
Citation: Zhang, W.; Al Kobaisi, M.

On the Monotonicity and Positivity

of Physics-Informed Neural

Networks for Highly Anisotropic

Diffusion Equations. Energies 2022,

15, 6823. https://doi.org/10.3390/

en15186823

Academic Editor: Vasily

Novozhilov

Received: 27 August 2022

Accepted: 15 September 2022

Published: 18 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

On the Monotonicity and Positivity of Physics-Informed Neural
Networks for Highly Anisotropic Diffusion Equations
Wenjuan Zhang and Mohammed Al Kobaisi *

Department of Petroleum Engineering, Khalifa University of Science and Technology,
Abu Dhabi 127788, United Arab Emirates
* Correspondence: mohammed.alkobaisi@ku.ac.ae

Abstract: Physics-informed neural network (PINN) models are developed in this work for solving
highly anisotropic diffusion equations. Compared to traditional numerical discretization schemes
such as the finite volume method and finite element method, PINN models are meshless and, there-
fore, have the advantage of imposing no constraint on the orientations of the diffusion tensors or the
grid orthogonality conditions. To impose solution positivity, we tested PINN models with positivity-
preserving activation functions for the last layer and found that the accuracy of the corresponding
PINN solutions is quite poor compared to the vanilla PINN model. Therefore, to improve the mono-
tonicity properties of PINN models, we propose a new loss function that incorporates additional
terms which penalize negative solutions, in addition to the usual partial differential equation (PDE)
residuals and boundary mismatch. Various numerical experiments show that the PINN models
can accurately capture the tensorial effect of the diffusion tensor, and the PINN model utilizing the
new loss function can reduce the degree of violations of monotonicity and improve the accuracy of
solutions compared to the vanilla PINN model, while the computational expenses remain comparable.
Moreover, we further developed PINN models that are composed of multiple neural networks to deal
with discontinuous diffusion tensors. Pressure and flux continuity conditions on the discontinuity
line are used to stitch the multiple networks into a single model by adding another loss term in the
loss function. The resulting PINN models were shown to successfully solve the diffusion equation
when the principal directions of the diffusion tensor change abruptly across the discontinuity line.
The results demonstrate that the PINN models represent an attractive option for solving difficult
anisotropic diffusion problems compared to traditional numerical discretization methods.

Keywords: subsurface flow; porous media; permeability anisotropy; diffusion equation; physics
informed neural networks; monotonicity

1. Introduction

Modeling fluid flow in subsurface porous media often requires solving the following
set of partial differential equations (PDE):

∇ · v(x) = q(x),
v(x) = −K(x)∇u(x), x ∈ Ω,

(1)

with appropriate boundary conditions such as:

B(u, x) = 0, x ∈ ∂Ω, (2)

where Ω is the computational domain with boundary ∂Ω; v(x) is the fluid velocity; and
u(x) is the unknown function representing fluid pressure/potential that needs to be solved.
Here, we have assumed the fluid viscosity to be unity. q(x) is the fluid source/sink term.
The diffusion coefficient K is the permeability of the porous media and it is, in general, a
full tensor because of the anisotropic nature of the media, which poses great challenges to

Energies 2022, 15, 6823. https://doi.org/10.3390/en15186823 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15186823
https://doi.org/10.3390/en15186823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-8673-3410
https://doi.org/10.3390/en15186823
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15186823?type=check_update&version=2

Energies 2022, 15, 6823 2 of 18

many numerical methods. Cell-centered finite volume methods are the most widely used
methods in the reservoir simulation community because of their property of being locally
mass conservative. The linear two-point flux approximation (TPFA) method is the default
choice for many commercial and academic reservoir simulators for its simplicity, efficiency
and robustness [1,2], but it is well known to be inconsistent when the principal directions
of the permeability tensor are not aligned with the mesh, and the numerical solution does
not converge to the true solution when the mesh is refined. More specifically, the TPFA
method is only applicable for the so-called K-orthogonal mesh, which can be thought of as
an orthogonal mesh induced by the permeability tensor K. To amend the shortcomings of
the TPFA method, a family of multi-point flux approximation (MPFA) methods have been
proposed in the past two decades that can handle full permeability tensors on general non-
orthogonal meshes [3–6]. However, the MPFA methods suffer from monotonicity issues
and the solutions can contain spurious oscillations when the media is highly anisotropic,
or the mesh has large aspect ratios [7–12]. Specifically, the numerical solution of MPFA
can become negative, which is unphysical. To fulfill the requirements of both consistency
and monotonicity, a class of nonlinear finite volume methods has been developed in
the past decade [13–19]. The nonlinear methods such as the nonlinear two-point flux
approximation (NTPFA) method are designed specifically to preserve the non-negativity
of the numerical solutions. Therefore, the methods are monotone by design. However,
the nonlinear methods lead to a system of nonlinear equations after discretization, even
though the original equation to be solved is linear. Moreover, a nonlinear solver has to be
utilized, which increases the computational expenses. In addition to finite volume methods,
another popular consistent discretization method that is also locally mass conservative
is the mixed finite element (MFE) method [20]. The MFE method treats both the fluid
velocity, v, and fluid pressure/potential, u, as primary unknowns and solves for them
simultaneously. Therefore, the number of unknowns is usually much larger than that
of cell-centered finite volume methods. Similar to the classical finite element method
(FEM), the solution quality of MFE is also closely tied to the quality of the mesh, which
can become a problem for practical reservoir simulations because the simulation grids are
often dictated by the complex geological constraints, and we are not free to choose the
desired meshes for simulation. Moreover, finding suitable basis functions for arbitrary
polyhedral elements is also a challenge. Another family of methods that share certain
similarities to the MFE method but are much more flexible for general polygonal meshes
in 2D and polyhedral meshes in 3D are the mimetic finite difference methods (MFD) [21].
The MFD methods are designed to not only provide consistent discretizations, but also
to mimic the fundamental properties of the differential operators; they are currently used
in a wide range of applications. The unknowns of MFD methods include fluxes across
cell interfaces, fluid pressure/potential at cell centroids and at face centroids. Therefore,
the final discretized system of equations is much larger than that of cell-centered finite
volume methods.

Due to the tremendous advancements in both the hardware and algorithm/software
designs in recent years, machine learning, and deep learning in particular, has made signifi-
cant strides in solving many science and engineering problems. As a result, a growing body
of literature has been devoted to leveraging the power of machine learning for scientific
computing. Traditional machine learning applications require a large amount of labeled
data for training the machine learning model. However, for many complex engineering
problems such as modeling fluid flow in porous media, it is infeasible or computationally
too expensive to obtain the amount of labeled data required for machine learning. To
circumvent this problem, Raissi et al. [22] revisited the idea of approximating the solution
to a partial differential equation by using a deep neural network. By taking advantage
of automatic differentiation, the residual of the partial differential equation evaluated on
a set of internal collocation points, in addition to any mismatch in boundary and initial
conditions, are combined together to form a loss function that is minimized, thus, encoding
the underlying physical laws into the model as prior information. The resulting machine

Energies 2022, 15, 6823 3 of 18

learning model is termed the physics-informed neural network (PINN) in their work.
They demonstrated that the PINN can achieve excellent predictive accuracy for various
computational problems and, thus, has the potential to serve as an alternative to tradi-
tional numerical discretization schemes such as the finite volume, finite element method,
etc. Similar to some meshless methods such as the reproducing kernel particle method
(RKPM) [23], the PINN method does not require the discretization of the computational
domain by a mesh. Unlike the RKPM that approximates the unknown function by a linear
combination of a set of reproducing kernel shape functions, the PINN method utilizes the
neural network to approximate the unknown function by taking advantage of the fact that
the neural networks are universal function approximators [24]. The task of solving a PDE
is transformed into a minimization problem that can be solved effectively by employing
powerful optimization algorithms and advanced computer hardware developed by the
machine learning community. Moreover, PINN can be used to solve the inverse problems
as easily as the forward problem. As a result, the scientific computing community has
shown considerable interest in PINN [25–30], and it was applied to solve a wide variety of
problems [31–34].

