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Abstract: Vibration energy harvesting technology can capture ambient energy forms. Using an energy
harvesting shock absorber (EHSA) is one of the methods to achieve this function. The EHSA with
mechanical motion rectifier (MMR) has motion bifurcation, which can improve energy harvesting
performance and reduce the impact between gears. However, the motion bifurcation makes it difficult
to quantitatively predict the vibrational energy dissipation and energy harvesting of the MMR−EHSA.
Evaluating the performance of an MMR−EHSA during the design phase becomes highly complex.
In this paper, a novel nonlinear dynamics model of MMR−EHSAs is established to solve motion
bifurcation and quantitative power flow. Furthermore, the proposed MMR−EHSA prototype is
fabricated, and dynamics testing is initiated to verify the theoretical model under harmonic vibration.
The testing results show that the theoretical model can predict the working characterization of
MMR−EHSAs. The resistance of optimal harvesting energy and maximum damping power is
revealed by the quantitative power flow model under harmonic vibration. In addition, the working
performance under random vibration is discussed. The proposed nonlinear dynamics model has
advantages when solving random vibration input and has potential for practical application.

Keywords: power flow; motion bifurcation; energy harvesting; nonlinear dynamics

1. Introduction

In recent years, a plethora of research initiatives have been carried out in the field
of energy harvesting [1–4]. There are three main types of energy harvesting: piezoelec-
tric [5,6], nano-electrostatic [7,8], and mechanical electromagnetic [9–12]. The mechanical
electromagnetic method is one of the most popular methods due to its wide range of
applications [13]. The mechanical electromagnetic method is also referred to as an energy
harvesting shock absorber (EHSA) [14].EHSAs have two types. These are often classified
as linear and rotational EHSAs, also referred to as direct-drive [1,15,16] and indirect-drive
EHSA models [17]. In linear EHSAs, the linear movement is utilized to turn the mechanical
energy into electric energy. Rotational EHSAs translate the oscillatory movement into
bidirectional rotation. Generally, conventional EHSA methods, such as rack-pinion [18] and
ball-screw [19] models, demonstrate this conversion of oscillatory vibration into bidirec-
tional rotation. However, the other model, i.e., the mechanical motion rectifier (MMR) [20],
initiates the change of bidirectional vibration into unidirectional rotation.

In 2013, Li et al. [21] designed a vehicular rack-pinion EHSA. The EHSA can realize
asymmetric damping characteristics by changing the load resistance value in different
strokes. The road test showed that the EHSA could reflect the roughness of the road using
the voltage the EHSA generated. However, EHSA parts will produce a vibrational impact
when the vibration direction changes. Therefore, Li et al. [20] proposed an EHSA with
an MMR. The experiment and simulation results have shown that MMRs can reduce the
impact between parts and enhance energy harvesting. Since then, MMR−EHSAs has
attracted extensive attention among researchers.
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The MMR is a mechanism that converts oscillating linear motion into unidirectional
rotational motion by utilizing two roller clutches. The rolling clutch can only transmit
unidirectional torque. The MMR has a kind of motion bifurcation. The motion bifur-
cation embodies the roller clutch motion with no change in direction; however, torque
transmission is interrupted. Before the moment of motion bifurcation, the MMR’s motion
state is called the engagement state. After the moment, it is called a disengagement state.
This motion bifurcation reduces the impact between MMR−EHSA parts and increases the
harvested energy [22].

The dynamic characteristics of MMR−EHSAs in the engagement state and disengage-
ment state are different. An EHSA without an MMR is the basis of studying MMR−EHSAs.
The MMR−EHSA engagement state has the same dynamics and power flow characteristics
as an EHSA without an MMR. Xie et al. [23,24] designed a multi-generator EHSA without
an MMR. The power flow of the multi-generator was studied. The damping force was
changed by controlling the number of working generators. Unlike changing the damping
force by adjusting the load resistance, the waste of harvesting electric energy can be reduced
by changing the number of operating generators. Zhu et al. [25] designed an EHSA without
an MMR. He developed a quantitative power flow model for EHSAs and predicted the
vibrational energy dissipation performance and energy harvesting performance of an EHSA
without an MMR. The dynamics model treated friction as the sum of Coulomb friction
and viscous friction. The theoretical model can predict the EHSA’s force–displacement
curve and harvesting power. The method of considering friction force provides a reference
for researchers. Zuo et al. [26] proposed an analytical method to solve the bifurcation
threshold of MMR−EHSAs. The analytical method can accurately predict working charac-
teristics and has been widely cited by many researchers for exploring the characteristics
of MMR−EHSAs under harmonic excitation. Zuo et al. designed an MMR−EHSA that
could be used in water [27] and land transportation [28], biology [29], and other fields.
The MMR−EHSA demonstrated good energy harvesting performance through testing on
both the ocean and on highways. However, the working characteristics of MMR−EHSAs
under random vibration have rarely been studied through the analytical method. Because
motion bifurcation is highly unpredictable under random vibration, it is challenging to
obtain the analytical solution to the motion bifurcation threshold under random vibration.
Yang et al. [30] designed a bicycle cushion MMR−EHSA. The nonlinear dynamics model
and output power model were established. Although the theoretical model contained
motion bifurcations, the simulation results for damping force did not show motion bifur-
cation transmission characteristics. This also reflected the requirement of studying the
motion bifurcation characteristics. Zhang et al. designed an MMR−EHSA with different
transmission structures, such as double ball screw drives [31], tree-like drives [32], and ball
screw drives with different rotations [33]. The effects of different transmission structures
on the MMR−EHSA’s working efficiency were compared, and the results provided criteria
for the design of MMR−EHSAs.

