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Abstract: Conveying systems play an essential role in the continuous horizontal transportation
of raw materials in mining sites. Regular inspections of conveyor system structures and their
components, especially idlers, are essential for proper maintenance. Traditional inspection methods
are labor-intensive and hazardous; therefore, robot-based thermography can be considered a quality
assessment tool for the precise detection and localization of overheated idlers in opencast mining sites.
This paper proposes an infrared image processing pipeline for the automatic detection and analysis
of overheated idlers. The proposed image processing pipeline can be used for the identification
of significant temperature anomalies such as hotspots and hot areas in infrared images. For the
identification of such defects in idlers, firstly, the histogram of captured infrared images was analyzed
and improved through the pre-processing stages. Afterward, the location of thermal anomalies
in infrared images was extracted. Finally, for the validation of segmentation results, the shapes
and locations of segmented hot spots were compared with RGB images that were synchronized
by captured infrared images. A quantitative evaluation of the proposed method for the condition
monitoring of belt conveyor idlers in an open-cast mining site shows the applicability of our approach.

Keywords: overheated idlers detection; maintenance; inspection robots; IR images; hot spot detection

1. Introduction

Conveyors have been developed and used as the most common system for conveying
all forms of material in the mining industry. For decades, conveyors have been used for
transporting raw materials due to their efficiency and relatively straightforward design.
Despite the conveyor advantages, there are still significant challenges for conducting
regular inspections to guarantee their operation under harsh environmental conditions in
mines [1–7].

Idlers are important parts of the conveyors that support the belt to carry the material
along its full length [8,9]. Idlers can be damaged by friction, tear, wear, jamming, or seizure.
Faulty idlers can become overheated and cause belt damage; thus, the temperature, noise
emissions, and vibrations of idlers should be constantly monitored through regular inspec-
tions. Idlers are located along the conveyor, and the typical length of conveyors in mining
tunnels could reach a kilometer [10]. Human inspections of idlers by walking along the belt
is time-consuming, costly, and hazardous, as even a small conveyor of 150 m consists of
nearly 450 carrying rollers and 50 return rollers that should be inspected individually [11].

Monitoring the surface temperature of idlers is a key to finding faulty idlers because
the abnormal temperature rise is an important characterization of idler failures on conveyor
systems. The detection of overheated idlers focuses on identifying areas in IR images with
a significantly higher temperature than other elements in a image. However, the automatic
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identification of overheated idlers in IR images is difficult due to the presence of sunlight
reflection or non-informative objects (from the hot idler detection perspective) [12,13].

To summarize, according to the current status of condition monitoring (CM) methods
for conveyor systems, there is a challenging need to minimize the presence of humans by
the automatization of the inspection processes. Direct monitoring methods, such as IR ther-
mography, are capable of detecting and diagnosing defects in idler modules. In this paper,
IR image processing techniques alongside shape detection algorithms are experimentally
assessed for their applicability for CM of idlers. The proposed techniques are applied to IR
images of idler modules captured by a mobile robot during several field IR thermographic
measurements. The direct relation between idlers surface temperature and their health
status in terms of efficiency was the main topic for investigation.

The paper is organized as follows. First, the problem becomes increasingly explored
(as predictive maintenance and inspection robotics are discussed by many authors); thus, a
comprehensive literature review is provided. It has been divided into several paragraphs,
as a few perspectives need to be mentioned. Then, an original procedure for overheated
idler detection is proposed. Next, we describe the experimental trials and data acquired
by the inspection robot in the real environment, and finally, the results of the proposed
methodology applied to real data are presented and discussed.

2. Literature Review
2.1. Application of IR Thermography for Diagnosing Industrial Infrastructures

Critical infrastructures are almost always equipped with many sensors and supervi-
sory systems. However, in some situations, as is considered in this paper, CM systems can
be applied on a limited scale only. Drive units (engine, gearbox, etc.) are usually monitored
by supervisory control and data acquisition (SCADA) [14] but the rest of the conveyors (for
example, a typical conveyor is 1 km length), namely the moving belt, hundreds of rotating
idlers, etc. are difficult to monitor by stationary installations and need to be inspected by
maintenance staff [15]. Unfortunately, the mining environment is very harsh for that reason;
therefore, there is a general tendency to minimize the presence of humans and atomization
of inspection processes by intelligent robots.

IR thermography is categorized as a non-destructive CM technique that can be used
for analyzing the temperature patterns in objects based on utilizing IR radiations that
are emitted from an object surface [16,17]. The simple analysis of IR images can give us
information about the surface temperature of machines, while by further analysis, we can
find possible thermal emission abnormalities. Together with extracted features from IR
images, the degree of deterioration can be evaluated by analyzing the thermodynamics and
physical characteristics of inspected machines [18].