Regarding subsurface flow and transport modeling, Fuks and Tchelepi [35] applied
the PINN to solve the standard Buckley–Leverett model governing incompressible and
immiscible two-phase flow in porous media and found that, depending on the shape of the
flux function, the PINN can struggle or even fail to find the correct solution, suggesting
that there is still some way to go before PINN can be reliably used for reservoir simulation,
despite its many successes in diverse fields. In our previous work [36], we investigated
the performance of PINN for solving the anisotropic diffusion equation which governs
incompressible single-phase flow in porous media and found that the PINN enjoys excel-
lent performance for problems with smooth solutions but can struggle for more difficult
problems, especially for highly anisotropic permeability tensors. Therefore, in this work, we
advance our previous work by improving on the PINN model for solving the challenging
anisotropic diffusion equation. Specifically, we focus on the monotonicity requirement for
highly anisotropic full permeability tensors that have beset many discretization schemes,
as mentioned previously. The contributions of this work are mainly twofold: firstly, given
the problem at hand, we embed more physics into the neural network by adding to the loss
function an additional loss term, which accounts for the monotonicity requirements explic-
itly; secondly, the PINN model is improved to deal with discontinuous permeability fields.
The rest of the paper is organized as follows: a brief review of the PINN formulations as
well as different loss functions are given in the next section; the results section presents the
numerical experiments including homogeneous, rotating and discontinuous permeability
tensor fields; and finally, the conclusions are given in Section 4.

2. Methods, Models and Formulations

The details of PINN can be found in the literature, such as [22,30]. For completeness,
we offer a brief review of the PINN model here. We consider a fully connected feed-forward
neural network denoted by û(x; θ) to approximate the solution u(x). The neural network
consists of L layers. The relationship between the input and output of layer l is given by:

xl = hl
(

xl−1
)
= σl

(
W l xl−1 + bl

)
, l = 1, 2, . . . , L, (3)

where xl−1 and xl are the input and output of layer l, respectively; W l is the weighting
matrix and bl is the bias term; σl is the nonlinear activation function of layer l. The input to
the first layer is x0, which is also the input to the whole network and the output of the last
layer L is xL that corresponds to the output of the whole neural network. The activation
function σL for the last layer is often set as the identity mapping. The collection of all the
weighting matrices and bias terms comprise the parameters θ of the neural network. That

is, θ :=
{

W l , bl
}L

l=1
.

Energies 2022, 15, 6823 4 of 18

Since û(x; θ) is unlikely to be the true solution, substituting û(x; θ) into Equation (1)
leads to the following PDE residual:

R(x) = −∇ · (K(x)∇û(x; θ))− q(x), x ∈ Ω. (4)

Similarly, inserting û(x; θ) into the boundary condition (2) leads to a boundary mis-
match. The idea of PINN is to find the best approximation by minimizing the PDE residual
and the boundary mismatch. The PDE residual is calculated on a set of collocation points{

xr
i
}Nr

i=1 that lies in Ω, while the boundary mismatch is calculated on a set of boundary

points
{

xb
i

}Nb

i=1
that lies on ∂Ω, where Nr and Nb denote the number of collocation points

and boundary points, respectively. We will call both the collocation points and the boundary
points our training points. The problem of solving the PDE is then transformed into a mini-
mization problem with the following loss function to be minimized over the parameters θ
of the neural network:

L(θ) = ωrLr(θ) + ωbLb(θ), (5)

where ωr and ωb are the weighting coefficients for the residual and boundary components,
respectively. Lr(θ) and Lb(θ) denote the loss from the PDE residual and the boundary
mismatch, respectively. The mean square error (MSE) is usually used as a criterion to
compute the loss:

Lr(θ) =
1

Nr

Nr
∑

i=1

∣∣R(xr
i
)∣∣2 (6)

Lb(θ) =
1

Nb

Nb
∑

i=1

∣∣∣B(û
(

xb
i ; θ
)

, xb
i

)∣∣∣2 (7)

where Nr and Nb are the number of points internal to the domain Ω and on the boundary
of Ω, respectively, for evaluating the residual and boundary mismatch. The set of training
points xr

i and xb
i are usually sampled randomly in Ω and on ∂Ω, respectively. When

the training of the neural network finishes, all the parameters of the neural network are
determined, and we are left with a continuous nonlinear function (the neural network with
optimized parameters) that can be used to make predictions about the value of the unknown
function at any point in the computational domain by a simple function evaluation.

One practical requirement for the development of any new numerical discretization
scheme is the so-called monotonicity property; that is, the method should preserve the
positivity (or non-negativity) of the differential solution [13,14]. Some commonly used
numerical discretization schemes for solving the anisotropic diffusion equation, such as the
linear muti-point flux approximation method and the mixed finite element method, are
only conditionally monotone. Therefore, their solutions can become negative for highly
anisotropic diffusion tensors. The nonlinear finite volume methods, on the other hand, are
constructed by design to preserve the positivity of the numerical solutions at the expense of
higher computational costs. Compared to those numerical discretization schemes, the high
flexibility of neural networks makes it rather simple to enforce non-negativity requirements
on the solutions. A seemingly straightforward way to achieve this is to use some positivity-
preserving functions as our activation function σL for the last layer of the neural network.
Obvious choices include the Rectified Linear Unit function (ReLU), the Softplus function,
and the Square function (see Figure 1). Interestingly, however, we tested all three activation
functions and found that the accuracy of the corresponding PINN solutions is quite poor
compared to the vanilla PINN model, where the identity mapping is used as the activation
function σL for the last layer (see results in Section 3.1) and the relative L2 errors are almost
two orders of magnitude higher than that of the vanilla PINN solution when the exact
same configurations of neural networks are used. The reasons for this behavior are not yet

Energies 2022, 15, 6823 5 of 18

clear to us. Therefore, to improve the monotonicity properties of the PINN solutions, we
propose the following loss function to enforce solution non-negativity in a soft manner:

L(θ) = ωrLr(θ) + ωbLb(θ) + ωmLm(θ), (8)

where Lr(θ) and Lb(θ) are still given by Equations (6) and (7), respectively. The last term is
added to penalize solutions that are negative, and it is given by:

Lm(θ) =
1

Nr

Nr
∑

i=1
ReLU

(
−û
(

xb
i ; θ
))

, (9)

where ReLU(·) is the ReLU activation function. To distinguish between the PINN model
using the loss function (5) and the PINN model using the loss function (8), we denote them
by PINN-MSE and PINN-Mono hereafter, respectively.

Energies 2022, 15, 6823 5 of 18

schemes, the high flexibility of neural networks makes it rather simple to enforce non-
negativity requirements on the solutions. A seemingly straightforward way to achieve
this is to use some positivity-preserving functions as our activation function 𝜎௅ for the
last layer of the neural network. Obvious choices include the Rectified Linear Unit func-
tion (ReLU), the Softplus function, and the Square function (see Figure 1). Interestingly,
however, we tested all three activation functions and found that the accuracy of the cor-
responding PINN solutions is quite poor compared to the vanilla PINN model, where the
identity mapping is used as the activation function 𝜎௅ for the last layer (see results in
Section 3.1) and the relative 𝐿ଶ errors are almost two orders of magnitude higher than
that of the vanilla PINN solution when the exact same configurations of neural networks
are used. The reasons for this behavior are not yet clear to us. Therefore, to improve the
monotonicity properties of the PINN solutions, we propose the following loss function to
enforce solution non-negativity in a soft manner: ℒ(𝜃) = 𝜔௥ℒ௥(𝜃) + 𝜔௕ℒ௕(𝜃) + 𝜔௠ℒ௠(𝜃), (8)

where ℒ௥(𝜃) and ℒ௕(𝜃) are still given by Equations (6) and (7), respectively. The last
term is added to penalize solutions that are negative, and it is given by: ℒ௠(𝜃) = 1𝑁௥ ෍ 𝑅𝑒𝐿𝑈 ቀ−𝑢ො൫𝐱௜௕; 𝜃൯ቁ ,ேೝ

௜ୀଵ (9)

where 𝑅𝑒𝐿𝑈(⋅) is the ReLU activation function. To distinguish between the PINN model
using the loss function (5) and the PINN model using the loss function (8), we denote them
by PINN-MSE and PINN-Mono hereafter, respectively.

Figure 1. Activation functions preserving solution non-negativity. From left to right: ReLU, Softplus,
and Square functions.