Researchers have greatly expanded the application of EHSAs. The damping perfor-
mance and energy harvesting performance of EHSAs have been studied extensively. The
accuracy of friction predictions has also been improved. Previous studies have found that
the theoretical research into MMR−EHSAs with random vibration input is insufficient.
The uncertainty of motion bifurcation makes it difficult to evaluate vibrational dissipation
and energy harvesting, especially with random vibration input. Therefore, a new, dynamic
MMR−EHSA theory suitable for studying random vibration is required for further research
deliberations, which could help provide a theoretical basis for designing MMR−EHSAs.
The contributions are listed as follows:

(1) A novel numerical iterative method was proposed that fills in the blanks from the
theoretical solution for MMR−EHSAs with random vibration input. Based on the pro-
posed theoretical model, the power flow of MMR−EHSAs in different working states
is established. Through the power flow model, the working effect of MMR−EHSAs
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can be effectively evaluated in the preliminarily stages, which helps the design and
application of MMR−EHSAs.

(2) The working characteristics of MMR−EHSAs are demonstrated by studying common
harmonic excitation. The optimal damping force resistance is revealed. The power
flow model can obtain the optimal energy harvesting resistance.

This paper is organized as follows. Section 2 introduces the working principle and
motion bifurcation of MMR−EHSAs. In Section 3, the nonlinear dynamics model for
MMR−EHSAs established, the numerical iterative bifurcation model and analytical bi-
furcation model are presented, and a quantitative power flow model is established. In
Section 4, dynamics testing is conducted to verify the proposed model under harmonic
vibration. Section 5 discusses the vibrational energy dissipation and energy harvesting
processes under harmonic and random vibration. Finally, the conclusions are presented
in Section 6.

2. Design and Working Principle

An EHSA is a combination of inertia and an electromagnetic damper [25]. An MMR can
reduce the impact of inertia from the parts when the external excitation is in the deceleration
and reversing stage. As shown in Figure 1, the MMR−EHSA is designed based on a rack
and pinion transmission structure. It consists of three modules: an MMR, a transmission
module, and a generator module. The MMR can convert the oscillatory vibration of the
rack into the one-way rotation motion of the shaft through two roller clutch bearings. The
transmission module increases the velocity of the generator and amplifies the damping
force generated by the generator. In this process, the EHSA dissipates input vibrational
energy and harvests part of the dissipated vibrational energy into electrical energy. The
generator module can harvest electrical energy using the excitation input. Simultaneously,
different resistances connected to the positive and negative poles of the generator can
produce different electromagnetic damping forces and change the damping performance
and energy harvesting performance of the MMR−EHSA. Table 1 lists parameters related to
the MMR−EHSA.

The MMR−EHSA has two kinds of working states: engagement and disengagement.
The damping force of the MMR−EHSA will produce small and continuous change in the
engagement state, before then causing a sudden change in the path of the transmission. This
sudden change is the motion bifurcation of the MMR−EHSA. Figure 2 reveals the process
of motion bifurcation under harmonic excitation. The specific process of motion bifurcation
in a half cycle can be divided into four stages according to the relationships of velocities
among gear 1, gear 2, and their coupling. Stage 1 is the engagement state, where gear 1
with high velocity keeps roller clutch 1 engaged and drives the coupling. The velocity of
gear 1 then decreases, making the MMR enter state 2, which is the disengagement state.
The velocity of the coupling is higher than the velocity of gear 1. The demarcation between
state 1 and state 2 is the motion bifurcation threshold. In the demarcation moment, the work
stage of roller clutch 1 changes from engagement to disengagement. As the rack moves
from the upward stroke to the downward stroke, the MMR enters state 3. The velocity of
gear 2 is higher than the velocity of gear 1. The demarcation between state 2 and state 3 is
the top dead center of the MMR−EHSA. The velocity of gear 1 and gear 2 is zero, but the
coupling keeps rotating. When the velocity of gear 2 reaches the coupling velocity, roller
clutch 2 from the disengagement state enters the engagement state. The MMR then enters
state 4. Gear 2 will carry the coupling as it rotates in state 4. In addition, the downward
stroke to upward stroke has a similar transmission process as the one explained above.
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ke 0.048 V/rad back electromotive voltage constant 
kt 0.090 N∙m/A torque constant 

Rcoil 5.5 Ω resistance of the generator coil 
fs1 1.7 N slide friction force of the MMR 
fs2 17.06 N slide friction force of the gearbox and generator 
cb1 7.5 N∙s/m equivalent mechanical damping coefficient of the MMR 

cb2 75.6 N∙s/m equivalent mechanical damping coefficient of the gearbox 
and generator 

n00 0.011 m−1 cutoff frequency 
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Table 1. Specified parameters.

