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Proof of Proposition 1. According to the inverse induction method, the optimal decision 

of the EV manufacturer is first found by taking the partial derivatives of 𝑝 , τ in the equation 

(1), respectively. 

∏ = 𝑎 + 𝜏𝑄 − 𝛽𝜏𝑄 + 𝑐 − 2𝑝                                         

(S1) 𝜕∏𝜕τ = ((1 − 𝛽) ∙ 𝑝 − 𝑐 + 𝑝 + 𝑠) ∙ 𝑄 − 2𝑏𝜏 
                              (S2) 

When 4𝑏 − 𝑄 (1 − 𝛽) > 0,the Hessian matrix  −2 (1 − 𝛽) ∙ 𝑄(1 − 𝛽) ∙ 𝑄 −2𝑏  of equation (1) 

with respect to 𝑝  and  τ are negative definite and there exist a unique optimal solution. By 

setting equation (S1) and (S2) to zero. The reaction function of 𝑝  and  τ are obtained by the 

joint solution: 𝑝 = 2𝑏 ∙ (𝑎 + 𝑐 ) + 𝑄 ∙ (1 − 𝛽) ∙ (𝑠 − 𝑐 + 𝑝 )4𝑏 − 𝑄 ∙ (1 − 𝛽)  

                                           (S3) 

𝜏 = 𝑄 ∙ (𝑎 + 2𝑠 − 𝑎 ∙ 𝛽 − (1 + 𝛽)𝑐 + 2 ∙ 𝑝 )4𝑏 − 𝑄 ∙ (1 − 𝛽)  

                                            (S4) 

Substituting the resulting 𝑝  and τ into equation (2) and taking the partial derivative of 𝑝 . 𝜕∏𝜕𝑝 = 𝑄 ∙ (2(𝑓 − 𝑐 ) − 𝑎 ∙ (1 − 𝛽) + (1 + 𝛽) ∙ 𝑐 − 2𝑠 − 4 ∙ 𝑝 )4𝑏 − 𝑄 ∙ (1 − 𝛽)  
 (S5) 

Since ∏ = − ∙( ) < 0, ∏  is concave in 𝑝 . By setting ∏  to zero, then 𝑝  in 

the equilibrium state can be solved jointly. 

𝑝 = 2 ∙ (𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 + 2(1 + 𝛽) ∙ 𝑐 − 2𝑎 ∙ (1 − 𝛽) − 2𝑠4  

   (S6) 

Substituting the optimal 𝑝  into equation (S3) and (S4), the optimal solution of 𝑝  and  τ 

are found as 



𝑝 = 14 ∙ 2 ∙ (𝑎 + 𝑐 ) + 𝑄 ∙ (1 − 𝛽) ∙ 2(𝑓 − 𝑐 ) + 𝑎(1 − 𝛽) − (1 + 𝛽)𝑐 + 2𝑠4𝑏 − 𝑄 (1 − 𝛽)  

                 (S7) 𝜏 = 𝑄2 ∙ (2 ∙ (𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 ) + 2𝑠4𝑏 − 𝑄 ∙ (1 − 𝛽)  

                                          (S8) 

Let 𝜓 = 2(𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 , substituting 𝜓  into equation (S6) -(S8), 
then equation (S6) - (S8) can be simplified as follows: 

⎩⎪⎪⎨
⎪⎪⎧𝑝 = 14 ∙ 2(𝑎 + 𝑐 ) + 𝑄 ∙ (1 − 𝛽) ∙ 𝜓 + 2𝑠4𝑏 − 𝑄 (1 − 𝛽)𝜏 = (𝜓 + 2𝑠) ∙ 𝑄2 ∙ (4𝑏 − 𝑄 (1 − 𝛽) )𝑝 = 𝜓 + 2(1 + 𝛽) ∙ 𝑐 − 2𝑎 ∙ (1 − 𝛽) − 2𝑠4

 

                 

Proof of Proposition 2. Find the partial derivatives of 𝑠  in the equations (7)-(9), 

respectively, = ∙( )∙( ∙( ) )   , = ∙( )    , and = − < 0. Based on 4𝑏 − 𝑄 ∙
(1 − 𝛽) > 0 and 𝛽 < 1, we have   > 0 ,  > 0. 