3. Results
This section presents the results of various numerical experiments. The first test case

deals with a constant anisotropic permeability tensor, and a rotating heterogeneous per-
meability tensor is considered in the second case. In case 3, we extend the PINN models
to account for discontinuous permeability fields. The neural network models are imple-
mented in the open-source PyTorch [37] framework. Since the focus of this work is not to
search for the optimal neural network architecture, all the PINN models used in the nu-
merical experiments share the same network structure, a network with five hidden layers
with each hidden layer containing 50 neurons. The input layer contains two neurons, and
the output layer has one neuron. The tanh function is used as the activation function for
all PINN models unless stated otherwise. All the experiments were run on a NVIDIA
Quadro RTX 4000 GPU.

Figure 1. Activation functions preserving solution non-negativity. From left to right: ReLU, Softplus,
and Square functions.

3. Results

This section presents the results of various numerical experiments. The first test
case deals with a constant anisotropic permeability tensor, and a rotating heterogeneous
permeability tensor is considered in the second case. In case 3, we extend the PINN
models to account for discontinuous permeability fields. The neural network models are
implemented in the open-source PyTorch [37] framework. Since the focus of this work is
not to search for the optimal neural network architecture, all the PINN models used in
the numerical experiments share the same network structure, a network with five hidden
layers with each hidden layer containing 50 neurons. The input layer contains two neurons,
and the output layer has one neuron. The tanh function is used as the activation function
for all PINN models unless stated otherwise. All the experiments were run on a NVIDIA
Quadro RTX 4000 GPU.

3.1. Case 1: Constant Permeability Tensor

We first solve the anisotropic diffusion Equation (1) on the unit square domain
Ω = (0, 1)2. The constant anisotropic permeability tensor is given by:

K =

[
cos α − sin α
sinα cosα

][
k1 0
0 k2

][
cos α sin α
− sin α cos α

]
, (10)

where k1 and k2 are the maximum and minimum principal value of the permeability tensor
K, respectively, and α is the rotation angle between the maximum principal direction and
the positive x-axis. The permeability anisotropy ratio is defined as kr =

k1
k2

. Homogeneous
Dirichlet boundary conditions are applied on the boundaries of the domain and a concen-

Energies 2022, 15, 6823 6 of 18

trated source term is placed in the center of the domain to drive the flow. The radial basis
function kernel is used as the source function, and it is given by:

q(x) = 1000 exp
(
− ‖x−xc‖2

2σ2

)
(11)

where x is the position vector of any point belonging to the computational domain Ω, and
xc is the center point of Ω. In our case, xc = (0.5, 0.5). σ is a parameter that controls the
degree of concentration of the source function. A smaller σ means a more concentrated
source function. The following values are used in this test case: k1 = 1, kr = 1000 and
σ = 0.02. To evaluate the accuracy of PINN solutions, we first take α = 0 and solve the
equation numerically on a 256× 256 Cartesian mesh using the linear TPFA method as our
reference solution. The linear TPFA method is the golden standard for reservoir simulation,
and it is well known to be both consistent and convergent for the so-called K-orthogonal
meshes. The left of Figure 2 shows the source term, and the pressure solution using TPFA
is shown on the right. Since the horizontal permeability (k1) is 1000 times larger than the
vertical permeability (k2), the pressure diffusion mostly follows the horizontal direction.

Energies 2022, 15, 6823 6 of 18

3.1. Case 1: Constant Permeability Tensor
We first solve the anisotropic diffusion Equation (1) on the unit square domain Ω =(0,1)ଶ. The constant anisotropic permeability tensor is given by: 𝐊 = ቂcos 𝛼 − sin 𝛼sin α cos α ቃ ൤𝑘ଵ 00 𝑘ଶ൨ ቂ cos 𝛼 sin 𝛼− sin 𝛼 cos 𝛼ቃ , (10)

where 𝑘ଵ and 𝑘ଶ are the maximum and minimum principal value of the permeability
tensor 𝐊, respectively, and 𝛼 is the rotation angle between the maximum principal direc-
tion and the positive 𝑥-axis. The permeability anisotropy ratio is defined as 𝑘௥ = ௞భ௞మ. Ho-
mogeneous Dirichlet boundary conditions are applied on the boundaries of the domain
and a concentrated source term is placed in the center of the domain to drive the flow. The
radial basis function kernel is used as the source function, and it is given by: 𝑞(𝐱) = 1000 exp ቆ− ‖𝐱 − 𝐱௖‖ଶ2𝜎ଶ ቇ (11)

where 𝐱 is the position vector of any point belonging to the computational domain Ω,
and 𝐱௖ is the center point of Ω. In our case, 𝐱௖ = (0.5, 0.5). 𝜎 is a parameter that controls
the degree of concentration of the source function. A smaller 𝜎 means a more concen-
trated source function. The following values are used in this test case: 𝑘ଵ = 1, 𝑘௥ = 1000
and 𝜎 = 0.02. To evaluate the accuracy of PINN solutions, we first take 𝛼 = 0 and solve
the equation numerically on a 256 × 256 Cartesian mesh using the linear TPFA method
as our reference solution. The linear TPFA method is the golden standard for reservoir
simulation, and it is well known to be both consistent and convergent for the so-called K-
orthogonal meshes. The left of Figure 2 shows the source term, and the pressure solution
using TPFA is shown on the right. Since the horizontal permeability (𝑘ଵ) is 1000 times
larger than the vertical permeability (𝑘ଶ), the pressure diffusion mostly follows the hori-
zontal direction.

Figure 2. Source function (left) and pressure solution using TPFA (right) for case 1: 𝜃 = 0.

We then solve the same problem using PINN with different loss functions. The Ham-
mersley distribution is used to generate residual points for the training of PINN, since it
has been demonstrated in the literature that this sampling distribution generally shows
better performance than other distributions such as the random sampling [38,39]. A sam-
ple of residual points generated from the Hammersley distribution is shown in Figure 3.
In our current implementation, 10,000 residual points are used for training and 800
evenly-spaced points are used on the boundary to enforce the boundary conditions. For
the PINN-MSE model, the weighting parameters are given by 𝜔௥ = 𝜔௕ = 1 and for the
PINN-Mono model, the weighting parameters are 𝜔௥ = 𝜔௕ = 1, 𝜔௠ = 10. The left plot of

Figure 2. Source function (left) and pressure solution using TPFA (right) for case 1: θ = 0.

We then solve the same problem using PINN with different loss functions. The
Hammersley distribution is used to generate residual points for the training of PINN, since
it has been demonstrated in the literature that this sampling distribution generally shows
better performance than other distributions such as the random sampling [38,39]. A sample
of residual points generated from the Hammersley distribution is shown in Figure 3. In our
current implementation, 10,000 residual points are used for training and 800 evenly-spaced
points are used on the boundary to enforce the boundary conditions. For the PINN-MSE
model, the weighting parameters are given by ωr = ωb = 1 and for the PINN-Mono model,
the weighting parameters are ωr = ωb = 1, ωm = 10. The left plot of Figure 4 shows
the loss history of PINN solutions with the two different loss functions. We first train
the models using the Adam optimizer for 10,000 epochs and then switch to the L-BFGS
optimizer and continue the training for another 500 iterations. The L-BFGS optimizer is
more expensive than the Adam optimizer for a single iteration, but it converges much
faster, as can be seen clearly in the figure.

Energies 2022, 15, 6823 7 of 18

Energies 2022, 15, 6823 7 of 18

Figure 4 shows the loss history of PINN solutions with the two different loss functions.
We first train the models using the Adam optimizer for 10,000 epochs and then switch to
the L-BFGS optimizer and continue the training for another 500 iterations. The L-BFGS
optimizer is more expensive than the Adam optimizer for a single iteration, but it con-
verges much faster, as can be seen clearly in the figure.

Figure 3. Hammersley distribution of residual points for the PINN model.

Figure 4. Loss history of PINN for case 1. Left: 𝜃 = 0; right: 𝜃 = 𝜋/6.

