Supplementary Materials

Proof of Proposition 1. According to the inverse induction method, the optimal decision
of the EV manufacturer is first found by taking the partial derivatives of p,, T in the equation

(1), respectively.
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When 4b = Q*(1 - §)? > 0,the Hessian matrix | ; _—ﬁz) 0 a __fl)) Q] of equation (1)

with respect top, and Tt are negative definite and there exist a unique optimal solution. By
setting equation (S1) and (52) to zero. The reaction function of p, and Tt are obtained by the

joint solution:
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Substituting the resulting p, and t into equation (2) and taking the partial derivative of

Pr.
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Since :ETTZ = —ﬁ <0, [I? is concave in p,. By setting ZI;: to zero, then p, in

the equilibrium state can be solved jointly.
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Substituting the optimal p, into equation (S3) and (54), the optimal solution of p, and t

are found as
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Let y =2(f —c)+a-(1—B)— (1 +p): ¢, substituting ¢ into equation (S6) -(S8),
then equation (56) - (58) can be simplified as follows:
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Proof of Proposition 2. Find the partial derivatives of s in the equations (7)-(9),
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Proof of Proposition 3. The partial derivatives of £ in the equations (8) and (9)
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easy to know > 0. From equation (8), we have 7" = 027 >0, theny + 2s > 0;
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based on 4b —Q%- (1 —B)?>> 0,6 < 1,k > 0, we have aaLB < 0.The partial derivatives of f in

the equation (7) (10) and (11), are obtained as
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Where Y = 2(f —c;)+a- (1 =) — (1 + ) c,. By setting %8 op and a8 to zero,
from equation (8), we have 1% = —_WH29)Q __ - 0 then Y+ 2s>0. Based on 4b— Q?-
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Proof of Proposition 4. According to the inverse induction method, the optimal decision

of the EV manufacturer is first found by taking the partial derivatives of p, , T in equation (4),

respectively.
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When 4b — Q%(1 — B)? > 0,the Hessian matrix a _—ﬁZ) 0 a _—gl)) 0 of equation (4)

with respect top, and Tt are negative definite and there exist a unique optimal solution. By
setting equation (S9) and (S10) to zero. The reaction function of p, and T are obtained by the

joint solution:
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Substituting the resulting p, and t into equation (5) and taking the partial derivative of
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Since 1 <0, [I? is concave in By settin, ony to zero, then in
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the equilibrium state can be solved jointly.
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Substituting the optimal p, into equation (S11) and (S12), the optimal solution of p,, and
T are found as
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Let ¢ =2(f —c;) +a-(1—p) — (1 +p) - cy, substituting ¥ into equation (514) -(S16),
then equation (514) - (516) can be simplified as follows:
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Proof of Proposition 5. Find the partial derivatives of t in the equations (13)-(15),
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Proof of Proposition 6. The partial derivatives of £ in the equation (13) (16) and (17)

respectively, are obtained as
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where Y =2(f —c,) +a-(1 =) — (1 +B) - c;. By setting %, % and% to zero,
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Proof of Proposition 7. From ¢g® —q

Q*-(1-p)*>0 ,<1,and k> 0,when 0<s <y, t, we have qf <q”; when s =y, -

2,09 2y _
t,we have q® = q°; when s > x, - t, we have q® > q°, where y; = k +%
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Proof of Proposition 8. From 7% —t” = rar—tacgy Propr = I
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when 0 <s <y, t, we have T8 <tP; pf>pP; when s =y, -t , we have 18 =1°; pf =

p?; when s > x, -t , we have % > 1%; pf <pP. It follows from equation (14) that 7° = %

Y+(1-B+2k)t

02 (1_p)? >0, then Y + (1 — B+ 2k)-t > 0. Thus, we have 2s + (1 — B+ 2k) -t + 2y > 0.

Therefore, when 0 < s < x, - t, we have [[}" <[]2"; when s = x, - t, we have [[f" =[]2" ;

when s > x, - t, we have [1R" > [I2°, where y, = k + %

Proof of Proposition 9. When s = t, we have % —7° = @@s—0-F290  Based on 4b —
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Q*-(1-pB)*>>0, f<1,andk >0, when k > 1:ﬁ,wehave ™ > 1P s when k = 1;[’), we have
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Proof of Proposition 10. MR, =T =
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To simplify the
equation, let A =4e,+4e,+¢ and L =16b+Q*  (4k-(1—-B+k)—3-(1—p)%) , based

on 4b—Q%-(1-B)?>0, we have 16b—3Q%-(1—£)2>0 , then we have L>0; and
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,t; and t, can be solved as follows:
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Therefore, when 0 <t <t, or t>t,, we have [IR,,” >I5,, ; when t; <t <t,, we
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have [15,, <Tl9ov -