Symbol Value Physical Understanding

mr 0.491 kg inertia coefficient of the rack
Jg1 7.066 × 10−6 kg·m2 rotational inertia of gear 1
Jg2 7.066 × 10−6 kg·m2 rotational inertia of gear 2
Jg3 7.066 × 10−6 kg·m2 rotational inertia of gear 3
Jc 8.106 × 10−6 kg·m2 rotational inertia of the coupling
Jgr 32.212 × 10−6 kg·m2 rotational inertia of the generator
igb 0.045 transmission ratio of the gearbox
rg 15 mm gear radius
ke 0.048 V/rad back electromotive voltage constant
kt 0.090 N·m/A torque constant

Rcoil 5.5 Ω resistance of the generator coil
fs1 1.7 N slide friction force of the MMR
fs2 17.06 N slide friction force of the gearbox and generator
cb1 7.5 N·s/m equivalent mechanical damping coefficient of the MMR

cb2 75.6 N·s/m equivalent mechanical damping coefficient of the gearbox
and generator

n00 0.011 m−1 cutoff frequency
u 16.67 m/s horizontal movement velocity

Sq(n0) 64 × 10−6 m3 roughness index
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3. Nonlinear Dynamics Model of MMR−EHSAs

The proposed nonlinear dynamics model comprises two parts: the nonlinear total
damping force model and the motion bifurcation model. The motion bifurcation model
is used to determine the nonlinear state so as to complete the solution cooperatively.
Analytical methods for solving MMR−EHSA motion bifurcation are used by a fairly large
number of researchers. A novel numerical iteration method is proposed in this paper. This
method has advantages when solving complex excitation.

3.1. Nonlinear Total Damping Force Model of MMR−EHSAs

The composition of MMR−EHSA damping force is different between the engagement
behavior and the disengagement behavior. The total damping force is generated by the
MMR, the gearbox, and the generator in engagement behaviors. In disengagement behav-
iors, the total damping force is generated by the MMR. The other parts cannot transmit
damping force through the disengagement roller clutch. In this paper, the force generated
by the EHSA is regarded as having three parts: inertia force, electromagnetic damping
force, and dissipation damping force. As shown in Figure 3a, the total damping force in
engagement behaviors can be expressed as:

Ftot = Fin + Fed + Fd = Fmmr + Fgb + Fgr + Fed + Fd

=
(

mmmr + mgb + mgr

) ..
x + (ced + cb1 + cb2)

.
x + fs1 + fs2

(1)

where Fin = inertial force; Fed = electromagnetic damping force; Fd = dissipation damping
force; Fmmr = MMR inertial force; Fgb = gearbox inertial force; Fgr = generator inertial force;
mmmr = the inertia coefficient of the MMR; mgb = the inertia coefficient of the gearbox;
mgr = the inertia coefficient of the generator; ced = the electromagnetic damping coefficient;
cb1 = the equivalent MMR mechanical damping coefficient; cb2 = the equivalent gearbox
and generator mechanical damping coefficient; fs1 = sliding friction force of the MMR; and
fs2 = sliding friction force of the gearbox and generator. The dissipative damping force is
composed of sliding friction and mechanical damping. Mechanical damping is caused by
imprecise workmanship elements, cooperation of parts and energy lost in the generator,
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etc. As shown in Figure 3b, the total damping force in disengagement behaviors can be
expressed as:

Ftot = Fin + Fd = Fmmr + Fd = mmmr
..
x + cb1

.
x + fs1 (2)
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The inertia coefficient of the MMR in Equations (1) and (2) reads as:

mmmr = mr +
Jg1

r2
g
+

Jg2

r2
g
+

Jg3

r2
g
= mr +

Jg1 + Jg2 + Jg3

r2
g

(3)

where mr denotes the inertia coefficient of the rack, while Jg1, Jg2, and Jg3 represent the
inertial parameters of gear 1, gear 2, and gear 3, respectively. rg denotes the gear radius,
i.e., gear 1, gear 2, and gear 3 have the same size. The inertia coefficient of the gearbox is
expressed below:

mgb =
1
r2

g

Jc +
g

∑
n=1

Jn
n
∏

s=1
i2s

 (4)

where Jc is the sum rotational inertia of shaft 1 and the coupling. Jn is the rotational inertia
of gear n in the gearbox. g is the number of gears in the gearbox. is denotes the transmission
ratio between gear s and gear 1. The inertia coefficient of the generator can be expressed as:

mgr =
Jgr

i2gbr2
g

(5)

where Jgr denotes the rotational inertia of the generator. igb denotes the transmission ratio
of the gearbox. The rotation of the generator will generate the electromagnetic damping
force. The electromagnetic damping coefficient can be expressed as:

ced =
kekt

(Rcoil + Rload)i2gbr2
g

(6)

where kt and ke represent the torque constant and the back electromotive voltage constant,
respectively. Rcoil and Rload represent the coil resistance of the generator and the load
resistance of the generator, respectively. Other parameters (cb1, cb2, fs1, fs2) obtained by
the experiments are listed in Table 1. Incidentally, the total damping coefficient of the
MMR−EHSA is given by:

