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Abstract: With the hot topic of “Carbon Neutrality”, energy efficiency and saving practices such
as reducing fuel consumption, vigorously advocating new energy power and modern rail are now
becoming the main research topics of energy conversion technologies. Supercapacitors, with their
ability of higher power density, fast charging, and instantaneous high current output, have become
an indispensable energy storage element in modern traction systems for modern rail. This proposal
introduced wireless power transfer technologies by using LC series resonant technology for charging
the supercapacitors. To match the voltage and current level of the supercapacitor, a four-switch
buck-boost converter was applied on the secondary side of the load-matching converter. To regulate
the wireless transfer power and charging power of the supercapacitor, the active modulation control
method was introduced on both the primary and secondary sides of the transfer system. On the
primary side, the power is controlled by controlling the current in resonant inductance through
the phase shift control method, while on the secondary side, the charging power is controlled by
regulating the input voltage of the four-switch buck-boost converter followed by inductance current
control. The theoretical analysis under phase shift mode for the primary side and pulse width
modulation for a four-switch buck-boost converter with a supercapacitor load (voltage source) were
proposed in detail, and the state-space model of the load matching converter was established for
controller design to obtain precise voltage and current control. Both open loop and closed loop
simulation models were built in the MATLAB/SIMULINK environment, and simulations were
carried out to evaluate the system characteristics and control efficiency. The experimental platform
was established based on a dsPIC33FJ64GS606 digital controller. Experiments were carried out,
and the results successfully verified the effectiveness of the system.

Keywords: modern rail; supercapacitor; LC series resonant; wireless power transfer; load matching
converter; modulation control

1. Introduction

Compared with traditional rail, modern rail has been introduced in many cities with
the advantages of energy storage, strong adaptability, flexibility, and convenience. Energy
storage equipment determines the endurance mileage of modern rail [1,2]. As the most
widely used energy storage equipment, battery strings are usually heavy and bulky [3].
To reduce these disadvantages and increase the power receiving ability, using a super-
capacitor can be a considerable solution [4]. As the most mature technology of power
supply, supplying power by catenary is widely used in modern trams. However, some
shortcomings such as contact spark, and wear exist in this power supply mode. To address
these issues, the emerging wireless power transfer (WPT) is particularly attractive for
modern rail [5–7].
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A supercapacitor is widely used as a high-power density energy storage device with
the advantages of high current, fast charging and discharging [8], long cycle life [9], high
power density [10], high efficiency [11], and environmental protection [12], so the superca-
pacitors show strong adaptability to the market [13,14]. Supercapacitors have been used as
energy storage devices in many high-power applications, such as DC microgrids [15,16]
and light rail [17,18]. Supercapacitors perform better than traditional batteries in the field of
energy vehicles [19]. Many investigations of supercapacitors have been performed. The dif-
ferent charging strategies for standalone supercapacitors, lithium-ion (Li-ion), and lead-acid
batteries were evaluated [20]. The charge redistribution behavior of supercapacitors was
analyzed by constant power discharge experiments [21]. A simplified circuit model for
supercapacitors based on the voltage-current equation was proposed [22]. In short, al-
though supercapacitors still face some challenges [23], they can be greatly improved in the
future [24,25].

For a wireless power transfer (WPT) system applied in modern rail, efficiency and
power are two significant factors [26,27]. To increase the efficiency of the system, improving
the compensation circuit can achieve optimal control of the equivalent load [28]. To sat-
isfy the requirements of output voltage and current, topology and control strategies are
proposed to achieve constant current and voltage [29].