Figure 5 shows the solutions using the PINN models. The first row corresponds to
the results of the PINN-MSE model and the second row the PINN-Mono model. The first
column shows the pressure prediction, the second column the absolute difference be-
tween PINN and TPFA solutions, and the last column plots the absolute PDE residual
distributions computed at the testing points at the end of training. We can see that, overall,
both PINN models perform quite well compared to the TPFA method, with the PINN-
Mono model being slightly more accurate than the PINN-MSE model. It is interesting to
note that for the two PINN models, the largest PDE residuals are located close to the center
of the computational domain where the absolute error of the solution is located; however,
it is not the largest, suggesting that there is no direct connection between solution accuracy

Figure 3. Hammersley distribution of residual points for the PINN model.

Energies 2022, 15, 6823 7 of 18

Figure 4 shows the loss history of PINN solutions with the two different loss functions.
We first train the models using the Adam optimizer for 10,000 epochs and then switch to
the L-BFGS optimizer and continue the training for another 500 iterations. The L-BFGS
optimizer is more expensive than the Adam optimizer for a single iteration, but it con-
verges much faster, as can be seen clearly in the figure.

Figure 3. Hammersley distribution of residual points for the PINN model.

Figure 4. Loss history of PINN for case 1. Left: 𝜃 = 0; right: 𝜃 = 𝜋/6.

Figure 5 shows the solutions using the PINN models. The first row corresponds to
the results of the PINN-MSE model and the second row the PINN-Mono model. The first
column shows the pressure prediction, the second column the absolute difference be-
tween PINN and TPFA solutions, and the last column plots the absolute PDE residual
distributions computed at the testing points at the end of training. We can see that, overall,
both PINN models perform quite well compared to the TPFA method, with the PINN-
Mono model being slightly more accurate than the PINN-MSE model. It is interesting to
note that for the two PINN models, the largest PDE residuals are located close to the center
of the computational domain where the absolute error of the solution is located; however,
it is not the largest, suggesting that there is no direct connection between solution accuracy

Figure 4. Loss history of PINN for case 1. Left: θ = 0; right: θ = π/6.

Figure 5 shows the solutions using the PINN models. The first row corresponds to
the results of the PINN-MSE model and the second row the PINN-Mono model. The
first column shows the pressure prediction, the second column the absolute difference
between PINN and TPFA solutions, and the last column plots the absolute PDE residual
distributions computed at the testing points at the end of training. We can see that, overall,
both PINN models perform quite well compared to the TPFA method, with the PINN-Mono
model being slightly more accurate than the PINN-MSE model. It is interesting to note
that for the two PINN models, the largest PDE residuals are located close to the center of
the computational domain where the absolute error of the solution is located; however, it
is not the largest, suggesting that there is no direct connection between solution accuracy
distribution and the PDE residual distribution. Table 1 lists the minimum of solution
umin, the maximum of solution, umax and the relative L2 norm of solution errors for the
two PINN models, as well as the training time. The training time can be thought of as the
time spent on approximating the unknown function using neural network models, and it
is mainly affected by the number of residual points used for computing the loss and the

Energies 2022, 15, 6823 8 of 18

number of iterations specified for training. The PINN models cannot guarantee the non-
negativity of the pressure solutions. As expected, adding the monotonicity penalty term
in the loss function can decrease the magnitude of violations of pressure non-negativity.
Moreover, the relative L2 norm of the PINN-Mono solution is also smaller compared to
that of the PINN-MSE model, while the training time is comparable. The results show that
incorporating more physics by adding the monotonicity penalty term in the loss function
is indeed beneficial for the PINN solution with a negligible increase in computational
expenses in terms of training. For comparison, we also show here the solution results of
PINN models using the ReLU, Softplus and Square functions as the activation functions
for the last layer in Figures 6 and 7 and Table 1. The corresponding models are denoted
by PINN-ReLU, PINN-Softplus and PINN-Square, respectively. We can see that although
the three PINN models can preserve solution positivity, their relative L2 error is almost
two orders of magnitude higher than the PINN-MSE and PINN-Mono models with the
exact same configurations. Therefore, we will not use these positivity-preserving PINN
models in the following.

Energies 2022, 15, 6823 8 of 18

distribution and the PDE residual distribution. Table 1 lists the minimum of solution 𝑢min,
the maximum of solution, 𝑢max and the relative 𝐿ଶ norm of solution errors for the two
PINN models, as well as the training time. The training time can be thought of as the time
spent on approximating the unknown function using neural network models, and it is
mainly affected by the number of residual points used for computing the loss and the
number of iterations specified for training. The PINN models cannot guarantee the non-
negativity of the pressure solutions. As expected, adding the monotonicity penalty term
in the loss function can decrease the magnitude of violations of pressure non-negativity.
Moreover, the relative 𝐿ଶ norm of the PINN-Mono solution is also smaller compared to
that of the PINN-MSE model, while the training time is comparable. The results show that
incorporating more physics by adding the monotonicity penalty term in the loss function
is indeed beneficial for the PINN solution with a negligible increase in computational ex-
penses in terms of training. For comparison, we also show here the solution results of
PINN models using the ReLU, Softplus and Square functions as the activation functions
for the last layer in Figures 6 and 7 and Table 1. The corresponding models are denoted
by PINN-ReLU, PINN-Softplus and PINN-Square, respectively. We can see that although
the three PINN models can preserve solution positivity, their relative 𝐿ଶ error is almost
two orders of magnitude higher than the PINN-MSE and PINN-Mono models with the
exact same configurations. Therefore, we will not use these positivity-preserving PINN
models in the following.

Table 1. Summary of computational results for case 1: 𝜃 = 0.

 𝒖min 𝒖max Relative 𝑳𝟐 Training Time
(s)

TPFA 1.5075e-22 1.0457e+01 \ \
PINN-MSE −1.8819e-02 1.0454e+01 4.7659e-03 1051

PINN-Mono −1.4453e-03 1.0449e+01 3.2576e-03 1059
PINN-ReLU 0 9.6432e+00 2.4135e-01 1127

PINN-Softplus 6.5235e-10 1.0820e+01 7.0749e-02 1173
PINN-Square 8.1448e-16 1.1019e+01 1.0677e-01 1164

Figure 5. PINN solutions for case 1: 𝜃 = 0. The first row corresponds to the results of the PINN-
MSE model and the second row the PINN-Mono model.
Figure 5. PINN solutions for case 1: θ = 0. The first row corresponds to the results of the PINN-MSE
model and the second row the PINN-Mono model.

Table 1. Summary of computational results for case 1: θ = 0.

umin umax Relative L2 Training Time (s)

TPFA 1.5075e-22 1.0457e+01 \ \
PINN-MSE −1.8819e-02 1.0454e+01 4.7659e-03 1051

PINN-Mono −1.4453e-03 1.0449e+01 3.2576e-03 1059

PINN-ReLU 0 9.6432e+00 2.4135e-01 1127

PINN-
Softplus 6.5235e-10 1.0820e+01 7.0749e-02 1173

PINN-Square 8.1448e-16 1.1019e+01 1.0677e-01 1164

Energies 2022, 15, 6823 9 of 18Energies 2022, 15, 6823 9 of 18

Figure 6. Loss history of the three PINN models that are positivity-preserving.

Figure 7. Solution results of the three PINN models that are positivity-preserving.

Next, we change the value of 𝛼 from 0 to గ଺. Since the principal directions of the per-
meability tensor are not aligned with the axes, the TPFA method is no longer applicable.
The PINN models, on the other hand, are not restricted since they are meshless. The right
plot of Figure 4 shows the loss history of the two PINN models and the corresponding
solution results are shown in Figure 8. As a comparison, we also include in the figure the
pressure solutions obtained from the MFD method and NTPFA method that were imple-
mented in the open-source MATLAB Reservoir Simulation Toolbox (MRST) [40]. The re-
sults show that both the MFD, NTPFA method and the PINN models can capture the
tensorial effect of the permeability tensor with the pressure solutions dictated by the prin-
cipal directions of the permeability tensor, and the two PINN model solutions are in close
agreement with that of the MFD method, while the solution of the NTPFA method has a
more diffused profile around the source term. Moreover, the minimum and maximum of

Figure 6. Loss history of the three PINN models that are positivity-preserving.

Energies 2022, 15, 6823 9 of 18

Figure 6. Loss history of the three PINN models that are positivity-preserving.

Figure 7. Solution results of the three PINN models that are positivity-preserving.