C =
W

2 f π2 A2 (7)

where W denotes the work of Ftot. f denotes the frequency. A denotes the amplitude.
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3.2. Numerical Iterative Motion Bifurcation Model of MMR−EHSAs

A novel numerical iteration motion bifurcation model for the nonlinear transmission
characterization of MMR−EHSAs is built in this section. This numerical iteration model
has two functions. Function 1 is used to judge engagement behavior and disengagement
behavior. Function 2 obtains the velocity (
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..
θc =

kekt
.
θgr

Rtotigb
+ M f r

mgb + mgr
(8b)

where
.
θin denotes the equivalent rack velocity; vr denotes excitation velocity;

..
θc denotes

the acceleration of the coupling; and
.
θgr denotes generator velocity. Mfr denotes the

equivalent gearbox and generator dissipation damping torque. The virtual velocity of the
coupling at the next moment can be calculated using the acceleration of the coupling at the
current moment: .

θc =
.
θc0 −

..
θc∆t (9)

where
.
θc0 represents the initial velocity of the coupling and ∆t denotes step length. The

iteration process is shown in Table 2.

Table 2. Numerical iterative motion bifurcation model.

Time Input Coupling Virtual Velocity Bifurcation Threshold Coupling Velocity Coupling Acceleration

t0
.
θin0

.
θc0 = 0

{ .
θin0 >

.
θc0 engage

.
θin0 6

.
θc0 disengage

{ .
θc0 =

.
θin0 engage

.
θc0 =

.
θc0 disengage

..
θc0 =

ke kt
.
θgr0

Rtot igb
+M f r

mgb+mgr

t1
.
θin1

.
θc1 =

.
θc0 −

..
θc0∆t

{ .
θim1 >

.
θc1 engage

.
θim1 ≤

.
θc1 disengage

{ .
θc1 =

.
θin1 engage

.
θc1 =

.
θc1 disengage

..
θc1 =

kekt
.
θgr1

Rtot igb
+M f r

mgb+mgr

. . . . . .

tn
.
θinn

.
θcn =

.
θc(n−1) −

..
θc(n−1)∆t

{ .
θimn >

.
θcn engage

.
θimn ≤

.
θcn disengage

{ .
θcn =

.
θimn engage

.
θcn =

.
θcn disengage

..
θcn =

kekt
.
θgrn

Rtot igb
+M f r

mgb+mgr

According to Table 2, the motion bifurcation threshold of the MMR−EHSA and the
coupling velocity in different behaviors can be obtained. Coupling velocity is synchronous
with generator velocity. Generator velocity is obtained from the coupling velocity and
the gearbox ratio. It must be pointed out that the coupling is stationary at the initial
moment, thus the rotational velocity is zero. No matter what kind of excitation is input, the
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MMR−EHSA is always in the engagement behavior at the moment of t0. The proposed
model has significant universality, and different types of vibration input will not change
the difficulty of solving the model. Figure 4 shows the displacement–force curve obtained
through the proposed nonlinear dynamics model under harmonic excitation.
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3.3. Analytical Motion Bifurcation Model of MMR−EHSAs

Harmonic excitation is often used as the simulation input when investigating the
dynamic characterization of MMR−EHSAs [18,19,34]. In this section, the engagement and
disengagement behaviors of the EHSA are also calculated using the analytical dynamics
model. The equation of harmonic excitation is:

x = A sin(ωt)
.
x = Aω cos(ωt)
..
x = −Aω2 sin(ωt)

(10)

where A represents the amplitude; ω is the angular frequency (ω = 2πf ); and f denotes the
frequency. The force balance condition of the motion bifurcation behavior is the Ftot value
in the engagement that is equal to the Ftot value in the disengagement. The equation can be
expressed as:

(mmmr + mgb + mgr)
..
x + (ced + cb2)

.
x + fs2 = 0 (11)

Using the auxiliary angle formula, Equation (11) can be expressed as:

√
a2 + b2 cos(ωtdis − arctan

(
b
a

)
) + fs2 = 0

{
a = −(mmmr + mgb + mgr)ω2 A
b = (ced + cb2)ωA

(12)

Solving Equation (12) can obtain the bifurcation threshold:

tdis =
1

2π f

[
arccos

(
− fs2√

a2 + b2

)
+ arctan

(
b
a

)]
(13)

In a cycle of harmonic excitation, Equation (13) has two solutions. The two solutions
differ by half a cycle. The coupling velocity in the disengagement behavior is expressed as:

.
θcn =

.
θc(n−1)(1−

kekt∆t
i2gb(mgb + mgr)

)−
Mc2(n−1)∆t
(mgb + mgr)

(14a)
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.
θc =

.
θc0 exp

(
−me

ce
t
)

(14b)

Equation (14a) is the iterative model proposed in this paper, which can also be coupled
to an analytical dynamics model. Equation (14b) [35] is the velocity attenuation equation
in the disengagement behavior, where me is the inertia coefficient in the disengagement
behavior and ce is the equivalent damping coefficient in the disengagement behavior. The
following engagement moment can be solved using the numerical iterative method:

ten = tdis + h∆t (15)

where h is the number of iterations when
.
θc is the same as excitation velocity. The analytical

method needs to transform the excitation signal into the superposition of harmonic function
through Fourier transformation and then needs to solve the bifurcation threshold according
to the auxiliary angle formula. Many excitation inputs, in reality, tend to be random. The
analytic method cannot get the exact input function when solving random input, which
makes the solution difficult.