Several types of faults and conditions in rotating machinery such as coupling looseness,
rotor imbalance, misalignment, rolling element bearing damage, and lubricant inadequacy
can be detected in IR images [2,19–21].

It is worth mentioning that while IR imaging applications in the identification of
overheated modules in industrial infrastructures have already been discussed in controlled
laboratory environments, robot-based IR imaging methods for the identification of abnor-
mal temperature in real case experiments so far have been rarely discussed and their results
rarely presented.

In [22], researchers developed a method for the CM of rotating machinery using IR
image processing techniques. The authors discussed the advantages of IR imaging-based
machine health monitoring over vibration-based methods. However, in their proposed
method, they only used IR images as a reference for the identification of faulty modules;
furthermore, they used a stationary IR camera system for conducting their research in
a controlled environment. Similarly, in [23], the authors investigated a fault detection
method using thermography techniques for identifying air leakages in the pipeline in a
laboratory environment.
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In [4,12,15], different methods for CM of conveyor systems in mines are discussed.
In [4], researchers propose a method for analyzing the thermal state of a belt conveyor in
an underground mine. However, the thermal images were captured by a human inspector
on a limited scale. Inspired by the same problem, ref. [15] proposed a fault analysis method
for the identification of faulty idlers in conveyor systems. However, they conducted their
experiments in a controlled environment, and thermal images present a few idlers in high
resolution; furthermore, the authors did not propose a solutions for images with complex
backgrounds that should be considered in real case scenarios.

Particularly, Dabek et al. [12] suggest an automatic robot-based IR imaging method
for the identification of overheated idlers in an open-cast mining site. The authors propose
an efficient diagnostic procedure for the detection of overheated idlers, such as defining
regions of interest (ROIs) on captured images to reduce the redundant data as well as the
color-based segmentation method. For improving the proposed method by Dabek et al.,
firstly, we discuss a new ROI estimation technique for removing the non-ROIs areas.
Furthermore, we propose a histogram-based technique for improving the overall quality of
captured extracted IR frames. Therefore, we could accurately track the location of idlers in
capturing IR and RGB frames and improve the overall accuracy of segmentation results.

Automated Diagnostic Methods

During the measurements, the inspection robot was able to capture the sequence of IR
images without information about the true temperature of the conveyor elements. Due to
the automatic scaling of colors to the temperature range, “hard” thresholding based on the
predefined value of temperature was not possible.

The hotspot areas in grayscaled IR images can be extracted using an automatic thresh-
olding method where the maximum gray pixel value determines the maximum temperature
in the defined region of interest. The problem with general IR image processing pipelines
is they do not provide accurate results in identifying the objects in a complex background,
as IR images tend to be over-segmented. Some examples of IR image segmentation results
using automatic thresholding methods are shown in Figure 1. One can notice that most
of the segmented images tend to be over-segmented in comparison to the ground truth
image, which leads to some parts of the equipment or components to merged with the
background image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. Example results of infrared image segmentation using thresholding method: (a) original
infrared image, (b) ground truth segmentation, (c) Shanbhag [24], (d) Otsu [25], (e) Intermode [26],
(f) Triangle [27], (g) Yen [28], (h) Maximum Entropy [29].

In this paper, our detection strategy was focused on firstly proposing techniques for
improving the general characteristics of extracted IR frames histograms and in the next step
proposing an outlier-based automatic segmentation method together with shape detection
algorithms for the identification of overheated idlers.
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The overall quality of IR images can be improved based on histogram enhancement
techniques. In [30], the authors propose techniques for the enhancement of the subtle
thermal signatures. They suggest noise smoothing by means of, e.g., median or Gaussian
filtering, as the most common preprocessing procedures. The application of both median
and Gaussian filters to IR images with poor or insufficient information about the health
of PV modules is discussed by [31]. The combination of Contrast Limited Adaptive
Histogram Equalization (CLAHE) with Gamma correction can be considered an effective
way for improving the overall quality of digital images [32,33]. In our work, an automatic
gamma correction method together with CLAHE and median filter method has been used
for improving the contrast and reducing the noises in captured IR images.

Due to the nature of IR images which are quite different in comparison to visual
light images, extracting the hot regions within an IR image is a very challenging task [34].
The distribution of pixel intensities in IR images is based on the heat distribution of an
object. Low-intensity contrast and over-centralized intensity distributions in IR images are
important factors that bring some difficulties to automatic segmentation methods.

For addressing the mentioned issues in this paper, we exploit the concept of outliers.
If in a given IR image, any hot element will appear in the distribution of pixels, the right tail
of image histograms related to “hot” colors will be heavier than for “normal temperature”
elements. Our target is to detect really hot elements in the conveyor, i.e., significantly higher
temperatures than other elements in the picture. In this context, refs. [35–39] proposed
IR image histogram analysis techniques for the identification of thermal anomalies in
industrial infrastructures.