Proof of Proposition 3. The partial derivatives of 𝛽  in the equations (8) and (9) 

respectively, are obtained as = − ∙ ∙( ) ∙( ) ∙( )∙( )( ∙( ) ) , = . It is 

easy to know > 0. From equation (8), we have 𝜏 = ( )∙∙( ∙( ) ) > 0, then 𝜓 + 2𝑠 > 0; 

based on 4𝑏 − 𝑄 ∙ (1 − 𝛽) > 0, 𝛽 < 1, 𝑘 > 0, we have < 0.The partial derivatives of 𝛽 in 

the equation (7) (10) and (11), are obtained as 

⎩⎪⎪
⎨⎪⎪
⎧𝜕𝑝𝜕𝛽 = − 𝑄 (4𝑏(𝑎(1 − 𝛽) + 𝑓 − 𝛽𝑐 − 𝑐 + 𝑠) + 𝑄 (1 − 𝛽) (𝑓 − 𝑐 − 𝑐 + 𝑠))2(4𝑏 − 𝑄 (1 − 𝛽) )𝜕∏ ∗𝜕𝛽 = − 𝑄 ∙ (𝜓 + 2𝑠) ∙ (2𝑏 ∙ (𝑎 + 𝑐 ) + 𝑄 ∙ (1 − 𝛽) ∙ (𝑓 + 𝑠 − 𝑐 − 𝑐 ))4 ∙ (4𝑏 − 𝑄 ∙ (1 − 𝛽) )𝜕∏ ∗𝜕𝛽 = − 𝑄 ∙ (𝜓 + 2𝑠) ∙ (2𝑏 ∙ (𝑎 + 𝑐 ) + 𝑄 ∙ (1 − 𝛽) ∙ (𝑓 + 𝑠 − 𝑐 − 𝑐 ))2 ∙ (4𝑏 − 𝑄 ∙ (1 − 𝛽) )

 

Where 𝜓 = 2(𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 . By setting  , ∏ ∗
 and ∏ ∗

to zero, 

from equation (8), we have 𝜏 = ( )∙∙( ∙( ) ) > 0 , then  𝜓 + 2𝑠 > 0 . Based on 4𝑏 − 𝑄 ∙
(1 − 𝛽) > 0, 𝛽 < 1, and 𝑘 > 0, when 𝛽 ∈ [0, min(1, Γ , Γ )], we have < 0, ∏ ∗ < 0, and 

∏ ∗ < 0 , where Γ = 1 + 2 ∙  and Γ = ( ) 2𝑏(𝑎 + 𝑐 ) + 𝑄 (𝑓 + 𝑠 − 𝑐 −
𝑐 ) + 2 𝑏 (𝑎 + 𝑐 ) − 𝑏𝑄 (𝑓 + 𝑠 − 𝑐 − 𝑐 ) = 1 + 2 ∙ ∙( ) ∙( ) ∙( )∙( ) . 



Proof of Proposition 4. According to the inverse induction method, the optimal decision 

of the EV manufacturer is first found by taking the partial derivatives of 𝑝  , τ in equation (4), 

respectively. 𝜕∏𝜕𝑝 = 𝑎 + 𝑡 + 𝑄 ∙ (1 − 𝛽)𝜏 + 𝑐 − 2𝑝  

                                      (S9) 𝜕∏𝜕𝜏 = −2𝑏𝜏 + 𝑄 ∙ (𝑘𝑡 − 𝑐 + (1 − 𝛽)𝑝 + 𝑝 ) 

                            (S10) 

When 4𝑏 − 𝑄 (1 − 𝛽) > 0,the Hessian matrix  −2 (1 − 𝛽) ∙ 𝑄(1 − 𝛽) ∙ 𝑄 −2𝑏  of equation (4) 

with respect to 𝑝  and  τ are negative definite and there exist a unique optimal solution. By 

setting equation (S9) and (S10) to zero. The reaction function of 𝑝  and  τ are obtained by the 

joint solution: 𝑝 = − ( ) ( )( )( )                     

    (S11) 𝜏 = 𝑄(𝑎 + 𝑡 + 2𝑘𝑡 − 𝑎𝛽 − 𝑡𝛽 − (1 + 𝛽)𝑐 + 2𝑝 )4𝑏 − 𝑄 (−1 + 𝛽)  

 (S12) 

Substituting the resulting 𝑝  and τ into equation (5) and taking the partial derivative of 𝑝 . 𝜕𝜋𝜕𝑝 = 𝑄 (𝑎 − 2𝑓 + 𝑡 + 2𝑘𝑡 − 𝑎𝛽 − 𝑡𝛽 − (1 + 𝛽)𝑐 + 2𝑐 + 4𝑝 )−4𝑏 + 𝑄 (1 − 𝛽)  

(S13) 

Since ∏ = − ∙( ) < 0, ∏  is concave in 𝑝 . By setting ∏  to zero, then 𝑝  in 

the equilibrium state can be solved jointly. 𝑝 = ( ) ∙( ) ( )∙ ( )∙                           

  (S14) 