3.4. Quantitative Power Flow Model of MMR−EHSAs

The MMR−EHSA power flow model can help in understanding vibrational energy dis-
sipation and the energy harvesting process. The key to establishing the quantitative power
flow model is to calculate the threshold of MMR−EHSA motion bifurcation. This is because
the power generated by MMR−EHSAs is different in engagement and disengagement.

Figure 5 shows power flow in the engagement behavior. The engagement power flow
equation is:

Pin = Pmd + Pgd + Pmi + Pgi + Pge = Pmd + Pgd + Pmi + Pgi + Petot
= Pmd + Pgd + Pmi + Pgi + Pel + Peout

(16)

where Pin = power of total damping force; Pmd = equivalent power of MMR dissipation
damping force; Pgd = equivalent power of gearbox and generator dissipation damping
force; Pmi = power of MMR inertia force; Pgi = power of gearbox and generator iner-
tia force; Pge = power of electromagnetic damping force; Petot = gross output power;
Pel = power of copper coil loss; and Peout = output power. Figure 6 shows the power flow
in disengagement behavior. The disengagement power flow equation is:

Pin = Pmd + Pmi (17a)

Pgi = Pgd + Pge = Pgd + Petot = Pgd + Pel + Peout (17b)

As shown in Figure 6, Equation (17a) represents external power flow. Only the
MMR produces damping forces in the disengagement behavior. Equation (17b) represents
internal power flow. The internal power flow releases the accumulated kinetic energy in
the engagement behavior. The kinetic energy of the gearbox and the generator rotor drive
themselves to rotate. Due to roller clutch disengagement, the generator and gearbox do not
provide damping force.

The cumulative effect of total inertia force is zero for an EHSA without an MMR in
a harmonic excitation cycle. However, the cumulative effect of inertia force produced by
MMR−EHSAs needs to be classified. Firstly, the average power generated by the inertia
force of an MMR in a cycle is zero, as shown in the following equation.

Pmi =
1
T

mmmr

∫ T

0

..
x

.
xdt = 0 (18)
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Secondly, the average power of inertia force, electromagnetic damping force, and
dissipation damping force for the gearbox and the generator can be expressed as:

Pgi =
1
T

(
mgb + mgr

)
r2

p

∫ T

0

..
θgr(t)

.
θgr(t)dt (19)

Pge =
1
T

cedr2
p

∫ T

0

.
θ

2
gr(t)dt (20)

Pgd =
1
T

rp

∫ T

0
fs(t)

.
θgr(t)dt +

1
T

r2
p

∫ T

0
cb(t)

.
θ

2
gr(t)dt (21)
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where
.
θgr and

..
θgr can be acquired by the proposed numerical iterative dynamics model. The

average power of engagement behavior and disengagement behavior can be expressed as:

Pgien =
1
z

z

∑
k=1

1
(tdisk − tenk)

(mgb + mgr)r2
p

∫ tdisk

tenk

..
θgr(t)

.
θgr(t)dt (22)

Pgidis =
1
z

z

∑
k=1

1
(ten(k+1) − tdisk)

(mgb + mgr)r2
p

∫ ten(k+1)

tdisk

..
θgr(t)

.
θgr(t)dt (23)

Pgeen =
1
z

z

∑
k=1

1
(tdisk − tenk)

cedr2
p

∫ tdisk

tenk

.
θ

2
gr(t)dt (24)

Pgedis =
1
z

z

∑
k=1

1
(ten(k+1) − tdisk)

cedr2
p

∫ ten(k+1)

tdisk

.
θ

2
gr(t)dt (25)

Pgden =
1
z

z

∑
k=1

rp

(tdisk − tenk)

(∫ tdisk

tenk

fs(t)
.
θgr(t)dt + rp

∫ tdisk

tenk

cb(t)
.
θ

2
gr(t)dt

)
(26)

Pgddis =
1
z

z

∑
k=1

rp

(ten(k+1) − tdisk)

(∫ ten(k+1)

tdisk

fs(t)
.
θgr(t)dt + rp

∫ ten(k+1)

tdisk

cb(t)
.
θ

2
gr(t)dt

)
(27)

where Pgien = average power of inertia force in engagement; Pgidis = average power of
inertia force in disengagement; Pgeen = average power of electromagnetic damping force in
engagement; Pgedis = average power of electromagnetic damping force in disengagement;
Pgden = average power of dissipation damping force in engagement; Pgddis = average
power of dissipation damping force in disengagement; tenk = the moment of k engagement;
tdisk = the moment of k disengagement; ten(k+1) = the moment of k + 1 engagement; and z
= the number of occurring motion bifurcation behaviors. The voltage generated by the
generator is related to the velocity, which can be expressed as:

u0 = ke
.
θgr (28)

