is fascinated by the moving
patterns of jellyfish. They are divided into three categories. To begin, the jellyfish could
flow towards to the ocean current or between its own swarm. Meanwhile, whenever the
food supply is adequate, the jellyfishes are attracted to their locations. Furthermore, the
numeric fitness function reveals the volume of food [35,36]. The initial population could be
arithmetically represented as follows [26]:

Xi(t + 1) = 4P0(1− Xi), 0 ≤ P0 ≤ 1 (13)

where Xi(t + 1) indicates the ith jellyfish chaotic counterpart, and P0 is a randomized value
within range [0, 1] and does not equal to {0.0, 0.25, 0.75, 0.5, 1.0}. The value of the time
control function CF(t) is evaluated as described in Equation (14) which is changed from 0
to 1 over time [37]:

CF(t) =
∣∣∣∣(1− t

Tmax

)
× (2× r1 − 1)

∣∣∣∣ (14)

where, t refers to the iteration number; Tmax is the maximum number of iterations; r1 is a
randomized value within range [0, 1].

If the CF value is greater than 0.5, the fresh place of each jellyfish could be developed,
as shown in Equation (15) [26]:

Xi(t + 1) = R× (X∗ − 3× R× µ) + Xi(t) (15)

where µ symbolizes the mean of the jellyfishes; X∗ is the best position of the jellyfishes in
the population; R is a number chosen at random from the range [0, 1]. The best position
of the jellyfishes of the population is extracted based on the minimum fitness value. Over
all the jellyfishes of the population, the volume of food is evaluated, which is defined as
the fitness function. They are sorted in an ascending order, and the first one is extracted
as the best position. The considered fitness function of the PNR problem is formulated in
Equation (6), comprising the three reliability indices of SAIFI, SAIUI and TENS as an MOF
model. If the CF value is lower than 0.5, the fresh place of each jellyfish could be developed,
depending on the moving inside the swarm, via either Equation (16) representing the
passive type or Equation (17) following the active type as shown [26]:

Xi(t + 1) = 0.1× R× (Ub − Lb) + Xi(t) (16)

Xi(t + 1) =

{
Xi(t) + R(Xj(t)− Xi(t)) i f f (Xi) ≥ f (Xj)

Xi(t) + R(Xi(t)− Xj(t)) i f f (Xi) < f (Xj)
(17)

where Ub and Lb signify the upper and lower limits of the control parameters, which are
in between; and f symbolizes the quantity of food in aspects of the qualitative function
associated with each jellyfish location. The upper and lower limits of the control parameters
are related to the open links for reconfiguration which is formulated in Equation (7). Thus,
the possibilities are regarding to the distribution lines which ranges from the first line to
the maximum number of the lines as formulated in Equation (8).

Also, Equation (18) describes the checking model of each jellyfish location to be
restored in the nearest boundary.{

X′
i,d
= (Xi,d −Ub,d) + Lb(d) i f Xi,d > Ub,d

X′
i,d
= (Xi,d − Lb,d) + Ub(d) i f Xi,d < Lb,d

(18)
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where Xi,d indicates the ith jellyfish place in dth dimension. The dimension for jellyfish
place is the number of the control parameters which is defined as the open links for
reconfiguration as in Equation (7). Figure 1 depicts the major stages of the JFS.
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5. Simulation Results

The proposed methodology based on the JFS optimizer is implemented on a 33-node
DN with 32 sectionalizing links and 5 open sections. Its single network diagram is depicted
in Figure 2, where 12.66 kV is the base voltage of the 69-node DN [11]. For the nominal con-
dition of this DN, the total apparent, active, and reactive power demands are, respectively,
4.6602 MVA, 3.802 MW and 2.6946 MVAr [38]. The test DN is expected to perform under
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balanced load circumstances. All loads are expected to have constant power in nature. The
DN reliability data, comprising failure rates and lines repair time, is derived from [2].
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5.1. JFS Application for the Cases Studied

Four case studies are analyzed based on the objectives to be considered as follows:
Case 1 (Single objective model): Minimization of SAIFI described in Equation (1).
Case 2 (Single objective model): Minimization of SAIUI described in Equation (2).
Case 3 (Single objective model): Minimization of TENS described in Equation (3).
Case 4 (Multi-objective model): Minimization of MOF described in Equation (6).
In the multi-objective model of Case 4, SAIFImax, SAIUImax and TENSmax are

8 times/year, 2.5 h/year and 10 MWh/year.
By applying the JFS algorithm on the four cases studied, Table 1 displays the must

open tie lines which is optimally selected. Table 2 illustrates the related reliability measures.

Table 1. Optimal Tie Lines Based on The JFS Optimizer for The Cases Studied.