This paper introduces WPT technology into a supercapacitor charging system and
proposes an LC resonant WPT system with a modulation control method for superca-
pacitor charging. An LC series resonant coupling network is applied for power transfer,
and a four-switch buck-boost converter is introduced to match the voltage level of the
supercapacitor while charging and controlling the charging power. The transfer power is
adjusted through both the primary coil RMS current control method and the secondary
side voltage-current double-loop control method. The rest of this manuscript is arranged
as follows: The structure and topology of the proposed system are introduced in detail
in Section 2. Section 3 provides the control system design for primary coil RMS current
control and secondary voltage-current control. The simulation and experimental results
are presented in Section 4 and Section 5, respectively. The results are compared between
simulations and experiments to verify the system characteristics and evaluate the control
efficiency. Finally, brief conclusions are made in Section 6.

2. Configuration of the Proposed WPT Charging System

Figure 1 shows the system structure of the proposed wireless power charging system,
which mainly consists of six main parts: a DC grid (power source), a high-frequency
DC/AC inverter, a resonant coupling tank, a full-bridge AC/DC rectifier, a DC/DC power
regulator unit, and supercapacitor (system load). The detailed system topology is presented
in Figure 2.
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As shown in Figure 2, the system can be divided into a primary side and secondary
side. On the primary side, the DC grid is simulated by a DC voltage source as the input
power of the system, and a full bridge inverter driven by high-frequency PWM transforms
the DC voltage to high-frequency AC to supply the LC series resonant coupling tank for
power transfer. On the secondary side, the same LC series resonant tank is applied to
receive the power transferred from the primary side, and a full bridge rectifier is introduced
to convert the received AC voltage to DC voltage. To match the voltage level and control the
charging power of the supercapacitor, a DC/DC converter in the form of a four-switch buck-
boost converter is applied as a load-matching converter. In this topology, M represents the
mutual inductance between the primary and secondary coils. The primary and secondary
coil inductances are represented by Lp and Ls, respectively. The resonant capacitors of the
primary and secondary coils are expressed by Cp and Cs, respectively.

In this proposal, the modulation control method has been introduced on both the
primary side and secondary side. The phase shift control method is applied on the primary
side to control the RMS value of the current in Lp, while on the secondary side, the four-
switch buck-boost input voltage and inductance current controls are used to control the
transfer power.

2.1. Coupling Tank Analysis

For wireless power transfer, the power is transferred from the primary side to the
secondary side through inductance coupling, thus the coupling tank plays a significant
role in the proposed system. Figure 3 presents the T-type equivalent circuit of the LC
resonant coupling tank, where Lp and Cp indicate the primary resonant inductance and
capacitor, respectively. Ls and Cs indicate the secondary resonant inductance and capacitor,
respectively. Up is the voltage on the resonant tank, Us is the output voltage on load RL,
and Ip and Is represent the input current and output current, respectively. M is the magnetic
inductance between the primary coil and the secondary coil.

Energies 2022, 15, x FOR PEER REVIEW 4 of 20 
 

 

and Ip and Is represent the input current and output current, respectively. M is the mag-
netic inductance between the primary coil and the secondary coil. 

 
Figure 3. T-type equivalent circuit of LC series resonant coupling tank. 

Due to the system working under a resonant state, the energy transfer efficiency (η) 
can be calculated as Equation (1), where ωr is the angular speed of the current. 

( )

2

2 2 2

2 2

( )
1

s L L

p s Lp p s s s L
L s

r

I R R
R R RI R I R I R

R R
M

η

ω

= =
++ +  

+ + 
 

 
(1)

The relationship between Ip and Is is determined by the switching frequency, which 
should satisfy Equation (2), then Ip and Is will have the relationship shown in Equation (3). 

( )
2

p L sR R R
Mf +

>  (2)

0

p s L

s

I R R
I Mω

+
=  (3)

Due to the small internal resistance of the primary coil and secondary coil, the maxi-
mum energy transfer efficiency (ηmax) can be approximated as Equation (4). 

max
L

s L

R
R R

η =
+

 (4) 

We can conclude that the maximum transfer efficiency is almost 1 and cannot be eas-
ily affected by the load RL. 