3. Automatic Procedure for Detection of Overheated Idlers in IR Images
3.1. General Concept

The aim of this section is to describe the key elements of the methodology. A summa-
rized flowchart of the proposed procedure is presented in Figure 2.

Figure 2. Simplified flowcharts of proposed procedure.

The proposed method started by loading the captured data by the inspection robot. The
captured data during the experiment were download in a local computer and were further
processed offline. Afterward, the total number of captured frames was extracted from
loaded IR and RGB videos. The extracted IR frames were converted into 8-bit grayscaled
images for further analysis. The camera system captured wide-angle videos from the
mining site; therefore, the extracted videos contained many non-informative objects that
were not related to the conveyor system. For reducing the number of non-informative
objects in the captured frames, ROIs were defined on IR and RGB image data sets.

During the measurements, several data acquisition sessions were performed. It is
worthwhile to notice that the environmental conditions are time-varying (even if it is
in a kind of indoor condition). A critical issue is that during the experiment, the true
temperature of the conveyor element automatically adjusts the colors to a given temperature



Energies 2022, 15, 6771 5 of 21

range producing many complicated images. By additionally assuming the linear relation
between the intensity of the brightest pixel (hottest area) to the darkest pixel (coldest area),
we could apply statistical methods to segment overheated idlers from the background in
grayscaled IR images.

To analyze and assess the quality of idlers in conveyor systems with respect to ther-
mal defects, we first detect the overheated idler modules that have significantly higher
temperatures in comparison to other modules. The overheated idlers appeared in the
ROI as areas with an average temperature higher than their surroundings. We follow a
statistical, data-driven approach that consists of the following steps: (1) normalization
(2) correction and refinement, (3) thresholding, (4) canny edge detection implementation,
and finally (5) blob detection algorithm for detecting the overheated idlers. The proposed
pipeline was developed in the Python language using the OpenCV library for computer
vision algorithms.

3.2. IR Image Histogram Analysis

A histogram of IR images acts as a graphical representation of the color or intensity
distribution of pixels. For a gray-level image, the intensity value of pixels refers to discrete
temperature values. The statistical analysis of an IR image histogram is a practical way
of indicating anomalies in temperature patterns in captured scenes. The mean value,
variance, and standard deviation are the statistical-based features that describe the intensity
distribution of pixels in IR images. For a grayscaled IR image, the first-order histogram
probability P(g) is defined as follows [40]:

P(g) =
L(g)

M
(1)

where M is the total number of pixels and L(g) describes the number of gray levels g.
In gray-level images, the total number of the intensity level of pixel L spans into [0, 256].
As the tonal distribution represents the thermal distribution in captured scenes, gray-level
infrared images can be processed based on tonal intensities. The general brightness of
images is defined by the mean value:

ḡ =
L−1

∑
g=0

g · P(g) (2)

Furthermore, the dispersion of a set of data points around their mean value is defined
by variance and is given by the following equation:

σ2
g =

L−1

∑
g=0

(g− ḡ)2 · P(g) (3)

The standard deviation or the square root of the variance has described the spread in
IR image data and can give us information about the contrast of IR images. As temperature
distribution is a key index of possible defects, the standard deviation can be considered as
an important factor for identifying overheated idlers.

3.3. Adaptive Region of Interest Estimation

The original captured videos contain both information on the target and redundant
areas; therefore, it would be an advantage if non-ROI regions can be removed before precise
(final) analysis. This reduction has to be performed in a way such that no idlers data are
lost while the computational burden is reduced. The ROI analysis is defined by a set of
techniques that can be used for selecting areas of an image from which the individual or
average pixel values are extracted for further analysis. The ROI can be defined manually or
by automated methods. The first one is faster but less precise, whereas the second method
is more time-consuming but in general more accurate.
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The purpose of ROI generation is to automatically extract regions of interest (ROI)
from the extracted IR frames that only contain pixels that are related to idlers. During the
examination, for capturing RGB and IR videos, the inspection mobile robot was navigated
through the free spaces between belt conveyors. The camera system’s point of view
(POV) was fixed and pointed toward the belt conveyor. As long as the mobile robot
followed a straight line alongside the conveyor belt, the changes in the camera system POV
were neglectable.

There are many different methods for tracking objects in the sequence of the frame.
Since the camera system POV changes during the inspection were neglectable, we could
accurately estimate the approximate location of the idler in the sequence of extracted
frames, as shown in Figure 3. By the consideration of small changes in the camera system
POV, a rectangular region of the predetermined size, 400 × 600 pixels surrounding the
estimated location of idlers with fixed positions, was defined on extracted IR and RGB
frames. The size of the defined ROI was large enough to only capture the idler, while it
was considerably smaller than the original captured frames; therefore, we could effectively
reduce the computational burden.