Items Initial Case Case 1 Case 2 Case 3 Case 4

Tie
Lines

33 6 7 7 7

34 10 9 9 9

35 13 14 14 14

36 17 16 16 16

37 26 27 27 27
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Table 2. Reliability Outcomes Based on The JFS Optimizer for The Cases Studied.

Items Initial Case Case 1 Case 2 Case 3 Case 4

SAIFI 6.4208 3.9681923 4.08061 4.08061 4.08061

SAIUI 1.9342 1.3169515 1.27448 1.27448 1.27448

TENS 7.0979 4.9605 4.7304 4.7304 4.7304

MOF 0.7620 0.5063 0.49763 0.49763 0.49763

From both tables, it can be clearly deduced that:

• In the first case, the SAIFI is minimized from 6.4208 times/year at the initial case to
3.968 times/year, which represents 38.2% improvement reduction.

• The same results are drawn for the second, third and fourth cases.
• SAIUI is minimized from 1.9342 h/year at the initial case to 1.27448 h/year, which

represents 34.11% improvement reduction.
• TENS is minimized from 7.0979 MWh/year at the initial case to 4.7304 MWh/year,

which represents 33.35% improvement reduction.
• TENS is minimized from 0.7620 at the initial case to 0.49763, which represents 34.7%

improvement reduction.
• In the fourth case, the SAIFI is minimized from 6.4208 times/year at the initial case to

4.08061 times/year, which represents a 36.44% improvement reduction. In addition,
the SAIUI is minimized from 1.9342 h/year at the initial case to 1.27448 h/year,
which represents 34.11% improvement reduction. Also, the TENS is minimized from
7.0979 MWh/year at the initial case to 4.7304 MWh/year, which represents 33.35%
improvement reduction.

5.2. Comparative Assessment for Solving the Cases Studied

In this sub-section, a comparative assessment is carried out for the three cases studied
using three recent advanced algorithms. Tuna swarm optimizer (TUNA) [39] and tunicate
swarm algorithm (TSA) [40], besides the JFS algorithm, are implemented as well. The three
techniques are applied with population size of 30 individual and maximum number of
60 iterations. TUNA, TSA and JFS algorithms are implemented for 10 separate runs. The
listing of technical details of the essential parameter settings in all techniques, i.e., TSA,
TUNA, and JFS are shown in the Appendix A, Table A1.

For the four cases studied, the related average convergence curves are displayed in
Figures 3–6, respectively, for minimizing the SAIFI, SAIUI, TENS and MOF. Added to that,
Table 3 displays the related average objectives in terms of the SAIFI, SAIUI, TENS and
MOF, respectively.

Table 3. SAIFI, SAIUI, TENS and MOF minimization using TUNA, TSA and JFS algorithms.

SAIFI Minimization SAIUI Minimization TENS Minimization MOF Minimization

Optimizer Average Standard
Deviation Average Standard

Deviation Average Standard
Deviation Average Standard

Deviation

JFS 3.968192 9.36 × 10−16 1.274482 0 4.7304 9.36 × 10−16 0.4976 1.15 × 10−16

TUNA 3.998131 0.0464 1.307449 0.05580 4.805 0.0969 0.504 0.008608

TSA 4.048725 0.0998 1.317488 0.03412 5.0403 0.3285 0.5071 0.0133
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In the first case, for minimizing the SAIFI, the JFS algorithm declares significant
superiority over TUNA and TSA algorithms. It obtains the least average SAIFI with
3.9682 times/year, where TUNA and TSA algorithms obtains counterparts of 3.9981 and
4.0487 times/year. Also, the JFS algorithm obtains the least standard deviation with
9.36 × 10−16, where TUNA and TSA algorithms obtains counterparts of 0.0464 and 0.0998.

In the second case, for minimizing the SAIUI, the JFS algorithm declares significant
superiority over TUNA and TSA algorithms. It obtains the least average SAIUI with
1.22744 h/year, where TUNA and TSA algorithms obtains counterparts of 1.30744 and
1.3179 h/year. Also, the JFS algorithm obtains the least standard deviation with 0.00, where
TUNA and TSA algorithms obtains counterparts of 0.0558 and 0.03412.
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In the third case, for minimizing the TENS, the JFS algorithm declares significant
superiority over TUNA and TSA algorithms. It obtains the least average TENS with
4.7304 MWh/year, where TUNA and TSA algorithms obtains counterparts of 4.8049 and
5.04028 MWh/year. Also, the SNS algorithm obtains the least standard deviation with
9.36 × 10−16 where TUNA and TSA algorithms obtains counterparts of 0.0969 and 0.328.

In the fourth case, for minimizing the MOF, the JFS algorithm declares significant
superiority over TUNA and TSA algorithms. It obtains the least average MOF with 0.4976,
where TUNA and TSA algorithms obtains counterparts of 0.504 and 0.5071. Also, the JFS
algorithm obtains the least standard deviation with 1.15 × 10−16 where TUNA and TSA
algorithms obtains counterparts of 0.0086 and 0.0133.