2.2. Coil Current Constant Characteristics 
The proposed WPT system uses a series resonant coupling structure for power trans-

fer, and the current in the coils may have constant characteristics when controlling the 
input voltage of the four-switch buck-boost conversion constant. The equivalent circuit 
with a full bridge rectifier and controlled voltage Vin is shown in Figure 4. Lp and Cp indi-
cate the primary resonant inductance and capacitor, respectively. Ls and Cs indicate the 
secondary resonant inductance and capacitor, respectively. up(t) is the voltage on the res-
onant tank, us(t) is the input voltage of the rectifier, and ip(t), is(t) represent the input cur-
rent and output current, respectively. M is the magnetic inductance between the primary 
coil and the secondary coil. RL represents the equivalent load. 

Figure 3. T-type equivalent circuit of LC series resonant coupling tank.



Energies 2022, 15, 6739 4 of 19

Due to the system working under a resonant state, the energy transfer efficiency (η)
can be calculated as Equation (1), where ωr is the angular speed of the current.

η =
I2
s RL

I2
pRp + I2

s Rs + I2
s RL

=
RL

(RL + Rs)
(

1 + Rp(Rs+RL)

ω2
r M2

) (1)

The relationship between Ip and Is is determined by the switching frequency, which
should satisfy Equation (2), then Ip and Is will have the relationship shown in Equation (3).

f >
Rp(RL + Rs)

M2 (2)

Ip

Is
=

Rs + RL
ω0M

(3)

Due to the small internal resistance of the primary coil and secondary coil, the maxi-
mum energy transfer efficiency (ηmax) can be approximated as Equation (4).

ηmax =
RL

Rs + RL
(4)

We can conclude that the maximum transfer efficiency is almost 1 and cannot be easily
affected by the load RL.

2.2. Coil Current Constant Characteristics

The proposed WPT system uses a series resonant coupling structure for power transfer,
and the current in the coils may have constant characteristics when controlling the input
voltage of the four-switch buck-boost conversion constant. The equivalent circuit with a
full bridge rectifier and controlled voltage Vin is shown in Figure 4. Lp and Cp indicate the
primary resonant inductance and capacitor, respectively. Ls and Cs indicate the secondary
resonant inductance and capacitor, respectively. up(t) is the voltage on the resonant tank,
us(t) is the input voltage of the rectifier, and ip(t), is(t) represent the input current and
output current, respectively. M is the magnetic inductance between the primary coil and
the secondary coil. RL represents the equivalent load.
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Assuming that the coefficiency between Lp and Ls is k, the DC input voltage is E,
the system frequency equals the resonant frequency ω0, the resonant frequency can be
obtained as the equation: ω0 = 2π

√
LpLs. The magnetic inductance between the primary

coil and secondary coil can be expressed as Equation (5). K is the coupling factor in the
equation.

M = K
√

LpLs (5)
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According to the calculation principle of the full-bridge inverter and rectifier, the volt-
ages up(t) and us(t) can be obtained as Equations (6) and (7), respectively.

up(t) =
4E
π

sin(ω0t) (6)

us(t) =
4Vin

π
sin
(

ω0t +
π

2

)
(7)

Additionally, the voltage can be calculated by Kirchhoff’s law, as Equations (8) and (9).

ip(t)
(

jω0Lp +
1

jω0Cp
+ Rp

)
− jω0Mis(t) = up(t) (8)

i2(t)
(

jω0L2 +
1

jω0C2
+ R2

)
− jω0Mi1(t) = u2(t) (9)

Due to the system working under a resonant state, the inductor resistance Rp and Rs
can be ignored; thus, based on the resonant theory, Equation (10) can be obtained.

jω0Lp +
1

jω0Cp
= jω0Ls +

1
jω0Cs

= 0 (10)

Substituting Equation (10) into Equations (8) and (9), Equations (11) and (12) can be
expressed.

jω0Mis(t) = −up(t) (11)

jω0Mip(t) = −4Vin
π

sin
(

ω0t +
π

2

)
(12)

By simplifying the above equations, the time domain current in the primary coil and
secondary coil can be concluded as Equations (13) and (14), respectively.

is(t) = −
up(t)
jω0M

(13)

ip(t) =
4Vin

π jω0M
sin
(

ω0t +
π

2

)
(14)

From the above analysis, it can be concluded that: (1) the primary coil current is only
influenced by the controlled input voltage of the four-switch buck-boost converter Vin;
once Vin is controlled, the current will be determined; (2) the secondary coil current is only
determined by the input voltage of the inverter (power supply voltage), independent of
the load.