Figure 3. Selection of ROI on the captured IR images.

3.4. The Key Frame Extraction Method

Through the conducted experiment, the inspection mobile robot captured continuous
thermal videos from different conveyor systems. Using every individual frame for identi-
fication of the overheated idlers is unnecessary, as many frames are almost repeated in a
certain time interval. Therefore, in our research, we chose a key frame extraction method to
summarize and reduce the size of the extracted IR frames.

Mean Square Error (MSE) is one of the two error metrics which can be used for
calculating the cumulative squared error between the reference image and the target image.
In this paper, the global similarity between each reference and target frame in relation to
their pixel intensities has been measured by the MSE method, where frame fi and fi−1 are
the target and reference frames, and m and n are coordination of each pixel in compared
frames [41].

MSE =
1

MN

M

∑
n=0

N

∑
m=1

[ fi−1(n, m)− fi(n, m)]2 (4)
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For calculating the degree of similarity between each of the two IR frames, firstly,
the reference and target fi and fi−1 are loaded. Afterward, histograms of both frames are
taken, and the mean square difference between two histograms is calculated. Through
the examination, the parameter MSE ≥ 5 turned out to be sufficient and considered as
a threshold for the selection of the keyframes; therefore, when the difference between
compared frames is greater than the threshold, the target frame is declared as the next
keyframe. This process is repeated until there are no frames left for processing.

3.5. Normalization

The constant changes in color scheme adjustments by the camera can only affect the
calibration factor regarding absolute temperature values but not affect the distribution
pattern of the temperature. As long as pixel intensity was predefined by the camera with
respect to the hottest and coldest point in original frames, we need to normalize the intensity
value of a pixel with respect to the brightest and darkest pixel in defined ROIs.

The intensity value of infrared images was normalized to a constant range with
respect to pixel intensity distribution in defined ROI. Normalizing the temperature pattern
allows us to define a set of parameters that works well for analyzing ROIs with varying
temperature ranges. The normalization of ROIs with different seasons can rescale the
radiant temperature to the same level between the hottest and lowest in defined ROIs and
thus reduce the seasonal difference. Accordingly, the extracted ROIs were normalized
using the following equation:

Ni =
TSi − TSmin

TSmax − TSmin
(5)

In Equation (5), Ni is the normalized value of pixel i, where TSi is the intensity value
of pixel i. Furthermore, TSmax and TSmin can be defined as the maximum and minimum
values of pixel intensity in a ROI.

3.6. Correction and Refinement

The automatic thresholding method cannot correctly exclude background regions
from the foreground due to their high variance. Therefore, some data normalization steps
are usually required before thresholding. To avoid the loss of subtleties in the extracted
ROIs, sets of pre-processing techniques were used for improving the general characteristics
of frames. The correction and refinement incorporate CLAHE, and Gamma correction was
followed by median filtering.

3.6.1. CLAHE Method

Histograms in normalized ROIs would be skewed toward the lower end of the
grayscale, and all the image detail can be compressed into the dark end of the IR im-
age histogram. For addressing this issue, histogram-based methods can be used to improve
image quality and adjust the contrast.

Histogram equalization (HE) is a simple method for enhancing the contrast of the
image by spreading out the intensity range of the image or stretching out the most frequent
intensity value of the image. Stretching the intensity values changes the natural brightness
of the input image and introduces some undesirable noises [42]. To improve the HE method,
Adaptive Histogram Equalization (AHE) [43] was proposed. In the AHE method, the input
image is split into smaller images, which are called tiles. The noise, however, often increases
when the histogram slope is steep.

CLAHE is an effective contrast enhancement method that effectively enhances the
contrast of the image. CLAHE is an improved version of the AHE method that works
precisely in the same way, but it clips the histogram at specific values for limiting the
amplification before computing the cumulative distributive function (CDF). This change



Energies 2022, 15, 6771 8 of 21

reduces the noise because clipping prevents a CDF from being steep. The computation of
CLAHE is performed as:

p = (pmax − pmin) ∗ P( f ) + pmin (6)

where p represents the pixel value after applying CLAHE, pmax and pmin represent the
maximum and minimum pixel value of an image, respectively, and P( f ) represents the
cumulative probability distribution function [44].