Next, we change the value of 𝛼 from 0 to గ଺. Since the principal directions of the per-
meability tensor are not aligned with the axes, the TPFA method is no longer applicable.
The PINN models, on the other hand, are not restricted since they are meshless. The right
plot of Figure 4 shows the loss history of the two PINN models and the corresponding
solution results are shown in Figure 8. As a comparison, we also include in the figure the
pressure solutions obtained from the MFD method and NTPFA method that were imple-
mented in the open-source MATLAB Reservoir Simulation Toolbox (MRST) [40]. The re-
sults show that both the MFD, NTPFA method and the PINN models can capture the
tensorial effect of the permeability tensor with the pressure solutions dictated by the prin-
cipal directions of the permeability tensor, and the two PINN model solutions are in close
agreement with that of the MFD method, while the solution of the NTPFA method has a
more diffused profile around the source term. Moreover, the minimum and maximum of

Figure 7. Solution results of the three PINN models that are positivity-preserving.

Next, we change the value of α from 0 to π
6 . Since the principal directions of the

permeability tensor are not aligned with the axes, the TPFA method is no longer applicable.
The PINN models, on the other hand, are not restricted since they are meshless. The right
plot of Figure 4 shows the loss history of the two PINN models and the corresponding
solution results are shown in Figure 8. As a comparison, we also include in the figure
the pressure solutions obtained from the MFD method and NTPFA method that were
implemented in the open-source MATLAB Reservoir Simulation Toolbox (MRST) [40].
The results show that both the MFD, NTPFA method and the PINN models can capture
the tensorial effect of the permeability tensor with the pressure solutions dictated by the
principal directions of the permeability tensor, and the two PINN model solutions are in
close agreement with that of the MFD method, while the solution of the NTPFA method has

Energies 2022, 15, 6823 10 of 18

a more diffused profile around the source term. Moreover, the minimum and maximum of
all the pressure solutions and the training time for the PINN models are listed in Table 2,
and we can see that the maximum values of the MFD and PINN solutions are also very
close and quite far from that of the NPTFA solution, suggesting that the MFD and PINN
solutions may be more reliable compared to the NTFA solution. On the other hand, both the
MFD and PINN solutions violate the solution non-negativity condition and are, therefore,
non-monotone. As expected, the minimum of the PINN-Mono solution is closer to 0 than
that of the PINN-MSE model.

Energies 2022, 15, 6823 10 of 18

all the pressure solutions and the training time for the PINN models are listed in Table 2,
and we can see that the maximum values of the MFD and PINN solutions are also very
close and quite far from that of the NPTFA solution, suggesting that the MFD and PINN
solutions may be more reliable compared to the NTFA solution. On the other hand, both
the MFD and PINN solutions violate the solution non-negativity condition and are, there-
fore, non-monotone. As expected, the minimum of the PINN-Mono solution is closer to 0
than that of the PINN-MSE model.

Figure 8. Results of case 1: θ = ஠଺. The first column shows the solution of MFD and NTPFA. The
second and third columns show the solution and absolute PDE residual of PINN-MSE and PINN-
Mono, respectively.

Table 2. Summary of computational results for case 1: 𝜃 = గ଺.

 𝒖min 𝒖max Training Time (s)
NTPFA 1.4180e-19 9.0828e+00 \

MFD −9.2764e-33 1.1730e+01 \
PINN-MSE −1.2959e-02 1.1768e+01 1059

PINN-Mono −8.6398e-05 1.1770e+01 1063

3.2. Case 2: Rotating Anisotropy Tensor
This second test case is similar to the previous one, except that the permeability ten-

sor is a rotating anisotropic field that is adapted from the benchmark study of discretiza-
tion schemes for anisotropic diffusion problems [41]: 𝐊 = ൤ 𝜀𝑥ଶ + 𝑦ଶ (𝜀 − 1)𝑥𝑦(𝜀 − 1)𝑥𝑦 𝑥ଶ + 𝜀𝑦ଶ ൨ (12)

where 𝜀 is a parameter that controls the strength of the permeability anisotropy. Figure
9 shows an example of the permeability field on an 8 × 8 Cartesian grid where the per-
meability tensor evaluated at the centroid of each cell is represented by an ellipse whose
semi-axes are scaled by the square root of the maximum and minimum principal values,
respectively, and the rotation of the semi-axes follows the corresponding principal direc-
tions of the permeability tensor. The permeability anisotropy ratio 𝑘௥ is a constant and it

Figure 8. Results of case 1: θ = π
6 . The first column shows the solution of MFD and NTPFA.

The second and third columns show the solution and absolute PDE residual of PINN-MSE and
PINN-Mono, respectively.

Table 2. Summary of computational results for case 1: θ = π
6 .

umin umax Training Time (s)

NTPFA 1.4180e-19 9.0828e+00 \
MFD −9.2764e-33 1.1730e+01 \

PINN-MSE −1.2959e-02 1.1768e+01 1059

PINN-Mono −8.6398e-05 1.1770e+01 1063

3.2. Case 2: Rotating Anisotropy Tensor

This second test case is similar to the previous one, except that the permeability tensor
is a rotating anisotropic field that is adapted from the benchmark study of discretization
schemes for anisotropic diffusion problems [41]:

K =

[
εx2 + y2 (ε− 1)xy
(ε− 1)xy x2 + εy2

]
(12)

where ε is a parameter that controls the strength of the permeability anisotropy. Figure 9
shows an example of the permeability field on an 8× 8 Cartesian grid where the permeabil-
ity tensor evaluated at the centroid of each cell is represented by an ellipse whose semi-axes

Energies 2022, 15, 6823 11 of 18

are scaled by the square root of the maximum and minimum principal values, respectively,
and the rotation of the semi-axes follows the corresponding principal directions of the
permeability tensor. The permeability anisotropy ratio kr is a constant and it is related
to the parameter ε by kr =

1
ε . We test two levels of anisotropy by letting the values of kr

be 10 (mild anisotropy) and 1000 (strong anisotropy), respectively. Figure 10 shows the
loss history of the training for the two PINN models, and the corresponding results for
the two levels of permeability anisotropy are shown in Figures 11 and 12, Tables 3 and 4,
respectively. Note that the absolute PDE residuals in Figure 12 are in log-scale. The MFD
and NTPFA methods are still used to solve the diffusion equation on a 256× 256 Cartesian
mesh for the purpose of comparison. Note that the MFD and NTPFA methods require
that the permeability be piece-wise constant. In our implementation, we compute the
permeability tensor for each cell by evaluating Equation (12) at the cell centroid. Therefore,
the variation of the permeability tensor within each cell is ignored. The PINN models,
on the other hand, can handle the permeability variation without any difficulty. For the
sub-case of mild anisotropy (kr = 10), the solutions of the MFD and NTPFA methods
are quite close to that of both PINN models. Mild anisotropy generally poses less of a
challenge to numerical discretization schemes than high anisotropy problems. Therefore,
the numerical solutions are reliable when the anisotropy is not too strong. For the case of
strong anisotropy (kr = 1000), the solutions of the PINN models are again much closer to
the MFD solution than the NTPFA solution. The PINN models cannot enforce absolute
non-negative pressure solutions, but the PINN-Mono model does a better job in reducing
the degree of violations as opposed to the PINN-MSE model, especially for the case of
strong anisotropy.

Energies 2022, 15, 6823 11 of 18

is related to the parameter 𝜀 by 𝑘௥ = ଵఌ. We test two levels of anisotropy by letting the
values of 𝑘௥ be 10 (mild anisotropy) and 1000 (strong anisotropy), respectively. Figure 10
shows the loss history of the training for the two PINN models, and the corresponding
results for the two levels of permeability anisotropy are shown in Figures 11 and 12, Tables
3 and 4, respectively. Note that the absolute PDE residuals in Figure 12 are in log-scale.
The MFD and NTPFA methods are still used to solve the diffusion equation on a 256 × 256 Cartesian mesh for the purpose of comparison. Note that the MFD and NTPFA
methods require that the permeability be piece-wise constant. In our implementation, we
compute the permeability tensor for each cell by evaluating Equation (12) at the cell cen-
troid. Therefore, the variation of the permeability tensor within each cell is ignored. The
PINN models, on the other hand, can handle the permeability variation without any dif-
ficulty. For the sub-case of mild anisotropy (𝑘௥ = 10), the solutions of the MFD and
NTPFA methods are quite close to that of both PINN models. Mild anisotropy generally
poses less of a challenge to numerical discretization schemes than high anisotropy prob-
lems. Therefore, the numerical solutions are reliable when the anisotropy is not too strong.
For the case of strong anisotropy (𝑘௥ = 1000), the solutions of the PINN models are again
much closer to the MFD solution than the NTPFA solution. The PINN models cannot en-
force absolute non-negative pressure solutions, but the PINN-Mono model does a better
job in reducing the degree of violations as opposed to the PINN-MSE model, especially
for the case of strong anisotropy.

