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Abstract: An underappreciated source of renewable energy is wastewater, both municipal and
industrial, with global production exceeding 900 km3 a year. Wastewater is currently perceived
as a waste that needs to be treated via energy-consuming processes. However, in the current
environmental nexus, traditional wastewater treatment uses 1700–5100 TWh of energy on a global
scale. The application of modern and innovative treatment techniques, such as microbial fuel cells
(MFC), would allow the conversion of wastewater’s chemical energy into electricity without external
energy input. It has been demonstrated that the chemically bound energy in globally produced
wastewater exceeds 2.5 × 104 TWh, which is sufficient to meet Europe’s annual energy demand. The
aim of this paper is to answer the following questions. How much energy is bound in municipal and
industrial wastewaters? How much of that energy can be extracted? What benefits will result from
alternative techniques of waste treatment? The main finding of this report is that currently achieved
energy recovery efficiencies with the use of microbial fuel cells technology can save about 20% of the
chemical energy bound in wastewater, which is 5000 TWh on a global scale. The recovery of energy
from wastewater via MFC technology can reach as much as 15% of global energy demands.

Keywords: microbial fuel cell; wastewater; renewable energy; wastewater treatment; clean energy;
industrial wastewater

1. Introduction

Global energy consumption is continually rising, and in 2019, it exceeded 1.7 × 105 TWh
(19 TW) [1]. The Intergovernmental Panel on Climate Change (IPCC) forecasts that en-
ergy demand will double by 2095 and reach 1200 × 1018 J/year [2], which is equal to
3.3 × 105 TWh/year. Unfortunately, approximately 84% of globally produced energy still
comes from fossil fuels, which is the largest source of carbon dioxide (CO2), as shown
in Figure 1.

In the quest to reduce CO2 emissions, wastewater needs attention. Currently, wastewa-
ter is perceived as a waste that must be treated with the use of energy-consuming processes;
alternatively, the concept of the circular economy posits that a waste generated in one
process becomes a valuable resource in another one [3]. In 2020, the global market for
wastewater treatment was over 263 billion USD, and it is projected to reach almost 500 bil-
lion USD by 2028 [4]. The energy used for the conventional treatment of wastewater is 1–3%
of global energy consumption, which is 1700–5100 TWh—an amount that is as high as the
annual energy consumption of Germany and Spain combined [5,6]. Historically, wastewa-
ter is overlooked as a source of energy [7–9]. Wastewater contains considerable amounts
of energy in the form of chemical and thermal energy, which is currently underutilised
in conventional wastewater treatment. The chemical energy of wastewater accumulates
in chemical compounds and may be extracted through the oxidation–reduction reactions
of these substances. The amount of chemical energy in wastewater is usually called the
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chemical oxygen demand (COD), which represents the amount of oxygen that is needed to
oxidise the organic matter present in wastewater [10]. It has been reported that municipal
wastewater contains 9.3 times more energy than it requires for treatment, while the avail-
able energy is less, but still 4 times more than needed for its treatment [11,12]. The recovery
of chemical energy from wastewater can be realised with the use of microorganisms, which
can utilise organic matter from wastewater in their metabolic processes. A highly efficient
method of organic contaminant removal from wastewater is anaerobic digestion (AD) [13].
Currently, the extraction of energy from wastewater with the use of microorganisms is
realised on a practical scale via the AD process in which organic matter from wastewater
is converted into biogas [14]. However, in the biogas produced via AD, in addition to
energetically useful methane, CO2 (which can reach 50%), NOx, SO2 and CO are present
too, which is why the AD process requires a separate co-generation plant [15,16]. Practically,
it is limited to sludge treatment, and it requires post-treatment because its effluents have a
high organic content [17]. Although various established water purification technologies
have been commercialised and are widely used (i.e., distillation, membrane filtration and
adsorption), they are not really sustainable due to their high energy consumption [18].
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A more environmentally benign alternative to AD is microbial fuel cell (MFC) tech-
nology, which enables the direct production of energy from wastewater in the form of an
electric current. The electricity produced in MFCs results from the flow of electrons released
by bacteria during their metabolic processes [19–22]. An MFC electric current is produced
due to electrogenic microorganisms oxidising organic substances from wastewater [23].
The current is generated without external energy input. Contrary to AD, which requires
relatively high temperatures (> 30 ◦C), MFCs operate within a wide range of temperatures
and COD loadings. Moreover, a stable power output is obtained in MFCs within a few days,
whereas in AD it requires months. Electricity in MFCs is produced directly, whereas AD
requires the conversion of methane into electricity with ca. 35% effciency [24]. However,
MFC technology is currently restricted to the laboratory scale because it is considered inca-
pable of producing an acceptable power density, which is a barrier to commercialisation.
While most MFCs do not exceed the power production of 1 kW per 1 m3 of wastewater [25],
a new look at the energy balance of MFC technology, as presented in this work, indicates
that MFCs can be used for wastewater treatment as a self-sufficient technology that allows
for significant energy savings on a global scale.