3.6.2. Gamma Correction

Gamma correction can be used to control the overall brightness of images. It is
responsible for performing a nonlinear calculation of the pixels intensity of the input image
and thereby adjusting the saturation of the image. It is necessary to determine the optimal
gamma value; therefore, it should neither be too minimum nor maximum. For enhancing
the contrast of the ROIs, an adaptive gamma correction (AGC) technique was applied to
the image data set. For having uniform distribution in an image histogram, the optimal
value for gamma factor by consideration of Ī = 0.5(L− 1) as mean intensity can be defined
as follows [45]:

γ =
log
(

Ī
(L−1)

)
log(0.5)

(7)

3.6.3. Median Filtering

In extracted frames where sun reflections were captured on the belt, some unwanted
variations were observed within the ROIs. These variations appear in an area with the
presence of sun reflection on the belt surface in the form of bright spots that can be wrongly
segmented as hot areas. Obviously, it is not possible to exclude them through the ROI
estimation process, as they appear at the center of the camera POV. A possible solution to
this obstacle is to apply median filtering.

The normalized ROIs after double enhancement undergo median filtering to prepare
the images before the thresholding process. The median filter is a nonlinear digital filter-
ing method and is employed to eliminate salt-and-pepper noises in pre-processed ROIs.
The median filter can reduce the noise without diminishing the sharpness of the image.

Figure 4 shows the original ROI (on the left) with the unwanted variations and the
same ROI after being modified through the pre-processing stages (on the right).

3.7. Thresholding

Overheating in idlers can be recognized as a hotspot in certain areas of ROIs. In IR
images with uniform backgrounds, the number of pixels belonging to background or cold
areas is much larger than the number of pixels belonging to foreground or overheated
objects. We know that an overheated idler’s surface always looks relatively brighter than
the background in captured IR images. For distinguishing pixels that are related to the
background (cold pixels) and pixels that are related to the foreground (overheated idlers),
we classify them based on their distance to the mean value. Our automatic segmentation
method worked a base on the outlier detection technique. The main advantage of the
proposed method is that we can accurately detect abnormal pixels that lie far away from
other observation values. Therefore, in ROIs containing a very complex background and
low signal-to-noise ratio (SNR), we can precisely find abnormal pixels and prevent the
results to be over or under-segmented.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Comparison of pre-processed and orginal IR image after modification through pre-
processing stages. (a) Original ROI, (b) Pre-processed ROI, (c) Three-dimensional (3D)-map of
original ROI, (d) Three-dimensional (3D)-map of pre-processed ROI, (e) Histogram of orginal ROI,
(f) Histogram of Pre-processed ROI.

Outlier detection is a problem of finding patterns in data that are not in the range
of normal behavior. In this paper, hot spots in IR images are considered anomalous
patterns and treated as outliers. An outlier will thus indicate a temperature abnormality.
To identify defective idlers, we apply the IQR method to the extracted histogram features
Fi := { f1, f2, . . . , f255}.
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IQR is a technique that helps to find outliers in the data which are continuously dis-
tributed. IQR is the difference between the first quartile and the third quartile: IQR = Q3−Q1
where, Q1 and Q3 can be defined by Equation (8) [46,47].

Q1 = ḡ− 0.675σ;

Q3 = ḡ + 0.675σ
(8)

The following thresholds (referred to as fences) are required to be defined for classify-
ing the outliers in two different classes. The outliers can be defined as values that are either
among inner and outer fences (mild outliers) or beyond outer fences (extreme outliers).
The lower and upper inner fences can be computed as Q1 − 1.5 IQR and Q3 + 1.5 IQR,
while the lower and upper outer fences can be defined as Q1 − 3 IQR and Q3 + 3 IQR,
respectively [48,49].

Let α represent the pre-processed ROI and β represent the extracted binary image from
α and T as the threshold value by the proposed method. Furthermore, W is ROI width
and H is image height. Since this captured IR is a digital image, x and y are indenting the
coordination of pixels.

β(x, y) =

{
1 if α(x, y) > T
0 if α(x, y) ≤ T

∀0 ≤ x < W, 0 ≤ y < H

(9)

Likewise, all the pixel values of pre-processed α are set to 1 when the pixel values are
greater than the computed T. On the other hand, the other pixel values are set to 0 when
they are less than the defined T. In order to obtain object image γ from image α and β,
the following formula is used:

γ(x, y) =

{
α(x, y) if β(x, y) = 1
0 if β(x, y) = 0

∀0 ≤ x < W, 0 ≤ y < H

(10)

After the segmentation process, γ is the thermal image of the inspected equipment
after removing the background.

Through examination, we found out that overheated idlers cannot always be defined
as mild outliers. Accordingly, for increasing the chance of true detection, the value of
extreme outliers is extracted for each frame and considered as an optimal threshold value
for segmenting the overheated idlers Figure 5.