3. Control System Design

The control strategies of the proposed system can be divided into two parts: (a) primary
coil RMS current control; and (b) secondary power adjustment control. The primary coil
RMS current control uses a phase-shift control method to limit the maximum transfer power
of the coupling tank, while the secondary power adjustment control applies four-switch
buck-boost input voltage control followed by an inductance current control loop to regulate
the charging power of the supercapacitor.

3.1. Primary Coil RMS Current Control

On the primary side, the switching frequency of the inverter is set to be the resonant
frequency; thus, to limit the maximum transfer power and the power capability of the
primary side, the primary coil RMS current control through the phase-shift method needs
to be applied. The diagram of the primary coil RMS current control is shown in Figure 5,
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where a conventional PI controller is applied to control the coil current by adjusting the
phase angle θ of the inverter driving signal.
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Ci1(s) is the conventional PI controller, which generates the phase shift angle for
the PWM generator to drive the power stage full-bridge inverter, and H(s) is the feed-
back current transfer function, which is combined by the RMS current sensor with a low
pass filter.

3.2. Secondary Side Power Regulation Control

In this system, a four-switch buck-boost is proposed for dedicated and real-time
management of the supercapacitor due to the voltage and current undergoing swings
during the charging process. For instance, if a supercapacitor is out of power, its voltage is
zero, and then the charging current should be the maximum limit to ensure quick charging.
During the charging process, the voltage of the supercapacitor rises, and the current should
be minimized to guarantee the trickle charging stage.

The block diagram of secondary power regulation control is presented in Figure 6,
and a double loop with an overcharging protection control diagram is proposed. The volt-
age control loop is an outer loop that is applied to control the input voltage of the four-
switch buck-boost load matching converter and generate the inductance current reference
value for the inner current loop. The protection loop prevents the supercapacitor from
overcharging.
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Figure 6. Block diagram of the closed-loop controller.

From the above diagram, Cvin(s) is the voltage loop controller, while Ci(s) is the
inner current loop controller. Both controllers are conventional PI controllers, formed as
Equation (16).

C(s) = Kp +
Ki
s

(15)

Cvo(s) is the overcharge protection controller, which will work only when the voltage
of the supercapacitor is higher than reference Voref, then the duty of PWM will be limited
by d2, otherwise, the PWM duty is controlled by d1. Gvod(s) is the transfer function between
the output voltage of the four-switch buck-boost converter and PWM duty, while Gvind(s)
indicates the relationship between the output voltage and input voltage of the converter,
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and Gid(s) represents the transfer function between the inductance current and PWM duty.
Through the small-signal modeling method, the transfer functions can be obtained as
Equations (16)–(18), respectively.

Gvod(s) =
ũout(s)

d̃(s)
=

Uin − L·IL·s
L·C·s2 + L

R ·s + (1 − D)2 (16)

Gid(s) =
ĩL(s)
d̃(s)

=

C·Uin
1−D · s + 1

R(1−D)
· Uin + (1 − D) · IL

L · C · s2 + L
R · s − (1 − D)2 (17)

Gvoind(s) =
Gvind(s)
Gvoutd(s)

=

ũin(s)
d̃(s)

ũout(s)
d̃(s)

=
IL·L·s − Uin

D − D2 ·
L·C·s2 + L

R ·s + (1 − D)2

Uin − L·IL·s
(18)

4. System Simulation Results

To verify with theoretical analysis of the designed WTP charging system, the simula-
tion model was built up in the MATLAB/SIMULINK environment. The system simulations
included two phases. Phase 1 was an open-loop system characteristics scan simulation.
Phase 2 was closed-loop simulation to verify the effectiveness of the control system. The sim-
ulation model is shown in Figure 7, and Table 1 presents the simulation parameters.
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Table 1. The simulation parameters.