In this article, an attempt to estimate the global production of industrial wastewater
has been undertaken for the first time. The article was written in response to the lack of
data on industrial wastewater and especially lack of studies describing the energy potential
of wastewater—particularly industrial ones. The estimation was made on the basis of
available data of water use and recovery as well as on the production volume by the biggest
industrial sectors.
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This study asks key questions. How much energy is bound in municipal and industrial
wastewaters? How much of that energy can be extracted? What benefits will result from
alternative techniques of waste treatment, such as microbial fuel cell technology?

2. How Much Municipal and Industrial Wastewater Is Produced Globally?

According to United Nations Educational, Scientific and Cultural Organization (2017),
the total water withdrawal can be estimated at 3928 km3 per year [26]. Globally, wastewater
produced from municipal and industrial activity accounts for 24% of this amount, as illus-
trated in Figure 2. Municipal wastewater contains wastewater discharged from residences,
institutions and public facilities and has a typical COD range of 300–900 mg/L. In 2019, the
global production of municipal wastewater exceeded 305 × 109 m3, and the two largest
producers were the USA (over 60 × 109 m3) and China (over 40 × 109 m3) [27]. Municipal
wastewater is usually treated with the use of activated sludge (AS)—the most common
biological method of wastewater treatment—which utilises microorganisms for organic
matter decomposition in aerobic conditions. The AS process requires intensive aeration,
which makes 55–90% of the energy consumed in the treatment plant [28]. Typically, AS
consumes 0.3–2.1 kWh/m3 of energy, with higher values in small plants, but it usually does
not exceed 1 kWh/m3 [29–32]. Thus, we can estimate that municipal wastewater treatment
on a global scale requires ca. 300 TWh of energy.
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Industrial wastewater includes effluents generated by various branches of industry
at all stages of production and accompanying processes, including cooling or installa-
tion cleaning (Figure 3). According to the European Environmental Agency, industrial
wastewater can be divided into two main categories: the manufacturing and energy supply
industries [33]. Among manufacturing industry wastewater, there are effluents from the
production of iron and steel, non-ferrous metals, non-metallic minerals, pulp and paper
(P&P), chemicals, food and drink and other manufacturing activities. In the energy industry
category, wastewater is generated in mining, the extraction of gas and oil, power plants
and refineries. Based on AQUASTAT and the United Nations report (2017), industrial
wastewater production in 2019 was ca. 630 × 109 m3, which accounts for 16% of total
global water withdrawal [26,34,35]. Similar to the case of municipal wastewater, two of the
world’s highest water consumers, which use 50% of global water for industrial purposes,
are the USA (209.7 × 109 m3) and China (133.5 × 109 m3) [26]. Depending on the sector
type, industrial wastewater is discharged or treated and re-used in place. For example,
the Danish brewer Carlsberg claims to recycle 90% of the water used in its plants [36].
Conversely, in paint production, which uses up to 3.2 × 105 m3 of water per day, only
4% of water is recycled [37]. Large-scale industries account for a significant proportion
of the direct release of wastewater (e.g., the energy supply industry, which accounts for
ca. 86%) [38]. According to a United Nations report, ca. 80% of wastewater globally is
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discharged without sufficient treatment [25]. Industrial wastewater is much more diver-
sified in terms of its degree of pollution than municipal wastewater. The COD values of
industrial wastewater are quite diverse between different sectors and within particular
branches (Table 1). Obviously, a higher contamination level of industrial effluents requires
more energy for treatment. A case study of dairy wastewater treatment with the use of
AS showed that energy consumption was 0.9–1.2 kWh/m3 when the COD of wastewater
was 1900 mg/L, and it increased to 1.3–1.5 kWh/m3 when the COD was 3700 mg/L [39].
Similar to municipal wastewater, AS is the technique of first choice for industrial efflu-
ents. However, AS often requires more advanced treatment methods when efficiency is
unsatisfactory, especially for wastewaters with high COD loadings. The most efficient
treatment techniques, such as membrane methods, need 1–6 kWh/m3, which can obtain a
COD removal efficiency >90% and reduce the production of sludge by as much as five-fold
during treatment compared to AS [23,40]. In cases in which heavily polluted wastewater
needs to be treated, the most effective electrochemical methods can consume as much as
153 kWh/m3 [41].
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Figure 3. Global (a) industrial wastewater production and (b) manufacturing industry wastewater.
The estimations are based on the statistical data of water use and production volume for various
industrial sectors.