(a) (b) (c)

Figure 5. Comparison of extreme and mild outliers in segmentation of an overheated idlers. (a) Pre-
processed ROI before segmentation, (b) Segmentation results of mild outliers detection, (c) Segmenta-
tion results of extreme otliers detection.
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3.8. Canny Edge Detection Implementation

In the previous section, we could accurately partition the input image into homo-
geneous hotspots and backgrounds using an adaptive thresholding method. The post-
segmentation processing algorithms including canny edge detection and blob detection
are designed to differentiate the hotspots edges from each. Our objective is to extract the
boundary of the segmented hotspots and classify them as separate sources of heat.

The aim of performing edge detection, in general, is to significantly reduce the amount
of data in an image, which will increase the computation speed of the approach while
preserving the structural properties of the image [50–52]. The correctness of detected edges
is an important factor that affects the blob extraction step; therefore, both the edge detection
and blob extraction stages are tightly connected. To find the shape and size of the extracted
hot spots, firstly, we used the canny edge detection method for detecting the boundaries of
the segmented hotspots.

The canny edge detector is the most common method for detecting a wide range of
edges in images. It uses a multi-stage algorithm consisting of five separate steps: smoothing,
gradient finding, non-maximum suppression, double thresholding, and edge tracking by
hysteresis for detecting boundaries in images. It determines the spots in images more
accurately than other operators. It convolves the segmented frames with a Gaussian filter
for reducing the noises and then computes the gradient and gradient direction for each
possible edge. Furthermore, the detected image gradients undergo double thresholding to
remove edge-like noise [53].

3.9. Blob Detection

Now, because all boundaries of the segmented hotspots are detached, they can be
detected and counted using techniques such as blob detection. A blob can be defined as
a region inside the calculated boundaries in which the pixels are considered to be similar
to each other, while they should be different from the surrounding neighborhoods. Blobs
are defined as interest points or interest regions. The interest points are referred to as local
extremes in scale-location spaces, which will indicate circular or square regions.

The blob detection method is commonly used in many applications that are related
to measuring the object’s shape, location, diameter, etc. For providing complementary
information about the number of hot spots which are not obtained from edge detectors, the
blob detection algorithm is applied to the canny edge detection results.

We used a blob detector method based on the Laplacian of the Gaussian (LoG). There-
fore, an image is convolved by a Gaussian kernel. Furthermore, a multi-scale blob detector
with automatic scale selection is then computed using a scale normalized Laplacian opera-
tor (see Figure 6). After labeling circular shapes, we could detect and count the different
overheated elements in ROIs [54,55].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Intermediate and final results of presented overheated idlers module detection approach.
(a) Original IR image, (b) Grayscaled, (c) Normalization, (d) CLAHE, (e) Gamma correction, (f) Me-
dian filter, (g) Thresholding, (h) Canny edge detection, (i) Blob detection algorithm.

3.10. Performance Metrics

Six performance metrics—Sensitivity, Specificity, Precision, Accuracy and Matthew’s
correlation coefficient (MCC)—were used as evaluation metrics where TP, FP, TN, and FN
are true positive, false positive, true negative, and false negative, respectively.

Sensitivity =
(TP)

(TP + FN)
(11)

Specificity =
(TN)

(TN + FP)
(12)

Precision =
(TP)

(TP + FP)
(13)

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
(14)

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

In this paper, true positives refer to the frames where overheated idlers were correctly
segmented. On other hand, false positive represents the number of frames where other
thermal sources were wrongly segmented as overheated idlers. Furthermore, true negative
cases are referred to as the frames where no overheated idler was neither present nor
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detected. In contrast, a false negative can be described as the number of frames where
faulty idlers were not segmented due to the underestimation.

4. Experiments and Data Description

The experiments were carried out by capturing data from a conveyor system located
in an opencast mine close to the bunker where transported material was stored.The mining
site is located in Jaroszów, 50 km to the west from Wrocław. The basis of our measurement
system is a remote-controlled mobile robot with an extensive navigation system figure. The
robot is custom built for the Wrocław University of Science and Technology as a universal
mobile platform for inspections, as shown in Figure 7 with main features explained in
Table 1. During the inspection mission, the robotic platform captured various types of
data, including RGB images, IR images, sound, LiDAR data, etc. The camera system with a
fixed point of view was directed toward the conveyor to better cover the ROI. The main
specifications are mentioned as follows:

Figure 7. View of the robot during inspection.

Table 1. Inspection robot main characteristics.

Locomotion type Wheeled, skid steering
Navigation system Autonomous (Internal computer)

Manual (Pilot using remote computer conection)
Internal software Robot Operating System (ROS)
Power system Internal battery, 24 V
Robot gross weight 65 kg
Maximum payload capacity 75 kg

The analyzed conveyor system in this paper is a mechanical system used for the contin-
uous horizontal transport of raw materials including raw clays, milled clays, and chamotte
from the mine pit to the bunker. The considered conveyor was the last section that ends
the entire series of conveyors. The analyzed section of the conveyor system always runs
without the material, because the material is dumped into appropriate silos just before this
section. The belt itself carries the material, which is important for thermal reasons, but the
idlers do not experience the additional weight of the material.