Substituting the optimal 𝑝  into equation (S11) and (S12), the optimal solution of 𝑝  and  τ are found as 

𝑝 = 14 ∙ 2 ∙ (𝑎 + 𝑐 + 𝑡) + 𝑄 ∙ (1 − 𝛽) ∙ 2(𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 + (1 − 𝛽 + 2𝑘) ∙ 𝑡4𝑏 − 𝑄 (1 − 𝛽)  

                     (S15) 



𝜏 = 𝑄2 ∙ 2(𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 + (1 − 𝛽 + 2𝑘) ∙ 𝑡4𝑏 − 𝑄 (1 − 𝛽)  

                                         (S16) 

Let 𝜓 = 2(𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 , substituting 𝜓 into equation (S14) -(S16), 
then equation (S14) - (S16) can be simplified as follows: 

⎩⎪⎨
⎪⎧𝑝 = ∙ 2 ∙ (𝑎 + 𝑐 + 𝑡) + 𝑄 ∙ (1 − 𝛽) ∙ ( )∙( )𝜏 = ∙ ( )∙( )𝑝 = ( ) ∙( ) ( )∙                   

Proof of Proposition 5. Find the partial derivatives of 𝑡  in the equations (13)-(15), 

respectively,   = ∙( )∙( )∙( ∙( ) )   ,    = ∙( )∙( ∙( ) )  , = − . Based on 4𝑏 −
𝑄 ∙ (1 − 𝛽) > 0 , 𝛽 < 1, and 𝑘 > 0, we have   > 0,   > 0, < 0. 

Proof of Proposition 6. The partial derivatives of 𝛽 in the equation (13) (16) and (17) 

respectively, are obtained as 

⎩⎪⎪
⎨⎪⎪
⎧𝜕𝑝𝜕𝛽 = − 𝑄 ∙ (4𝑏 ∙ (𝑎(1 − 𝛽) + 𝑓 + 𝑡 + 𝑘 ∙ 𝑡 − 𝛽 ∙ 𝑡 − 𝛽 ∙ 𝑐 − 𝑐 ) + 𝑄 (1 − 𝛽) (𝑓 + 𝑘 ∙ 𝑡 − 𝑐 − 𝑐 ))2 ∙ (4𝑏 − 𝑄 ∙ (1 − 𝛽) )𝜕∏ ∗𝜕𝛽 = − 𝑄 ∙ (𝜓 + (1 − 𝛽 + 2𝑘)) ∙ (2𝑏 ∙ (𝑎 + 𝑐 + 𝑡) + 𝑄 ∙ (1 − 𝛽) ∙ (𝑓 + 𝑘 ∙ 𝑡 − 𝑐 − 𝑐 ))4 ∙ (4𝑏 − 𝑄 ∙ (1 − 𝛽) )𝜕∏ ∗𝜕𝛽 = − 𝑄 ∙ (𝜓 + (1 − 𝛽 + 2𝑘)) ∙ (2𝑏 ∙ (𝑎 + 𝑐 + 𝑡) + 𝑄 ∙ (1 − 𝛽) ∙ (𝑓 + 𝑘 ∙ 𝑡 − 𝑐 − 𝑐 ))4 ∙ (4𝑏 − 𝑄 ∙ (1 − 𝛽) )

 

where 𝜓 = 2(𝑓 − 𝑐 ) + 𝑎 ∙ (1 − 𝛽) − (1 + 𝛽) ∙ 𝑐 . By setting  , ∏ ∗
 and ∏ ∗

 to zero, 

from equation (14), we have 𝜏 = ∙ ( )∙( ) > 0, then 𝜓 + (1 − 𝛽 + 2𝑘) ∙ 𝑡 > 0. Based on 

4𝑏 − 𝑄 ∙ (1 − 𝛽) > 0  , 𝛽 < 1 , and k > 0 ,  when 𝛽 ∈ [0, min (Γ , Γ )] , we have  < 0 , 
∏ ∗ < 0 , and ∏ ∗ < 0 , where Γ = 1 + 2 ∙ ∙   and Γ =

∙( ) ( ∙ ) ( ) ( ∙ )( ∙ ) = 1 + 2 ∙
∙( ) ∙( ) ∙( ∙ )∙( ∙ ) . 