Table 1. Global municipal and industrial wastewater production for selected sectors.

Wastewater Type

Estimated
Global

Production in
109 m3

COD [mg/L] References

Municipal 305 300–600 [42]

In
du

st
ri

al

Energy sectors 392 395–45,000 [43–47]

M
an

uf
ac

tu
ri

ng
in

du
st

ry

Pulp and paper industry 123 480–115,000 [23]

Food and
beverage
industry

Slaughtery 3.7 1140–16,000 [48,49]

Dairy 2.5 500–100,000 [33,50]

Wine, beer,
beverages 5 1200–211,800 [51–56]

Metallurgy 65 880–42,000 [57,58]

Textile industry 10 150–30,000 [59]



Energies 2022, 15, 6928 5 of 14

The majority of wastewater produced by global industries comes from energy sec-tors,
reaching 10% of global water withdrawal [60]. The energy production industry uses water
for fuel extraction, processing, transport, cooling and gas purification in power plants. Oil
production is estimated to generate 10 barrels of wastewater per each barrel of produced
oil [61]. Based on global oil production in 2019, which was ca. 4.1 × 109 m3, the amount
of globally produced wastewater from oil production could reach 41 × 109 m3 [62]. The
energy industry’s wastewater is polluted with chlorides, sulphates and heavy metals, such
as Cr, As, Cd, Hg or Pb, which are recognised by the US Environmental Protection Agency
and the American Lung Association as being responsible for cancer risks, heart attacks and
asthma cases [60]. A wide spectrum of treatment techniques is used for energy industry
effluents, from physical methods (e.g., coagulation, filtration and adsorption in the case
of wastewater from gas desulphurisation in power plants) to membrane processes and
electrochemical methods for petro-chemical wastewater, with energy demand reaching ca.
3–6 kWh per 1 m3 of wastewater [63–66].

Among all industrial manufacturing sectors, the P&P industry is the biggest in-dustrial
water consumer, requiring 5–200 m3 of water per 1 tonne of product [23,67]. Based on
global paper production in 2019, which was ca. 700 × 106 tonnes, and considering that
the P&P industry is responsible for the generation of 42% of industrial wastewater, we
estimate that the P&P sector can produce up to 123 × 109 m3 of highly polluted wastewater
annually [23,68]. The COD of P&P wastewater varies widely, spanning from hundreds of
mg/L to hundreds of g/L, depending on the specific process by which it was generated,
with the average value being a few g/L [23]. Most P&P treatment plants use biological
aerobic methods, including aerated lagoons or AS [69]. Their application produces large
amounts of waste sludge (0.4 kg of sludge per kg of organic substrate consumed) [61,70].
Alternative treatment methods used in the P&P industry that reduce sludge production and
enhance COD removal efficiency (> 90%) include membrane processes or electrochemical
methods. However, these still require a high energy input, from 1 to 6 kWh/kg COD in
membrane processes to 20 to 35 kWh/kg COD in electrochemical methods [23].