Energies 2022, 15, 6994 11 of 14

The computational time of the proposed JFS, and of the proxy adopted (TUNA &
TSA) are detailed in the Table 4 by recording the average time in seconds. As shown, the
proposed JFS provides the least average computing time with 8.1775 s, while TUNA & TSA
takes 13.94 and 11 s, respectively. The presented JFS shows convergence improvement with
41.33% compared to TUNA and 25.66% compared to TSA.

Table 4. Average computational time in seconds of the proposed JFS, TUNA & TSA.

Items Case 1 Case 2 Case 3 Case 4 Average Time

JFS 8.21 7.92 7.75 8.83 8.1775

TUNA 13.29 13.37 14.2 14.9 13.94

TSA 10.54 10.7 11.69 11.1 11

To investigate the sensitivity analysis of the setting parameters for critical variables of
different setting scenarios for the proposed jellyfish algorithm, different number of search
agents and maximum number of iterations are considered, and the proposed jellyfish
algorithm is applied for each scenario several times and the regarding indices are recorded
in Table 5. As shown, great improvement is provided with higher reduction in the mean,
maximum, standard deviation (Std), and standard error (Ste) with the increasing the
number of search agents and maximum number of iterations. On the other side, the
required computing time is increased. For that reason, the best settings are achieved at
30 search agents and 60 maximum number of iterations.

Table 5. Sensitivity analysis of different setting scenarios for the proposed JFS.

Indices
Number of Search Agents (Maximum Number of Iterations)

10 (30) 20 (30) 30 (30) 10 (60) 20 (60) 30 (60) 10 (90) 20 (90) 30 (90)

min 0.4976 0.4976 0.4976 0.4976 0.4976 0.4976 0.4976 0.4976 0.4976

mean 0.5027 0.4995 0.4982 0.4987 0.4977 0.4976 0.4983 0.4977 0.4976

max 0.5169 0.5036 0.4995 0.5014 0.4981 0.4976 0.5 0.4983 0.4976

Std 0.0055 0.0019 0.0007 0.0016 1.00 × 10−4 1.15 × 10−16 8.00 × 10−4 2.00 × 10−4 0

Ste 6.11 × 10−4 2.11 × 10−4 7.78 × 10−5 1.78 × 10−4 1.11 × 10−5 1.28 × 10−17 8.89 × 10−5 2.22 × 10−5 0

6. Conclusions

This paper presents an innovative application of the jellyfish search (JFS) algorithm
to enhance the operational reliability of distribution systems. This application aims at
improving the electricity networks automation via optimizing the Power Network Recon-
figuration (PNR). In this regard, the system average interruption frequency index (SAIFI),
system average interruption unavailability index (SAIUI) and total energy not supplied
(TENS) are formulated, being considered simultaneously in a multi-objective model based
on the weight factors. The proposed methodology based on the JFS optimizer is imple-
mented on the IEEE 33-node distribution network. According to the numerical results,
the SAIFI, SAIUI and TENS are improved by 36.44%, 34.11% and 33.35% compared to the
initial condition. For comparison purposes, Tuna swarm optimizer and tunicate swarm
algorithmm besides the proposed JFS algorithm, are implemented as well. The simulation
results declare the significant outperformance of the JFS algorithm compared to TUNA and
TSA in terms of the obtained improvements and the regarding convergence properties. A
comparative analysis based on sensitivity analysis at different parameters of population
size and iteration number is carried out. Great improvement is provided with higher
reduction in the mean fitness function, maximum fitness function, standard deviation
(Std), and standard error (Ste) with increasing the number of search agents and maximum
number of iterations.
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In the future studies, as the mixed integer linear programming (MILP) can get an effective
mathematical modelling to solve complex optimization problems. These points will be added
future approach for solving the target problem for single and multi-objective frameworks.
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Appendix A

Table A1 describes the listing of technical details of the essential parameter settings in
all techniques, i.e., TSA, TUNA, and JFS.

Table A1. Essential parameter settings in all techniques, i.e., TSA, TUNA, and JFS.

Algorithms Proposed Time Parameters Settings Reference

Tuna swarm
optimizer (TUNA) 2021

• Number of tuna population = 30
• Probability to regenerate the position in the space

according to z = 0.05
• Constant to determine the extent to which the tuna follow

the optimal individual and the previous individual in the
initial phase a = 0.7

[39]

Tunicate swarm
algorithm (TSA) 2020

• Jet propulsion behavior with number of search agents = 30
• Social forces between search agents are based on initial

and subordinate speeds to make social interaction which
are Pmax = 4, Pmin = 1

[40]

JFS 2020 • Number of search agents in population = 30
• maximum number of iterations = 60 [26]
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