Figure 9. Rotating anisotropic permeability tensor field.

Figure 10. Loss history of PINN for case 2. Left: 𝑘௥ = 10; right: 𝑘௥ = 1000.

Figure 9. Rotating anisotropic permeability tensor field.

Energies 2022, 15, 6823 11 of 18

is related to the parameter 𝜀 by 𝑘௥ = ଵఌ. We test two levels of anisotropy by letting the
values of 𝑘௥ be 10 (mild anisotropy) and 1000 (strong anisotropy), respectively. Figure 10
shows the loss history of the training for the two PINN models, and the corresponding
results for the two levels of permeability anisotropy are shown in Figures 11 and 12, Tables
3 and 4, respectively. Note that the absolute PDE residuals in Figure 12 are in log-scale.
The MFD and NTPFA methods are still used to solve the diffusion equation on a 256 × 256 Cartesian mesh for the purpose of comparison. Note that the MFD and NTPFA
methods require that the permeability be piece-wise constant. In our implementation, we
compute the permeability tensor for each cell by evaluating Equation (12) at the cell cen-
troid. Therefore, the variation of the permeability tensor within each cell is ignored. The
PINN models, on the other hand, can handle the permeability variation without any dif-
ficulty. For the sub-case of mild anisotropy (𝑘௥ = 10), the solutions of the MFD and
NTPFA methods are quite close to that of both PINN models. Mild anisotropy generally
poses less of a challenge to numerical discretization schemes than high anisotropy prob-
lems. Therefore, the numerical solutions are reliable when the anisotropy is not too strong.
For the case of strong anisotropy (𝑘௥ = 1000), the solutions of the PINN models are again
much closer to the MFD solution than the NTPFA solution. The PINN models cannot en-
force absolute non-negative pressure solutions, but the PINN-Mono model does a better
job in reducing the degree of violations as opposed to the PINN-MSE model, especially
for the case of strong anisotropy.

Figure 9. Rotating anisotropic permeability tensor field.

Figure 10. Loss history of PINN for case 2. Left: 𝑘௥ = 10; right: 𝑘௥ = 1000. Figure 10. Loss history of PINN for case 2. Left: kr = 10; right: kr = 1000.

Energies 2022, 15, 6823 12 of 18Energies 2022, 15, 6823 12 of 18

Figure 11. Results of case 2: 𝑘௥ = 10.

Figure 12. Results of case 2: 𝑘௥ = 1000. The absolute PDE residuals shown in the second row are in
log-scale.

Figure 11. Results of case 2: kr = 10.

Energies 2022, 15, 6823 12 of 18

Figure 11. Results of case 2: 𝑘௥ = 10.

Figure 12. Results of case 2: 𝑘௥ = 1000. The absolute PDE residuals shown in the second row are in
log-scale.

Figure 12. Results of case 2: kr = 1000. The absolute PDE residuals shown in the second row are
in log-scale.

Energies 2022, 15, 6823 13 of 18

Table 3. Summary of computational results for case 2: kr = 10.

umin umax Training Time (s)

NTPFA 1.1647e-10 6.9191e+00 \
MFD 1.1663e-12 6.9438e+00 \

PINN-MSE −8.7351e-02 6.9560e+00 1075

PINN-Mono −3.6969e-02 6.9587e+00 1090

Table 4. Summary of computational results for case 2: kr = 1000.

umin umax Training Time (s)

NTPFA 1.4398e-23 1.7269e+01 \
MFD −1.1511e-18 2.2738e+01 \

PINN-MSE −3.5002e-02 2.2832e+01 1101

PINN-Mono −6.5714e-03 2.28333e+01 1095

3.3. Case 3: Discontinuous Permeability Tensor

This final test case is adapted from [13] and deals with a discontinuous permeability
field. As depicted in Figure 13, the computational domain Ω is divided into four quadrants.
The permeability tensor of the north-east and south-west quadrants is K1, and the other
two quadrants K2. The principal directions of K1 and K2 are rotated by different angles
α1 and α2, respectively. Therefore, the permeability field is discontinuous across the line
x = 0.5 and y = 0.5. To deal with this discontinuous permeability field, we adopt similar
ideas from [26] and use two different neural networks for the two different permeability
tensors. More specifically, our model consists of two neural networks, the first one covering
the north-east and south-west quadrants and a second one covering the remaining two
quadrants. Pressure and flux continuity conditions on the discontinuity lines are used to
stitch the two distinct neural networks into a single model. More specifically, a loss term
resulting from the pressure and flux continuity conditions is added to the loss function.
The two neural networks are denoted by û1(x; θ1) and û2(x; θ2). The single loss function
for the model then takes the following form:

L(θ) = ωrLr(θ) + ωbLb(θ) + ωdLd(θ) (13)

where the loss terms Lr(θ) and Lb(θ) are calculated in a similar fashion to Equations (6) and (7),
respectively, with the difference being that the residual loss and boundary loss are calcu-
lated using û1(x; θ1) if the training points lie in the north-east and south-west quadrants.
Otherwise, the network û2(x; θ2) is used instead. The last term in the loss function accounts
for the pressure and flux continuity conditions on the permeability discontinuity lines, and
it is given by:

Ld(θ) =
1

Nd


Nd
∑

i=1

∣∣∣û1

(
xd

i ; θ1

)
− û2

(
xd

i ; θ1

)∣∣∣2
+

Nd
∑

i=1

∣∣∣K1∇û1

(
xd

i ; θ1

)
· ni −K2∇û2

(
xd

i ; θ2

)
· ni

∣∣∣2
 (14)

where xd
i is the training point on the discontinuity line and Nd is the total number of these

training points; ni is the normal vector to the discontinuity line at point xd
i . ωd is the

weighting parameter.

Energies 2022, 15, 6823 14 of 18Energies 2022, 15, 6823 14 of 18

Figure 13. Discontinuous permeability field.

Similarly, as before, we impose the monotonicity constraint by adding one additional
loss term: ℒ(𝜃) = 𝜔௥ℒ௥(𝜃) + 𝜔௕ℒ௕(𝜃) + 𝜔ௗℒௗ(𝜃) + 𝜔௠ℒ௠(𝜃) (15)

where the loss term ℒ௠(𝜃) is computed analogous to Equation (9), with the single neural
network replaced by two neural networks. For ease of notation, we again call the PINN
model using loss function (13) PINN-MSE and the model using loss function (15) PINN-
Mono in the following.

A homogeneous Dirichlet boundary condition is applied on the boundary and the
source term is given by Equation (11) with 𝜎 = 0.1. To evaluate the accuracy of our PINN
models, we first set 𝛼ଵ = 0 and 𝛼ଶ = గଶ so that we can solve the problem using the linear
TPFA method on a 256 × 256 Cartesian mesh as our reference solution. Next, we set 𝛼ଵ = గ଺ and 𝛼ଶ = − గ଺ and solve the problem numerically using the MFD and NTPFA
methods for comparison. For the PINN models, we set 𝑁௥ = 10,000, 𝑁௕ = 1000, and 𝑁ௗ = 2000. The residual points follow the Hammersley distribution, while the training
points on the boundary and permeability discontinuity line are evenly spaced. The
weighting parameters in the loss function are set as 𝜔௥ = 𝜔௕ = 1 and 𝜔ௗ = 𝜔௠ = 50. The
PINN models are trained using the Adam optimizer for 10,000 iterations and then trained
using the L-BFGS optimizer for 2500 iterations. The loss history of the two PINN models
is shown in Figure 14 and the corresponding solution results are shown in Figures 15 and
16 and Tables 5 and 6, respectively. Compared to the solution of TPFA, the two PINN
models have similar accuracy in terms of the relative 𝐿ଶ error, although a visual inspec-
tion seem to suggest that the solution of the PINN-Mono model is slightly better than that
of the PINN-MSE model. The minimum values for both PINN model solutions are nega-
tive and violate the monotonicity requirement, with the degree of violations much smaller
in the PINN-Mono model thanks to the penalty term ℒ௠(𝜃) in its loss function. For the
sub-case of the 𝛼ଵ = గ଺ and 𝛼ଶ = − గ଺, solutions of the MFD, the NTPFA methods and the
two PINN models reflect the effect of the rotation of the permeability principal directions.
The major difference in the solutions lies in the center of the domain where the solutions
of the PINN models are higher than that of the MFD and NTPFA methods.