After the P&P industry, the textile industry consumes the largest amount of water
per 1 tonne of product (ca. 200 m3/t), 90% of which ends up as wastewater [71]. In India,
the third-largest textile exporter worldwide, the wastewater production of their textile
industry is 640 mln m3 a year, based on official statistics [72]. Considering only the top 10
textile-exporting countries, in 2019, global wastewater generation from the textile industry
exceeded 10 × 109 m3 [73]. The biggest problem with effluents from the textile industry is
the use of dyes in the production process (ca. 280,000 tonnes of various dyes are discharged
every year, causing serious environmental and health risks [64]). According to the World
Bank, the textile industry may be responsible for as much as 20% of industrial water
pollution [64,74,75]. Recent research has shown the toxic, carcinogenic and mutagenic
activity of dyes used in the textile industry on biological organisms, which highlights
the need for effective treatment of this type of waste [76–80]. Of the various treatments
for textile effluents, the most economically beneficial are biological methods, in which
microorganisms are utilised for the decomposition of dyes. However, membrane methods
(membrane bioreactors and photocatalytic membrane bioreactors) are the most efficient, as
they allow for COD and dye removal with an efficiency as high as 99% [59].

Metal production generates 26.5 m3 of wastewater per 1 tonne of steel [81]. In metal-
lurgy, water is used for flotation, sintering, cooking or steel making. Global steel production
in 2019 was 1869 mln tonnes, and for non-ferrous metals, it was 1265 mln tonnes, which
led to world wastewater production from metallurgy, being ca. 65 × 109 m3 [82,83]. Due
to the presence of cyanide in wastewater, AS has been found to be ineffective for metal-
lurgy wastewater treatment [51]. In practical applications, a combination of two or more
energy-consuming methods is usually used (e.g., membrane or electro-chemical methods,
coagulation with microfiltration or advanced oxidation with H2O2 [57]).

The food processing industry, which is one of the most water-consuming sectors,
produces diverse effluent pollution, depending on the production type (e.g., meat, dairy,
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alcohol, bakery or others, Table 1) [84]. The American food manufacturing sector has
been identified as responsible for 20% of greenhouse emissions and 12% of water with-
drawals [85]. For example, in the production of 1 tonne of poultry, 6–30 m3 of water is used.
Other examples are 1.5–10 m3/t for pork and 2.5–40 m3/t for beef [86]. Additionally, 98% of
water consumed during meat processing is discharged as wastewater [87]. While the COD
of the greatest wastewater producers in the food industry—meat processing and the dairy
sector—usually do not exceed 5000 mg/L, there are technologies that generate effluents
with an extremely high COD (e.g., rapeseed oil production: 3,000,000 mg/L; mayonnaise
production: 1,820,000 mg/L; cream: 1,550,000 mg/L [88]). Global meat production in 2018
was 341 mln tonnes, generating 3.7 × 109 m3 of wastewater [89]. Data from 2019 indicate
that the annual amount of wastewater produced by the food and beverage industry in
Europe was 3.7 × 109 m3 [90]. Given that Europe accounts for about 19% of the global food
market, the world wastewater production from the food and beverage industry may reach
ca. 19.5 × 109 m3 [91]. Depending on the wastewater composition and pollution degree,
a wide spectrum of treatment techniques is applied, from co-treatment with municipal
wastewater (e.g., for winery effluents) to sophisticated membrane, electrochemical and
oxidation [88], enzymatic [92] or anaerobic [93] methods.

Other types of water-consuming industries are the chemical industry, building and
construction, electronics and semiconductors, leather products and other engineering
sectors. Among these, the chemical industry is extremely diversified and is the greatest
consumer of water. In 2020, just in the EU the production of chemicals reached 270.8 mln
tonnes [94]. In the chemical industry, water consumption may reach 20 m3/m3 (e.g., for
methanol [95]) or 50–100 L of wastewater per 1 kg of produced substance, such as in
the pharmaceutical sector, in which products are usually manufactured in multi-step
processes and can involve as many as 30 steps [96,97]. In China alone, the pharma industry
generates at least 1 × 109 m3 of wastewater per year (incomplete data) [98]. For chemical
industry wastewater treatment, depending on the effluent type, a combination of an-
aerobic and aerobic methods is used, and more often, membrane and chemical oxidation
methods [99,100].