Parameters Value

Input supply voltage Vin 72 V
Inverter switching frequency fs 85 kHz

Load matching converter switching frequency
fdc

40 kHz

Inductance L 220 µH
Primary resonant inductance Lp 500 µH

Primary capacitor Cp 32 nF
Secondary inductance Ls 100 µH
Secondary capacitor Cs 4 µF
Resonant frequency fr 85 kHz
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4.1. Open-Loop System Simulation Results

Open-loop stimulation was focused on the relationship between the primary coil
RMS current and phase angle of inverter driving signals, also with a constant four-switch
buck-boost input voltage scan. The simulation results are shown in Figure 8.
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From the simulation results, it can be concluded that the RMS current in the primary
coil decreases while the phase angle increases from 0 to 180 degrees, and in direct proportion
to the phase angle θ from 180 to 360 degrees.

In addition, the input voltage of the four-switch buck-boost converter has a weak
inverse influence on the RMS current.

4.2. Closed-Loop Simulation Results

The closed-loop simulation was carried out to evaluate the efficiency of the designed
control system, which also included two phases. Phase 1 was a constant RMS coil control
on the primary side, while Phase 2 was input voltage and inductance current control of the
four-switch buck-boost converter on the secondary side.

Figure 9 shows the simulation results of Phase 1. In this simulation, the RMS current
reference was 1.4 A, and the controller parameters were Kp = 0.7 and KI = 400. As shown in
the results, the system was working under resonant conditions, and the RMS coil current
was successfully controlled.

For the secondary closed-loop simulation, the initial voltage of the supercapacitor
group was 20 V, and the capacitance of the supercapacitor was 1 F. The input voltage
reference was set as 40 V. The results are shown in Figure 10, and the input voltage and
inductance current were precisely controlled.
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5. Supercapacitor Wireless Charging Experiment

Based on the above theoretical analysis and simulation verification, the experimental
platform was constructed as shown in Figure 11 and used a dsPIC33FJ64GS606 digital
controller for power stage control. The supercapacitor was combined with two sets of
25 V/15 F with a 72 V DC power generator as the input source. The parameters of the
established experimental platform are shown in Table 2.
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Table 2. The environment parameters.

Components Pattern/Parameter

Digital controller dsPIC33FJ64GS606
Driving power supplier KA7805, FSL336

Current sensor 56200C, CHCS-GB5-50A
Primary inductance Lp 500 µH
Primary capacitor Cp 7 nF

Secondary inductance Ls 43.6 µH
Resonant frequency fr 85.07 kHz

Secondary capacitor Cs 0.1 µF
Supercapacitor 25 V/15 F

5.1. Start-Up Estimation Experiments

Before the power transfer experiments, the startup test of the experimental platform
needed to be carried out in two phases. Phase 1: Adjust the inverter switch frequency to
ensure that the primary side is working under resonant conditions. Phase 2: Verify that
the phase shift on inverter driving signals does not influence the resonant state. Figure 12
and Figure 13 show the experimental results of phase angles θ = 0 and θ = 30 degrees,
respectively, under a switching frequency of 85 kHz. There was no phase shift between the
primary coil current and the output voltage of the inverter; thus, the system was working
under resonance. At the same time, the phase shift angle did not influence the resonant
state. The system startup test was successfully verified.