Figure 13. Discontinuous permeability field.

Similarly, as before, we impose the monotonicity constraint by adding one additional
loss term:

L(θ) = ωrLr(θ) + ωbLb(θ) + ωdLd(θ) + ωmLm(θ) (15)

where the loss term Lm(θ) is computed analogous to Equation (9), with the single neural
network replaced by two neural networks. For ease of notation, we again call the PINN
model using loss function (13) PINN-MSE and the model using loss function (15) PINN-
Mono in the following.

A homogeneous Dirichlet boundary condition is applied on the boundary and the
source term is given by Equation (11) with σ = 0.1. To evaluate the accuracy of our PINN
models, we first set α1 = 0 and α2 = π

2 so that we can solve the problem using the linear
TPFA method on a 256× 256 Cartesian mesh as our reference solution. Next, we set α1 = π

6
and α2 = −π

6 and solve the problem numerically using the MFD and NTPFA methods
for comparison. For the PINN models, we set Nr = 10, 000, Nb = 1000, and Nd = 2000.
The residual points follow the Hammersley distribution, while the training points on the
boundary and permeability discontinuity line are evenly spaced. The weighting parameters
in the loss function are set as ωr = ωb = 1 and ωd = ωm = 50. The PINN models are
trained using the Adam optimizer for 10,000 iterations and then trained using the L-
BFGS optimizer for 2500 iterations. The loss history of the two PINN models is shown
in Figure 14 and the corresponding solution results are shown in Figures 15 and 16 and
Tables 5 and 6, respectively. Compared to the solution of TPFA, the two PINN models
have similar accuracy in terms of the relative L2 error, although a visual inspection seem
to suggest that the solution of the PINN-Mono model is slightly better than that of the
PINN-MSE model. The minimum values for both PINN model solutions are negative and
violate the monotonicity requirement, with the degree of violations much smaller in the
PINN-Mono model thanks to the penalty term Lm(θ) in its loss function. For the sub-case
of the α1 = π

6 and α2 = −π
6 , solutions of the MFD, the NTPFA methods and the two PINN

models reflect the effect of the rotation of the permeability principal directions. The major
difference in the solutions lies in the center of the domain where the solutions of the PINN
models are higher than that of the MFD and NTPFA methods.

Energies 2022, 15, 6823 15 of 18
Energies 2022, 15, 6823 15 of 18

Figure 14. Loss history of PINN for case 3.

Figure 15. Results for case 3: 𝛼ଵ = 0, 𝛼ଶ = గଶ.

Figure 16. Results for case 3: 𝛼ଵ = గ଺ , 𝛼ଶ = − గ଺. Absolute PDE residuals in the second row are in log-
scale.

Figure 14. Loss history of PINN for case 3.

Energies 2022, 15, 6823 15 of 18

Figure 14. Loss history of PINN for case 3.

Figure 15. Results for case 3: 𝛼ଵ = 0, 𝛼ଶ = గଶ.

Figure 16. Results for case 3: 𝛼ଵ = గ଺ , 𝛼ଶ = − గ଺. Absolute PDE residuals in the second row are in log-
scale.

Figure 15. Results for case 3: α1 = 0, α2 = π
2 .

Energies 2022, 15, 6823 15 of 18

Figure 14. Loss history of PINN for case 3.

Figure 15. Results for case 3: 𝛼ଵ = 0, 𝛼ଶ = గଶ.

Figure 16. Results for case 3: 𝛼ଵ = గ଺ , 𝛼ଶ = − గ଺. Absolute PDE residuals in the second row are in log-
scale.

Figure 16. Results for case 3: α1 = π
6 , α2 = −π

6 . Absolute PDE residuals in the second row are
in log-scale.

Energies 2022, 15, 6823 16 of 18

Table 5. Summary of computational results for case 3: α1 = 0, α2 = π
2 .

umin umax Relative L2 Training Time (s)

TPFA 5.4846e-5 4.7339e+01 \ \
PINN-MSE −4.5730e0 5.0947e+01 6.1622e-02 7186

PINN-Mono −7.9776e-01 4.9551e+01 6.1676e-02 7535

Table 6. Summary of computational results for case 3: α1 = π
6 , α2 = −π

6 .

umin umax Training Time (s)

NTPFA 1.1138e-07 5.4074e+01 \
MFD 6.7068e-08 5.6624e+01 \

PINN-MSE −2.3159e-01 6.0775e+01 6025

PINN-Mono −9.2147e-02 6.0198e+01 6214

4. Conclusions

Physics-informed neural network models are developed in this work to solve the
highly anisotropic diffusion equation with a focus on improving the monotonicity prop-
erties of the solutions. An additional loss term is included in the loss function to ac-
count for the monotonicity requirement. The results of the numerical experiments show
that the resulting PINN model can reduce the degree of monotonicity violations signif-
icantly. When the mesh is K-orthogonal and the linear TPFA method is applicable, we
can evaluate the accuracy of the PINN solutions against the TPFA solutions. The results
show that the new PINN model has comparable or slightly better accuracy compared to
the vanilla PINN model. The PINN model can accommodate both homogeneous and
heterogeneous permeability tensors, and we further extended the model to account for
permeability discontinuity.

A seemingly obvious option to impose solution monotonicity for the PINN model is
to use some positivity-preserving activation function in the last layer of the neural network.
However, our numerical testing shows that the solution accuracy is rather poor compared
to the PINN models developed in this work. The reason is hitherto unclear to us and
needs further investigation. Our work here is a prelude to a pressing front that we are
actively working on, which is how to develop PINN models for permeability tensors that
are discontinuous cell-wise—that is, the permeability tensor is constant in each cell but
discontinuous across cell interfaces, as is commonly encountered in the geoscience industry.

Author Contributions: Conceptualization, W.Z. and M.A.K.; methodology, W.Z. and M.A.K.; soft-
ware, W.Z.; validation, W.Z.; formal analysis, W.Z. and M.A.K.; investigation, W.Z.; data curation,
W.Z.; writing—original draft preparation, W.Z.; writing—review and editing, W.Z. and M.A.K.;
visualization, W.Z.; supervision, M.A.K. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

v fluid velocity [LT−1]
u fluid pressure/potential [ML−1T−2]
K permeability tensor [L2]
q fluid source/sink [M3T−1]

Energies 2022, 15, 6823 17 of 18

References
1. Aziz, K.; Aziz, K.; Settari, A. Petroleum Reservoir Simulation; Applied Science Publishers: London, UK, 1979.
2. Aarnes, J.E.; Gimse, T.; Lie, K.-A. An Introduction to the Numerics of Flow in Porous Media using Matlab. In Geometric

Modelling, Numerical Simulation, and Optimization: Applied Mathematics at SINTEF; Hasle, G., Lie, K.-A., Quak, E., Eds.; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 265–306.

3. Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T. Discretization on Non-Orthogonal, Quadrilateral Grids for Inhomogeneous,
Anisotropic Media. J. Comput. Phys. 1996, 127, 2–14. [CrossRef]

4. Lee, S.H.; Durlofsky, L.J.; Lough, M.F.; Chen, W.H. Finite Difference Simulation of Geologically Complex Reservoirs with Tensor
Permeabilities. SPE Reserv. Eval. Eng. 1998, 1, 567–574. [CrossRef]

5. Edwards, M.G.; Rogers, C.F. Finite volume discretization with imposed flux continuity for the general tensor pressure equation.
Comput. Geosci. 1998, 2, 259–290. [CrossRef]

6. Aavatsmark, I. An Introduction to Multipoint Flux Approximations for Quadrilateral Grids. Comput. Geosci. 2002, 6, 405–432.
[CrossRef]

7. Nordbotten, J.M.; Aavatsmark, I. Monotonicity conditions for control volume methods on uniform parallelogram grids in
homogeneous media. Comput. Geosci. 2005, 9, 61–72. [CrossRef]

8. Mlacnik, M.J.; Durlofsky, L.J. Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations
with highly anisotropic coefficients. J. Comput. Phys. 2006, 216, 337–361. [CrossRef]

9. Chen, Q.-Y.; Wan, J.; Yang, Y.; Mifflin, R.T. Enriched multi-point flux approximation for general grids. J. Comput. Phys. 2008,
227, 1701–1721. [CrossRef]

10. Edwards, M.G.; Zheng, H. A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support. J.
Comput. Phys. 2008, 227, 9333–9364. [CrossRef]

11. Keilegavlen, E.; Aavatsmark, I. Monotonicity for MPFA methods on triangular grids. Comput. Geosci. 2011, 15, 3–16. [CrossRef]
12. Zhang, W.; Al Kobaisi, M. A simplified enhanced MPFA formulation for the elliptic equation on general grids. Comput. Geosci.

2017, 21, 621–643. [CrossRef]
13. Lipnikov, K.; Shashkov, M.; Svyatskiy, D.; Vassilevski, Y. Monotone finite volume schemes for diffusion equations on unstructured

triangular and shape-regular polygonal meshes. J. Comput. Phys. 2007, 227, 492–512. [CrossRef]
14. Yuan, G.; Sheng, Z. Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 2008,

227, 6288–6312. [CrossRef]
15. Sheng, Z.; Yuan, G. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J.

Comput. Phys. 2011, 230, 2588–2604. [CrossRef]
16. Gao, Z.; Wu, J. A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D

meshes. J. Comput. Phys. 2013, 250, 308–331. [CrossRef]
17. Wu, J.; Gao, Z. Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general

grids. J. Comput. Phys. 2014, 275, 569–588. [CrossRef]
18. Schneider, M.; Flemisch, B.; Helmig, R.; Terekhov, K.; Tchelepi, H. Monotone nonlinear finite-volume method for challenging

grids. Comput. Geosci. 2018, 22, 565–586. [CrossRef]
19. Zhang, W.; Al Kobaisi, M. Cell-Centered Nonlinear Finite-Volume Methods with Improved Robustness. SPE J. 2020, 25, 288–309.

[CrossRef]
20. Brezzi, F.; Fortin, M. Mixed and Hybrid Finite Element Methods; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2012; Volume 15.
21. da Veiga, L.B.; Lipnikov, K.; Manzini, G. The Mimetic Finite Difference method for Elliptic Problems; Springer: Berlin/Heidelberg,

Germany, 2014; Volume 11.
22. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
23. Huang, T.-H.; Wei, H.; Chen, J.-S.; Hillman, M.C. RKPM2D: An open-source implementation of nodally integrated reproducing

kernel particle method for solving partial differential equations. Comput. Part. Mech. 2020, 7, 393–433. [CrossRef]
24. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
25. Yang, Y.; Perdikaris, P. Adversarial uncertainty quantification in physics-informed neural networks. J. Comput. Phys. 2019,

394, 136–152. [CrossRef]
26. Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-

informed neural networks. J. Comput. Phys. 2020, 404, 109136. [CrossRef]
27. Krishnapriyan, A.; Gholami, A.; Zhe, S.; Kirby, R.; Mahoney, M.W. Characterizing possible failure modes in physics-informed

neural networks. Adv. Neural Inf. Processing Syst. 2021, 34, 26548–26560.
28. Wang, S.; Teng, Y.; Perdikaris, P. Understanding and mitigating gradient flow pathologies in physics-informed neural networks.

SIAM J. Sci. Comput. 2021, 43, A3055–A3081. [CrossRef]
29. Yang, L.; Meng, X.; Karniadakis, G.E. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE

problems with noisy data. J. Comput. Phys. 2021, 425, 109913. [CrossRef]

http://doi.org/10.1006/jcph.1996.0154
http://doi.org/10.2118/52637-PA
http://doi.org/10.1023/A:1011510505406
http://doi.org/10.1023/A:1021291114475
http://doi.org/10.1007/s10596-005-5665-2
http://doi.org/10.1016/j.jcp.2005.12.007
http://doi.org/10.1016/j.jcp.2007.09.021
http://doi.org/10.1016/j.jcp.2008.05.028
http://doi.org/10.1007/s10596-010-9191-5
http://doi.org/10.1007/s10596-017-9638-z
http://doi.org/10.1016/j.jcp.2007.08.008
http://doi.org/10.1016/j.jcp.2008.03.007
http://doi.org/10.1016/j.jcp.2010.12.037
http://doi.org/10.1016/j.jcp.2013.05.013
http://doi.org/10.1016/j.jcp.2014.07.011
http://doi.org/10.1007/s10596-017-9710-8
http://doi.org/10.2118/195694-PA
http://doi.org/10.1016/j.jcp.2018.10.045
http://doi.org/10.1007/s40571-019-00272-x
http://doi.org/10.1016/0893-6080(89)90020-8
http://doi.org/10.1016/j.jcp.2019.05.027
http://doi.org/10.1016/j.jcp.2019.109136
http://doi.org/10.1137/20M1318043
http://doi.org/10.1016/j.jcp.2020.109913

Energies 2022, 15, 6823 18 of 18

30. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev.
2021, 63, 208–228. [CrossRef]

31. Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech.
Eng. 2020, 360, 112789. [CrossRef]

32. Misyris, G.S.; Venzke, A.; Chatzivasileiadis, S. Physics-Informed Neural Networks for Power Systems. In Proceedings of the 2020
IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2–6 August 2020; pp. 1–5.

33. Yang, X.; Zafar, S.; Wang, J.-X.; Xiao, H. Predictive large-eddy-simulation wall modeling via physics-informed neural networks.
Phys. Rev. Fluids 2019, 4, 034602. [CrossRef]

34. Chen, Y.; Lu, L.; Karniadakis, G.E.; Dal Negro, L. Physics-informed neural networks for inverse problems in nano-optics and
metamaterials. Opt. Express 2020, 28, 11618–11633. [CrossRef] [PubMed]

35. Fuks, O.; Tchelepi, H.A. Limitations of physics informed machine learning for nonlinear two-phase transport in porous media. J.
Mach. Learn. Modeling Comput. 2020, 1. [CrossRef]

36. Zhang, W.; Diab, W.; Al Kobaisi, M. Physics Informed Neural Networks for Solving Highly Anisotropic Diffusion Equations; European
Association of Geoscientists & Engineers: Houten, The Netherlands, 2022; pp. 1–15. [CrossRef]

37. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. NeurIPS 2019, 32, 8026–8037.

38. Das, S.; Tesfamariam, S. State-of-the-Art Review of Design of Experiments for Physics-Informed Deep Learning. arXiv 2022,
arXiv:2202.06416.

39. Peng, W.; Zhou, W.; Zhang, X.; Yao, W.; Liu, Z. A Residual-based Adaptive Node Generation Method for Physics-Informed
Neural Networks. arXiv 2022, arXiv:2205.01051.

40. Lie, K.-A. An Introduction to Reservoir Simulation Using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation
Toolbox (MRST); Cambridge University Press: Cambridge, UK, 2019. [CrossRef]

41. Herbin, R.; Hubert, F. Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids. In Finite
Volumes for Complex Applications V; Wiley: Hoboken, NJ, USA, 2008.

http://doi.org/10.1137/19M1274067
http://doi.org/10.1016/j.cma.2019.112789
http://doi.org/10.1103/PhysRevFluids.4.034602
http://doi.org/10.1364/OE.384875
http://www.ncbi.nlm.nih.gov/pubmed/32403669
http://doi.org/10.1615/JMachLearnModelComput.2020033905
http://doi.org/10.3997/2214-4609.202244045
http://doi.org/10.1017/9781108591416

	Introduction
	Methods, Models and Formulations
	Results
	Case 1: Constant Permeability Tensor
	Case 2: Rotating Anisotropy Tensor
	Case 3: Discontinuous Permeability Tensor

	Conclusions
	References