The investigated conveyor system was several hundred meters long, and it operates
in harsh environmental conditions. The design of the conveyor is classical, as shown in
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Figure 8. The key problem was to identify overheated idlers as a potential source of the fire.
It is worth noting that inspection had not started at the very beginning of the belt conveyor.

Figure 8. A general picture of the raw materials storage with belt conveyor to transport raw materials.

Data Description

Based on the manual analysis of the acquired data (additional information in Table 2),
we have selected several interesting situations that could be problematic during automatic
image analysis. Below, we present some of such “difficult to analyze” pictures. In general,
one may group them into several classes, namely: images without a hot idler, images with a
hot idler, images with sunlight reflection without a hot idler, images with sunlight reflection
with a hot idler, etc., see the examples presented below Figure 9.

Table 2. (a) The camera system parameter, (b) Belt conveyor parameters.

(a)

Parameter Value

Resolution 640 × 480 pixles
Frames per second 25 fps
Observation angle 45◦

Mounting height 100 cm above shelf

(b)

Parameter Value

Conveyor length 150 m
Idler diameter 133 mm
Idler spacing 1.45 m
Belt width 800 mm

Despite the advantage of IR imaging methods, there are still different factors that need
to be considered even when conducting an indoor inspection. Generally, the precision of a
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thermographic measurement is directly related to specific background parameters, i.e., the
environmental conditions, the optical properties of the target material, and the possible
presence of any nearby object. Objects with a high emissivity value such as greasy, black or
reflective objects have quite a high emissivity value, typically as high as 0.97; therefore, they
can strongly reflect the IR radiations [56]. In Figure 10, one can notice that in the raw IR
images, there are many non-informative heating sources that are not related to the conveyor
system: for example, windows or sunlight reflection on the belt (marked by arrows).

(a) (b)

(c) (d)

Figure 9. Four classes of images that were difficult to analyze. (a) Image without hot idler, (b) Image
with hot idler, (c) Image with sunlight reflections, (d) Image with sunlight reflections and a hot idler.

Figure 10. Location of sunlight sources and sun reflections on belt that captured in a raw IR image.
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The experiment was conducted on a sunny day. In a real scenario, it is impossible to
predict what the weather will be like, and since the measurement session was organized in
a real mine ahead of time, there was no way of predicting the weather several weeks ahead.
However, we managed to provide a solution that can be applied in every condition.

Solar radiation can heat the equipment, especially those with high absorption of the
sun’s energy, which can make small thermal differences. In our case (inspecting the idlers),
the solar radiation was mostly blocked by the celling; therefore, their effects on the surface
temperature of idlers were neglectable. However, one can notice that the belt surface
is black, smooth, and shiny, which makes a very probable sunlight reflection problem.
Therefore, the IR camera measured the reflected temperature instead of measuring the
temperature of the belt itself. This will make image processing difficult, and this is the main
reason to limit the analyzed area to conveyor-related only (defining the ROIs).

In Figure 11, one can see another example of hot spots (marked by frames) not related
to idlers. It shows that the application of real industrial data is always difficult due to
unpredictable sources of noise/unwanted components.

As result, the methodology will provide a false detection of sunlight recognized as a
hot area. Examples presented here with a detailed discussion on the detection efficiency and
understanding of the source of the problem are necessary before the automatic processing
of hundreds of images. In the next sections, we will discuss global efficiency with some
indicators of detection quality. Even if there are some problematic examples that are hard
to recognize, other known techniques appear much less efficient. Moreover, the proposed
technique is automatic and provides results in an objective way that is better than the
subjective opinion performed by experts.

Figure 11. Examples of hotspots that are not related to idlers.

5. Results and Data Validation

The performance of the method in the identification of overheated idlers was tested on
image data sets that were captured from a conveyor systems. The inspection robot moved
alongside the conveyor system two times (back and forth) and captured data. Initially,
6275 frames from data set 1 (moving forward) and 6135 frames from data set 2 (moving
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backward) were extracted from captured RGB and IR videos. After applying the keyframe
extraction, we could reduce the data set size up to 40%; therefore, 2470 frames from data
set 1 and 2205 frames from data set 2 were chosen for further analysis. Furthermore, we
compared the performance of the proposed method in identification of overheated idlers
with Maximum entropy, Yen and Minimum method [26].

5.1. Validation of Detection Results Based on Manual Analysis

The test images were hand labeled. The evaluation was performed by comparing the
final segmentation mask through the visual interpretation process. By consideration of
the number of thermal sources that can be detected as an overheated idler alongside the
conveyor, validation of the segmentation results is important, as other thermal sources can
be wrongly segmented as overheated idlers. Therefore, through the validation process,
the shape and location of the segmented hotspots in segmented frames were compared to
RGB images, as shown in Figure 12.