3. Recovery of Chemical Energy from Wastewater—Treatment with MFC Technology

Chemically bound energy in municipal wastewater is often expressed per mass of
COD and is determined as 4.9 kWh/kg COD [101,102]. Additionally, the amount of thermal
energy in wastewater is ca. 7 kWh/m3, which can be recovered through heat pumps for
heating or cooling processes in plants [103]. Considering global municipal wastewater
production and its typical COD range, the amount of chemical energy in municipal wastew-
ater varies between 448 TWh and 1345 TWh per year. Regarding industrial wastewater,
chemical internal energy can be estimated based on the research by Heidrich et al., whose
study used mixed municipal and industrial wastewater of COD 718 mgO2/L and was
estimated based on 7.97 kWh/kg COD [104]. However, given that the COD of industrial
wastewater is typically on the order of a few g/L, we can assume that the value is heavily
underestimated. It is known that the energy content of wastewater relies on its COD; how-
ever, there have been no investigations showing a direct relationship between these two
parameters in high-strength wastewater to date [105]. Thus, the amount of chemical energy
entrapped within industrial wastewater, when considering the estimations of Heidrich
et al., global yearly production and assuming an average COD of 5000 mg/L for industrial
effluents, can be estimated as ca. 2.5 × 104 TWh.

MFCs are currently perceived as a treatment technique (allowing for >90% COD
removal) rather than a power production technology because the power produced is
considered low, in the order of a few W/m3 [24,106–109]. However, recent research has
shown that power production efficiency in MFCs has increased remarkably in recent years;
more often, it is close to the 1 kW/m3 level in litre-scale reactors. Table 2 shows selected
examples of the MFCs in which power productions are above 10 W/m3. The highest power
densities (>1 kW/m3) are obtained in very small reactors as a result of reactor volume and
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electrode configuration optimisation, which are not yet reliable on a practical scale. Usually,
power production in MFC is given in W/m3 of reactor or in W/m2 of electrode, but in such
system there is a huge influence of reactor size and configuration on the power production
amount. Increases in power densities obtained in MFCs have resulted in the description
of their performance by a more objective and practically useful parameter—normalised
energy recovery (NER), which gives the information about the energetic efficiency of MFCs
without the influence of the reactor volume or electrode size. NER shows energy recovery
on the basis of wastewater volume or COD and is expressed in kWh/m3 of substrate or
kWh/kg COD. Most MFCs produce energies lower than 1.5 kWh/m3, which is 1 kWh/kg
COD [110]. It is also generally accepted that MFCs need to produce power density in the
order of 1 kW/m3 to become a self-sufficient technology [25]. However, currently obtained
power densities may be enough to achieve energy self-sufficiency because, in practice,
MFCs consume only 0.076 kWh/kg COD during wastewater treatment, which is one order
of magnitude less that of AS (0.3–0.6 kWh/kg COD) [25]. Many investigations conducted
on synthetic and real wastewater showed that MFC technology, contrary to the AD process,
may remain self-sufficient because the amount of energy produced during the treatment
process meets the total energy needs required to operate the system [111–114]. The data
collected in Table 3 show that even below 1 kW/m3, MFCs have the potential to become
energetically self-sufficient with a positive energy balance. Especially promising is the
investigation conducted on real brewery wastewater in a 90-L reactor in which the net
energy 0.034 kWh/m3 was obtained, with the COD removal efficiency reaching almost
90% [115]. In addition, there is still space to enhance energy recovery in MFCs, and the most
recent research on synthetic wastewater shows that energy production during treatment in
MFCs may be in the order of 11.5 kWh/m3 or even 22.5 kWh/m3 [116–118].

Table 2. Power production in MFCs above the 10 W/m3 limit.

Substrate W/m3 Reactor Volume Reference

Anaerobic + aerobic sludge 258 360 mL [119]

Anaerobic + aerobic sludge 280 360 mL [120]

Sewage sludge 45 1 L [121]

Domestic WW + textile WW 750 2 L [122]

Oil palm mill effluent 18 4 L [123]

Synthetic wastewater 11 20 L [124]

Synthetic wastewater 890 10 L [112]

Acetate 1550 2.5 mL [125]

Acetate 2150 0.3 mL [126]
WW—wastewater.