Open circuit current can be expressed as:

i0 =
u0

Rcoil + Rload
(29)

Generator coil voltage and generator output voltage are expressed as:

ucoil =
Rcoil

Rcoil + Rload
u0 (30)

uload =
Rload

Rcoil + Rload
u0 (31)

The average coil power is expressed as:

Pel =
1
T

∫ T

0

(
ke

.
θgr

)2
Rcoil

(Rcoil + Rload)
2 dt =

1
T

k2
e Rcoil

(Rcoil + Rload)
2

∫ T

0

.
θ

2
grdt (32)

Pelen =
1
z

z

∑
k=1

1
(tdisk − tenk)

k2
e Rcoil

(Rcoil + Rload)
2

∫ tdisk

tenk

.
θ

2
grdt (33)

Peldis =
1
z

z

∑
k=1

1
(ten(k+1) − tdisk)

k2
e Rcoil

(Rcoil + Rload)
2

∫ ten(k+1)

tdisk

.
θ

2
grdt (34)
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where Pelen denotes the average coil power in engagement and Peldis denotes the average
coil power in disengagement. The average output power is expressed as:

Peout =
1
T

∫ T

0

(
ke

.
θgr

)2
Rload

(Rcoil + Rload)
2 dt =

1
T

k2
e Rload

(Rcoil + Rload)
2

∫ T

0

.
θ

2
grdt (35)

Peouten =
1
z

z

∑
k=1

1
(tdisk − tenk)

k2
e Rload

(Rcoil + Rload)
2

∫ tdisk

tenk

.
θ

2
grdt (36)

Peoutdis =
1
z

z

∑
k=1

1
(ten(k+1) − tdisk)

k2
e Rload

(Rcoil + Rload)
2

∫ ten(k+1)

tdisk

.
θ

2
grdt (37)

where Peouten denotes the average output power in engagement and Peoutdis denotes the
average output power in disengagement.

4. Test Bench
4.1. Experimental Setup

Figure 7a shows the prototype MMR−EHSA designed and fabricated for dynamic
testing. The generator is a necessary part of the MMR−EHSA. Different generators will
directly affect the performance of MMR−EHSAs. The generator used in this paper contains
a gearbox. It can increase the speed of the generator rotor. The transmission ratio is an
important parameter. It will affect improvements in generator speed. If generator speed
is increased by too little, energy harvesting will be reduced but the transmission of the
MMR−EHSA will be more stable. If generator speed is increased by too much, harvesting
power will be improved but transmission stability will deteriorate. Therefore, a large
number of experiments are needed before selecting the appropriate generator in order
to preliminarily match the appropriate generator. The generator used in this paper is
manufactured by XingDa Company (Model: XD775 200R). Figure 7b shows the bench
manufactured by LIANGONG TESTING company (Model: TPJ-W5A). This bench can test
the damping characteristics of the shock absorber. Figure 7c demonstrates the device used
to test voltages. The collected force signal and voltage signal are shown in Figure 7d.
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4.2. Experimental Results and Analysis

The MMR−EHSA has two kinds of work states. However, the two work states do not
appear together in some excitation conditions. As a result, we chose testing amplitudes
of 20 mm and 30 mm with frequencies of 0.5 Hz and 1.0 Hz. A set of resistors (5 Ω, 10 Ω,
20 Ω, 50 Ω) were used in the dynamic testing. Two kinds of working characteristic were
achieved as a result. One is motion bifurcation including engagement and disengagement.
The other is engagement only. Figure 8 shows the test and simulation results. The area
enclosed by each curve in Figure 8a,b represents the vibrational energy dissipated by the
MMR−EHSA in a loading cycle. The load resistance is small and the area enclosed is
large because the small load resistance leads to a larger electromagnetic damping force. As
shown in Figure 8a, motion bifurcation occurs when the load resistance is 20 Ω and 50 Ω.
The damping force is very small in the disengagement area. In Figure 8b, the MMR−EHSA
is always in an engagement state due to low excitation frequency. he output voltage results
are shown in Figure 8c,d, with 0–T/2 s being the measured results and T/2–T s being the
simulation results.
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It should be noted that the simulation results are smooth, while the experimental
results fluctuate. This fluctuation phenomenon makes the simulation inconsistent with the
experimental results, especially at 50 Ω. The reason for this is as follows. According to
Equation (28), voltage is linearly related to generator velocity. Therefore, generator velocity
fluctuates based on Figure 8c, and the fluctuant velocity is higher than the input velocity.
The gear meshing impact and the stiffness of transmission parts lead to velocity fluctuation.
The transmission parts will produce elastic deformation and accumulate elastic potential
energy during acceleration. The elastic potential energy will be released with the decrease
in acceleration velocity, thus increasing the velocity of the generator and making the EHSA
undergo motion bifurcation in the acceleration phase. However, motion bifurcation in the
acceleration phase will quickly terminate. The transmission parts will then continue to
produce elastic deformation which increases generator velocity. The experimental results
have the same trend as the simulation results. In addition, the damping force and output
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voltage can be changed by adjusting load resistance. Furthermore, it must be pointed out
that the working characteristic in a cycle should be focused on because the MMR−EHSA is
required to work for a long period of time. As shown in Figure 9, the total force power and
the output power agree with the experimental and simulated results in a cycle. This proves
that the nonlinear dynamics model proposed is effective.
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5. Quantitative Power Flow Discussion