Proof of Proposition 7. From 𝑞 − 𝑞 = ( ( ) ( ( )))( ) , based on 4𝑏 −𝑄 ∙ (1 − 𝛽) > 0  , 𝛽 < 1, and  𝑘 > 0 ,when 0 < 𝑠 < 𝜒1 ∙ 𝑡 , we have 𝑞 < 𝑞 ; when 𝑠 = 𝜒1 ∙𝑡, we have 𝑞 = 𝑞 ; when 𝑠 > 𝜒1 ∙ 𝑡, we have 𝑞 > 𝑞 , where 𝜒 = 𝑘 + 𝑄2∙(3−4𝛽+𝛽2)−8𝑏2𝑄2(1+𝛽)  

Proof of Proposition 8. From  𝜏 − 𝜏 = ∙( ( )∙ )∙( ( ) ) , 𝑝 − 𝑝 = ( )∙ , ∏ ∗ −
∏ ∗ = ∙( ( )∙ )( ( )∙ )∙( ( ) ) , based on 4𝑏 − 𝑄 ∙ (1 − 𝛽) > 0  , 𝛽 < 1 , and  𝑘 > 0 , 



when 0 < 𝑠 < 𝜒2 ∙ 𝑡, we have 𝜏 < 𝜏 ；𝑝 > 𝑝 ; when 𝑠 = 𝜒2 ∙ 𝑡 , we have 𝜏 = 𝜏 ；𝑝 =𝑝 ; when 𝑠 > 𝜒2 ∙ 𝑡 , we have 𝜏 > 𝜏 ；𝑝 < 𝑝 . It follows from equation (14) that 𝜏 = ∙
( )∙( ) > 0, then 𝜓 + (1 − 𝛽 + 2𝑘) ∙ 𝑡 > 0. Thus, we have 2𝑠 + (1 − 𝛽 + 2𝑘) ∙ 𝑡 + 2𝜓 > 0. 

Therefore, when 0 < 𝑠 < 𝜒2 ∙ 𝑡, we have ∏ ∗ < ∏ ∗; when 𝑠 = 𝜒2 ∙ 𝑡, we have ∏ ∗ = ∏ ∗ ; 

when 𝑠 > 𝜒2 ∙ 𝑡, we have ∏ ∗ > ∏ ∗, where 𝜒 = 𝑘 + . 

Proof of Proposition 9. When 𝑠 = 𝑡, we have 𝜏 − 𝜏 = ∙( ( )∙ )∙( ( ) )  . Based on 4𝑏 −
𝑄 ∙ (1 − 𝛽) > 0 , 𝛽 < 1, and 𝑘 > 0, when 𝑘 > ,we have 𝜏 > 𝜏  ; when 𝑘 = , we have 

𝜏 = 𝜏  ; when 0 < 𝑘 < , we have 𝜏 < 𝜏 . 

Proof of Proposition 10. ∏ ∗ − ∏ ∗ =
∙( ∙( ∙( ) ∙( ) )) ∙( )∙( )∙ ∙ ∙( )∙( ∙( ) ) . To simplify the 

equation, let 𝐴 = 4𝑒 + 4𝑒 + 𝜓  and 𝐿 = 16𝑏 + 𝑄 ∙ (4𝑘 ∙ (1 − 𝛽 + 𝑘) − 3 ∙ (1 − 𝛽) )  , based 

on 4𝑏 − 𝑄 ∙ (1 − 𝛽) > 0 , we have 16𝑏 − 3𝑄 ∙ (1 − 𝛽) > 0  , then we have 𝐿 > 0 ; and  ∏ ∗ − ∏ ∗ = ∙ ∙( )∙ ∙ ∙( ))( ∙( ) ) . According to ∏ ∗ − ∏ ∗ =
∙ ∙( )∙ ∙ ( ))∙( ( ) )  , 𝑡  and 𝑡  can be solved as follows: 

⎩⎪⎨
⎪⎧𝑡 = 𝑄 ∙ 𝐴 ∙ (1 + 2𝑘 − 𝛽) − 𝑄 ∙ 𝐴 ∙ (1 + 2𝑘 − 𝛽) − 4 ∙ 𝐿 ∙ 𝑄 ∙ 𝑠 ∙ (𝐴 − 𝑠)𝐿𝑡 = 𝑄 ∙ 𝐴 ∙ (1 + 2𝑘 − 𝛽) + 𝑄 ∙ 𝐴 ∙ (1 + 2𝑘 − 𝛽) − 4 ∙ 𝐿 ∙ 𝑄 ∙ 𝑠 ∙ (𝐴 − 𝑠)𝐿  

Therefore, when 0 < 𝑡 < 𝑡  or 𝑡 > 𝑡 , we have ∏ ∗ > ∏ ∗  ; when 𝑡 < 𝑡 < 𝑡 , we 

have ∏ ∗ < ∏ ∗. 