Table 3. Comparison of energy balances in real wastewater—conventional treatment methods vs.
MFC technology.

Substrate

Conventional Wastewater Treatment MFC Technology

ReferencesTreatment
Type

Energy
Consumption

kWh/m3

Energy
Production

kWh/m3

Energy
Balance
kWh/m3

Energy Con-
sumption
kWh/m3

Energy
Production

kWh/m3

Energy
Balance
kWh/m3

Max. Power
Density
W/m3

Municipal
wastewater

AS 0.52 0 −0.52 - - 0.024 - [127,128]

AD 0.865 0.52 −0.345 0.141 0.205 0.064 - [129,130]

0.0147 0.0239 0.009 4.1 [131]

- 0.08 - 11 [132]

- 0.57 - 2.6 [133]
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Table 3. Cont.

Substrate

Conventional Wastewater Treatment MFC Technology

ReferencesTreatment
Type

Energy
Consumption

kWh/m3

Energy
Production

kWh/m3

Energy
Balance
kWh/m3

Energy Con-
sumption
kWh/m3

Energy
Production

kWh/m3

Energy
Balance
kWh/m3

Max. Power
Density
W/m3

Primary
sludge - 3.2 - 6.4 [134]

In
du

st
ri

al
w

as
te

w
at

er

Brewery

Electroch
emi-cal

methods
ca. 30 0 −30 0.027 0.097 0.034 - [115,135]

- 0.35 - 3 [136]

Fish pro-
cessing

AS 0.5 0 −0.5 - 0.27 - 3.8 [137,138]

Reverse
osmosis 3.3 0 −3.3 [65]

Distillery

Advanced
oxidation
processes

0.1–1.19 0 −(0.1 ÷ 1.19) - 1.8 - 4.7 [132,139]

Electroo
xida-tion
processes

24-28 0 -(24 ÷ 28) [140]

4. Conclusions

In the time of global energy shortages, searching for new renewable energy sources
is an urgent need. In this article, we paid the attention to globally produced wastewater
as an invaluable renewable energy source. On the basis of the most recent literature, the
reports and databases of non-profit organizations as well as the reports of governmental
institutions, we demonstrated the potential of energy recovery from various types of
wastewater through MFC technology.

This is the first paper presenting the quantities of wastewaters available globally in
conjunction with their energy content as well as identifying the unexploited reservoirs of
clean energy. A great potential of wastewater-fed MFCs has been demonstrated as well as
its three key advantages over the established approaches to wastewater treatments, which
are: (1) no energy input requirement, (2) net energy produced during the treatment and
(3) high organic contaminant removal efficiency.

If the self-sufficiency of wastewater treatment processes became technically possible
due to the implementation of MFC technology on a practical scale, we could save the entire
amount of energy spent on wastewater treatment, which currently, on a global scale, is
ca. 5100 TWh. This value will constantly increase as a result of global water shortages
and the need to meet stricter environmental standards, which will force the use of more
efficient treatment techniques that consume less energy. Increases in power production
in MFCs over the years have shown that there is still space to enhance the efficiency of
energy recovery from wastewater and other organic substrates. Any net energy production
in MFCs from wastewater will be an energetic gain. The considerations presented in this
paper indicate that ca. 900 TWh can be produced in MFCs on a global scale only when their
efficiency reaches 1 kWh/m3 of wastewater. However, the total chemical energy bound in
wastewater that can be recovered with the use of MFC technology is ca. 2.6 × 104 TWh,
which is 15% of the current global energy demand. These values demonstrate the real
potential of MFCs in the exploitation of wastewater as a new source of renewable energy
and indicate an urgent need to intensify research efforts on the development of MFC
technology, which may become a green route to the energy of the future.

Further research should focus on overcoming the existing issues, which are: (1) limited
power output [141], difficult scaling-up [142], increasing the overall efficiency of MFCs via
systematic development of new electrode materials [143,144], improved performance at am-
bient temperature [108] and microbial consortia of the enhanced electrogenic activity—i.e.,
increased electron transfer rates [145]. When the above-mentioned issues are successfully
resolved, the world will gain a powerful source of clean, environmentally benign energy.
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