The quantitative power flow of MMR−EHSAs is discussed in this section. General
vibrations can be transformed into a superposition of harmonic functions through Fourier
transformation. The operating characteristics under harmonic excitation are the basis for
the study of MMR−EHSAs. Unlike the power flow analysis of MMR−EHSAs in other
studies [18], power flow in this paper is divided into engagement power and disengagement
power according to the motion bifurcation threshold. This allows for a more accurate
analysis of power changes and discoveries. In addition, Section 5.3 first discusses the power
of random excitation input. The advantages of the proposed numerical iterative model in
the study of random vibration input are justified.

5.1. Quantitative Power Flow Analysis within a Harmonic Cycle

This section shows the influence of motion bifurcation on the different forces of power
in harmonic excitation. Figure 10a shows the total force power for dissipating the input
vibrational energy. Total force power is a combination of MMR inertial force (Figure 10b),
MMR dissipation damping force (Figure 10c), inertial (Figure 10d) and dissipation damping
forces (Figure 10e) generated by the generator and gearbox, and electromagnetic damping
force (Figure 10f). The generator’s inertial force, dissipation damping force, and electro-
magnetic damping force cannot be transferred to the rack when motion bifurcation occurs.
This results in minimal power in Regions A and B. At the same time, Region C has a double
peak. This double peak makes the power generated by the total force at 0.5 s smooth, which
is beneficial for the dissipation of vibrational energy. The MMR does not undergo motion
bifurcation and is always in the engagement state. The accumulated effect of MMR inertial
force in a cycle of harmonic excitation is zero. In Figure 10d, the generator’s inertial force
also generates power in disengagement. The generator’s rotor drives generator rotation in
the disengagement state, releasing the kinetic energy of the generator rotor accumulated in
the engagement state. The dissipation damping force of the generator and gearbox and the
electromagnetic damping force consume the kinetic energy.

5.2. Average Power Analysis of Different Resistances

The MMR−EHSA consumes vibrational energy and harvests electrical energy affected
by motion bifurcation. The engagement and disengagement states are related to input
vibration and load resistance. The former is often uncontrollable, while the latter can be
controlled. Figure 11a shows the total damping forces with different resistances under
harmonic excitation. The motion bifurcation threshold can be distinguished and acquired
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using the nonlinear dynamics model or calculated by Equations (13) and (15). The force
change is nonlinear as the resistance changes. A slight change in resistance brings a
significant change in force when the resistance is less than 10 Ω, whereas the force changes
flatly after resistance is greater than 10 Ω. The moment of entering the disengagement state
is advanced by 0.092 s during the change in resistance from 1 Ω to 50 Ω. In contrast, the
moment of entering the engagement state lags by 0.23 s. The resistance change affects the
moment of disengagement more than that of the engagement moment under harmonic
excitation. Figure 11b shows the coupling velocity at different resistances. The coupling
velocity change is continuous during motion bifurcation. The velocity changes abruptly
when motion bifurcation occurs. Therefore, the engagement moment is clear, and the
disengagement moment is blurred.
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Figure 12 discusses the average power in different states according to the bifurcation
threshold. In Figure 12a,b, the average powers of the inertial force and dissipation damping
force generated by the gearbox and generator are shown. There is a decrease in the
engagement state and an increase in the disengagement state with external resistance.
Furthermore, this variation law increases with excitation frequency. Figure 12c is the
average power of the electromagnetic damping force, which is related to the load resistance
in Equation (6). The increase in resistance will cause a sharp decrease in electromagnetic
damping force. At the same time, the duration of the disengagement state is increasing,
as shown in Figure 11. As a joint result, the power of the disengagement state decreases
continuously, and that of the engagement state changes slowly. Figure 12d is the average
power of the total damping force. Only the MMR inertia force and dissipation damping
force provide damping force in the disengagement state, resulting in almost 0 W of power.
The power of engagement damping force decreases with increases in load resistance. A
slight change in resistance will cause a significant change in power when the resistance is
less than 10 Ω. The power changes slowly with increasing resistance when the resistance is
greater than 10 Ω. To sum up, it is difficult to control the damping power of EHSAs when
the resistance is smaller than 10 Ω. In addition, when load resistance is approximately 0 Ω,
the maximum damping power will be reached.
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Figure 13a compares the output power with the coil power. According to Equations (32)
and (35), the necessary condition for Peout to be equal to Pel is Rload = Rcoil. Therefore, the
value of coil resistance (5.5 Ω) is the intersection (Peout = Pel) of output power and coil power.
The increase in load resistance makes coil power decrease sharply. Simultaneously, there is
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an optimal load resistance value for maximizing output power. The optimal load resistance
for maximum energy harvesting is the coil resistance for the EHSA without an MMR [24].
However, it must be noted that coil resistance may not be the resistance of maximum energy
harvesting output power for an MMR−EHSA. The maximum output resistance will change
with frequency. Table 3 shows the change for output power with different load resistances.
The point where maximum output power at 1.0 Hz is reached is 5.5 Ω. However, the point
where maximum output power is reached for 2.0 Hz is 6.0 Ω. This phenomenon is caused
by motion bifurcation, which is generated by the MMR. The MMR improves the energy
harvesting capacity of the EHSA [36], but also makes the harvesting process more complex.
Through the proposed dynamics model, the maximum output resistance can be revealed.
Figure 13b shows coil power at different states. Coil power decreases with increases in
resistance for both the engagement state and disengagement state. Furthermore, when the
load resistance is greater than 20 Ω, coil power reaches a very flat state. Figure 13c shows
the output power in different states. The resistance point for maximum output power is
different in the engagement state and disengagement state. Therefore, it is necessary to
consider motion bifurcation when optimizing MMR−EHSAs in the future. Meanwhile,
energy harvesting and damping force will affect each other. It is difficult to achieve both
optimal states at the same time. A reasonable compromise should be made in the selection
of load resistance.
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Table 3. Output electrical energy with different load resistances.