5.2. Primary Coil RMS Current Control Results

As introduced before, the primary side of the proposed system was working under a
resonant state, and the coil RMS current was controlled by the phase shift control method.
In this experiment, the transfer distance between the two coils was 4 cm, the input voltage
was 72 V constant, and the input voltage of the four-switch buck-boost converter was
controlled at 35 V constant. By controlling the coil RMS current from 1.2 A to 2.6 A,
the results of the transfer power and system efficiency were as shown in Figure 14 and
Figure 15, respectively.
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Figure 15. System efficiency vs. primary coil RMS current.

From the results, the input and output power of the proposed system increased with
the coil RMS current. Additionally, as the transfer power increased, the transfer efficiency
increased slightly, and the RMS current had a positive influence on system efficiency.

5.3. Secondary Side Constant Input Voltage Control Results

This experiment focused on the secondary side control. The experimental conditions
were the same as before, and the primary coil RMS current was controlled at 1.4 A constant.
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By controlling the input voltage of the four-switch buck-boost converter from 20 V to 48 V,
the results were as shown in Figure 16, Figure 17 and Figure 18, respectively.
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Figure 18. Experimental waveform when the input voltage of the DC-DC power conditioner is 48 V.

Figure 16 shows the experimental results of controlling the input voltage of the four-
switch buck-boost converter at 20 V. The phase of the current in the primary coil led to that
of the inverter output voltage while the secondary side was working under a resonant state.
The output power could be calculated as 47 W with input power obtained as 80.4 W.

The experimental results of controlling the controlling input voltage of the four-switch
buck-boost converter at 40 V are shown in Figure 17, where both the primary and secondary
resonant tanks were working under a resonant state. The output power could be calculated
as 89 W with input power obtained as 102 W.

Figure 18 shows the experimental results of controlling the input voltage of a four-
switch buck-boost converter at 48 V. Under this condition, the transfer power was outside
the input power capacity of the primary coil RMS current; thus, the primary coil current
was out of control, and the system was working under an inductive state. The output
power could be calculated as 21.5 W with input power of 53.1 W, and the transfer efficiency
dropped sharply.

The voltage scanned experimental results of transfer power and system efficiency are
shown in Figure 19 and Figure 20, respectively. From the scanned results, the transfer
power could be adjusted by controlling the input voltage of the four-switch buck-boost
converter but was limited by the primary coil RMS current. If the required transfer power is
outside the limit, the transfer efficiency will drop sharply. Additionally, there is a maximum
efficiency under each constant primary coil RMS current; under that point, both the transfer
power and efficiency will be optimum.

5.4. System Stability to Changes in the Supercapacitor Voltage Results

Considering the charging characteristics of a supercapacitor, the voltage of the super-
capacitor keeps rising during the charging process, so it is necessary to check the system’s
stability during the charging process.

In this experiment, the voltage on the supercapacitor rose from 10 V to 100 V. Under
the same conditions as before, the primary coil RMS current was controlled at 1.4 A, and the
input voltage of the four-switch buck-boost converter was controlled at 40 V. The results
for the inductor current (charging current) and system efficiency are shown in Figure 21
and Figure 22, respectively.
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During the charging process, the charging current decreases smoothly while the
voltage increases; the most important point is that the system transfer efficiency is not
affected by the supercapacitor voltage, and remains almost constant. The waveform of the
supercapacitor experimental charging process is shown in Figure 23.
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6. Conclusions

In this paper, an LC series resonant WPT system with a modulation control method for
supercapacitor charging was proposed. The theoretical analysis of the resonant coupling
tank was described in detail with its efficiency and constant current characteristics. A phase
shift control method was introduced on the primary side to control the transfer power by
controlling the RMS current in the primary coil, while on the secondary side, the received
power was controlled by adjusting the input voltage of a four-switch buck-boost load
matching converter with a duty cycle modulation control method. The simulation model
was established in the MATLAB/SIMULINK environment, and a dsPIC33FJ64GS606-based
experimental platform was constructed. Both the simulation and experimental results
successfully evaluated the characteristics of the proposed system and verified the control
efficiency. Additionally, the system stability during the charging process was successfully
confirmed.
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