(a) (b) (c)

Figure 12. Fusion of thermal and RGB images for validaiton and localization of detected hotspots.
(a) RGB image, (b) The blob detection, (c) RGB and blob detecion fusion results.

5.2. Results

The specificity and accuracy value for both data sets were about 0.98. The specificity
value indicates the performance of the proposed method regarding identifying true posi-
tives and true negatives, while the accuracy value discussed the proportion of correctly
predicted samples among the total number of the processed samples. The precision value
determines the ratio of correctly predicted positive observations to the total predicted
positive observations, which were above 0.66 for both data sets.

We additionally computed the F1-score for both data sets (see Tables 3 and 4). The F1-
score combines the precision and recall of a classifier into a single metric by taking their
harmonic mean and measure of accuracy incorporating both the precision and recall. It can
be used as a single performance test for positive classifications, which were 0.76 for data
set 1 and 0.78 for data set 2. The F1-score of the proposed method was 80% higher than the
compared methods, which indicates the low performance of other thresholding methods in
the true detection of overheated idlers in the studied data sets.

Table 3. Comparison of the performance factors of the proposed method with other selected methods—
data set 1.

Measures Proposed Method Maximum Entropy Yen Minimum Method

Sensitivity 1 1 1 1
Specificity 0.98 0 0 0
Precision 0.62 0.05 0.03 0.03
Accuracy 0.98 0.05 0.03 0.03
F1-score 0.76 0.1 0.05 0.06
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Table 4. Comparison of the performance factors of proposed method with other selected method—data
set 2.

Measures Proposed Method Maximum Entropy Yen Minimum Method

Sensitivity 0.94 1 1 1
Specificity 0.98 0 0 0
Precision 0.66 0.05 0.05 0.01
Accuracy 0.98 0.05 0.05 0.01
F1-score 0.78 0.1 0.1 0.03

6. Concluding Remarks

Analyzing the intensity distribution of pixels from the acquired IR images by means
of ROI analysis, canny edge detection, blob detection methods and the fusion of segmented
IR and RGB frames showed an evident correlation between abnormalities in pixel intensity
(temperature patterns) and the existence of hotspots on the surface of the faulty idlers.
Furthermore, the proposed diagnostic approach gave promising results, succeeding to
diagnose four out of four defective idlers in the studied conveyor system.

In conclusion, robotic-based IR thermography with the combination of thermal image
processing techniques was proved to be a potential and reliable method for CM and fault
diagnosis of idler modules. The presented approach gave easily interpreted results and
fast detection of faulty idlers, utilizing both qualitative and quantitative data from the
processed thermal images from the two conveyor systems.

The most important limitation of the proposed method is the fact that any specular
object present in the background could cause unwanted gray-level variations that may be
conflicting with the actual variations related to hotspots that may cause false alarms. In or-
der to reduce unwanted gray-level variations, sets of pre-proposing algorithms, including
CLAHE, adaptive gamma correction, and median filter, were applied to ROIs.

In grayscaled IR images, the changes in temperature are indicated with changes in
pixel intensity; therefore, they depict some degree of smoothness during the traversal from
one pixel to another, and there is a lack of sudden and sharp change. Hence, most of the
conventional automatic methods have different performances in the automatic thresholding
of IR images as compared to their performances with other types of images.

There are further limitations referring to emissivity uncertainties, the presence of
sunlight reflection on the belt surface of the conveyor systems, and the presence of other heat
sources in mining sites that have to be always taken into account for field measurements.

Additional investigation in improving the detection results can be completed based
on the definition of adaptive ROI on extracted IR and RGB frames. Through the conducted
examination, we found out that in some cases, as long as the mobile robot was moved
through the harsh surfaces, obstacle avoidance maneuvers and sudden changes in the
robot paths were necessary. The camera system position was fixed during the inspection;
therefore, the camera’s point of view (POV) was changed due to sudden modifications in
the mobile robot path. For addressing sudden changes in camera POV and improving the
detection results, a mapping technique that fuses the camera system with the LiDAR data
for estimating the optimal region of interest on captured videos is of further interest to the
current research team.

Characterizing idler defects, e.g., bearing defects, can be completed based on a micro-
scale analysis combining the current experience with active thermography approaches or
with the fusion of acoustic and thermal imaging approaches for a more accurate CM plan.
In addition, a more thorough understanding of degradation mechanisms and failure modes
in idler modules is critical to improvements in idler design and reliability. Performing
robotic-based IR imaging in large-scale conveyor systems with new fusion techniques can
be considered in future research.
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