4.5 Ω 5.0 Ω 5.5 Ω 6.0 Ω 6.5 Ω 7.0 Ω

1 Hz 1.8005 W 1.8148 W 1.8193 W 1.8161 W 1.8073 W 1.7941 W
2 Hz 3.6810 W 3.7190 W 3.7369 W 3.7396 W 3.7306 W 3.7307 W

5.3. The Theoretical Model Solves for Random Vibration

In application, the environment often provides random excitation to MMR−EHSAs. A
theoretical model that can solve random excitation is needed, which could help performance
evaluation during the MMR−EHSA design process as a result. Compared to the existing
model [6], the proposed numerical iteration nonlinear dynamics model has advantages
when solving random vibration inputs. Different types of vibration input do not increase the
difficulty of solving the model. This section shows the results of solutions for MMR−EHSAs
subjected to random vibrations that prove the solving ability of the proposed model. The
random vibration input is set as a filtered white noise function:

.
q(t) = −2π f0q(t) + 2π

√
Sq(n0)uω(t) (38)

where q(t) denotes the input displacement; f 0 denotes the lower cut-off frequency (f 0 = 2πn00u);
Sq(n0) denotes the roughness index; u denotes the horizontal movement velocity; and
ω(t) denotes the uniformly distributed white noise with a mean value 0 and intensity of 1.
The parameters are listed in Table 1.

Figure 14a shows the random displacement input and Figure 14b shows the nonlinear
transmission characteristics of the MMR−EHSA. The velocity of gear 1 and gear 2 corre-
sponds to the input displacement. The coupling velocity is the envelope of the gears in
the time domain. It can be seen from the coupling velocity that the shape of the curve is a
sawtooth, and the rising edge and falling edge of the sawtooth are the engagement state and
disengagement state, respectively. The noise is filtered and the large input displacement
signal is saved. This makes energy harvesting more stable. Figure 14c shows the total
force generated by the MMR−EHSA. The total force consists of many significant impulses
and a considerable amount of slight noise. Each large total force impulse corresponds to
the rising edge of coupling velocity. The noise near 0 N is the damping force generated
by the disengagement state, which corresponds to the falling edge of coupling velocity.
Comparing Figure 14c,d, it is found that the appearing moments of pulse peaks are the
same between total force and total force power, while the variation patterns of the pulse
peaks in the time domain vary. The peak variation pattern of the total force power and
output power pulse peaks is related to the variation of coupling velocity. The rising edge
of coupling velocity represents the velocity difference of the generator, which raises the
total force power. Furthermore, the generator’s rotor is linearly related to coupling veloc-
ity, thus generator output power depends on coupling velocity, as shown in Figure 14e.
MMR−EHSAs may be applied for use in relation to automobiles, traffic, and biology.
Mathematical models for the existence of random signals in different domains are known.
Through the random input solution method proposed in this paper, the performance of the
designed MMR−EHSA can be estimated during the design of the MMR−EHSA.
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6. Conclusions

In this paper, a novel nonlinear dynamics model to solve the motion bifurcation thresh-
old of MMR−EHSAs was proposed. The power flow model was established according to
the dynamics model. An MMR−EHSA prototype was fabricated. The performance of the
MMR−EHSA was tested using bench experiments. The theoretical model can effectively
predict the test results. The influence of load resistance on the disengagement duration was
studied under harmonic excitation. The disengagement duration increased from 0.092 s
to 0.23 s under working conditions where the frequency, amplitude, and resistance were
1.0 Hz, 10 mm, and 1–50 Ω, respectively. Damping force power and energy harvesting
power were studied under harmonic excitation. The maximum damping force power
appears in the condition where the positive and negative terminals of the generator are
short-circuited (R ≈ 0 Ω). The optimal energy harvesting power that matches resistance
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will change with frequency and amplitude. The optimal energy harvesting resistance value
can be solved using the power flow model. In addition, the proposed dynamics model has
advantages when solving random vibration input as different types of input do not change
the difficulty of finding solutions.
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