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Abstract: One of the by-products of a mechanical-biological waste treatment plant is the under-sieve
fraction, which requires separation prior to further processing of municipal mixed waste. This
stream usually follows the fate of landfilling. Instead, it could be introduced to the hydrothermal
carbonization (HTC) process to improve its fuel properties and become solid recovered fuel. The
organic fraction and high moisture content (approximately 26%) of under-sieve fraction are favorable
properties for the HTC process. In this study, hydrochars, the solid product of HTC, were produced at
200 and 220 ◦C with residence times of 1, 4, and 8 h. The main aim of this investigation was to estab-
lish the influence of different process parameters on hydrochars’ fuel properties. Thermogravimetric
analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy
(SEM) were employed in the analyses. The results confirmed the positive effects of hydrothermal
carbonization on the under-sieve fraction of municipal mixed waste properties. The ignition tempera-
ture increased from 247 ◦C to 288 ◦C and burnout temperature decreased to 443 ◦C from 489 ◦C after
hydrothermal carbonization, causing a shorter combustion process. The determined key combustion
parameters were: S = 12.4 × 10−8%·min−2·◦C−3, Hf = 1174.9 ◦C and Di = 0.0075%·min−3, which
in comparison to USF decreased by 44%, increased by 33%, and decreased by 29%, respectively,
and became closer to those of coal. Furthermore, the identified structural changes indicate that
hydrochars could be successfully used in energy production. The most promising results were found
for hydrochar produced at 220 ◦C for 1 h, leading to a better combustion performance and providing
a more stable and a less violent flame.

Keywords: hydrothermal carbonization; municipal solid waste; TGA; FTIR; SEM-EDS

1. Introduction

Recently, hydrothermal carbonization has more often been brought to attention as
a process that can change and improve the properties of various feedstock. Due to the
reactions achieved in an aqueous environment, it is a suitable treatment for wet materials
with unfavorable, high organic content, e.g., vegetation, food and paper waste, sewage
sludge, or mixed solid waste [1–9]. Generally, the latter, municipal mixed waste, is treated
in a mechanical-biological treatment plant where the recycling of metal from waste is
processed and then the remaining residue is aerobically stabilized and landfilled. However,
according to European legislation, the quantity of waste that is landfilled must decrease to
a limit of 10% by 2035, hence, other solutions are being sought [10]. Accordingly, hydrother-
mal carbonization is suggested as a suitable method to improve dewatering, grinding,
handling, transportation, and storage of the wet feedstock. Moreover, the elevated tem-
perature and pressure guarantee an altered structure of the material as well as limiting
the biodegradation process. Furthermore, the reactions that occur during hydrothermal
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treatment, e.g., hydrolysis, dehydration, decarboxylation, polymerization and aromatiza-
tion, provide lower oxygen and higher carbon content in the final product [11]. Those
properties, supported by an increased calorific value, create an environmentally-friendly
solid recovered fuel, hydrochar, which could be successfully applied to energy systems,
e.g., in an incineration plant. Additionally, the hydrothermal treatment of post-processing
organic waste is in concordance with the waste-to-energy and minimizing of waste at
source European environmental policy [12].

Consequently, the hydrothermal carbonization process is often studied to establish
the possible application of hydrochars and to find the best process parameters for the
process, which could minimize costs and maximize possible benefits [13,14]. For instance,
Santos et al. [15] studied hydrochars derived from the hydrothermal carbonization process
of low-grade organic fraction of municipal solid waste (OFMSW) at 180 ◦C for 2 h as a
novel, sustainable, low-CO2 building material for thermal insulation panels. In addition,
Ischia [16] studied this material under similarly mild conditions (180 ◦C) but applied
thermal and chemical extraction (1:4 methanol: dichloromethane) on hydrochars. The
removal of reactive volatile matter in hydrochars was investigated during thermal treatment
and chemical extraction, suggesting a potential pathway for the recovery of fatty acids
and condensation of fuel molecules in the solid hydrochar. Furthermore, the relevant
properties of hydrochar could be used as a soil amendment or an environmental adsorbent
as well as simultaneously extracting valuable biodiesel and biofuel precursors [16]. Aragon-
Briceno et al. [17] studied the optimum hydrothermal carbonization process conditions
for recovering water from the MSW digestate at three temperatures 180, 200, and 230 ◦C
and three residence times 30, 60, and 120 min and proved that the most suitable conditions
were 200 ◦C with a residence time of 120 min, resulting in 47.2% of water recovery. Based
on the net energy balance (5.6 MJ) and the applied Aspen model, the integration of HTC
as part of the dewatering system of an MSW treatment plant was proposed and provided
very promising results. Espro et al. [18] investigated hydrochars derived from orange
peels in sensing applications. Hydrochars produced at 300 ◦C were used to fabricate high
performance conductometric sensors for the monitoring of NO2.

Furthermore, Roman et al. [19] studied different residence times (1–5 h), on a quantity
of compost derived from MSW (1–4 g in 30 mL) and at different temperatures (150–230 ◦C)
regarding the mass and energy yield of hydrochars and, most importantly, on postpro-
cessing water disposal, while searching for the catalytic behavior of both products. On
the contrary, Lin et al. [20] studied the behavior of four typical components of municipal
solid waste (MSW), such as waste textile, wood, paper, and food under hydrothermal and
co-hydrothermal carbonization. The blends of MSW and waste textile derived at 240 ◦C
and 90 min with a 1:12 solid/liquid ratio exhibited synergistic effects during the co-HTC of
typical MSW components. The co- and hydrochars behavior and characteristics’ parameters
of combustion were studied by profound analysis of TG and DTG data. Moreover, it was
found that hydrochars more stably combusted and effectively fitted the nth-order kinetic
model of the combustion reaction process. Venna et al. [21] also confirmed the potential
of hydrochar derived from municipal solid waste, namely yard and food waste, as a solid
biofuel. In comparison to distilled water, a landfill leachate was applied as a water carrier
in the HTC process, but fuel characteristics of the hydrochars did not significantly change.
TGA was implemented to describe the combustion behavior and parameters of the derived
hydrochars. Moreover, the morphology and surface chemistry of the hydrochars was
applied to detect the morphological changes caused by the HTC process. SEM images
depicted microspheres, higher porosity, and surface roughness after hydrothermal degrada-
tion resulted in better fuel characteristics. The changes in functional groups in hydrochar in
comparison to raw samples were determined by FTIR examination. These techniques were
also used by Wang et al. [22] to study food waste and their hydrochars produced within
a temperature range of 180–260 and 60 min of residence time in terms of solid biofuels
characteristics. Akarsu et al. [23], Saqib et al. [24], and Nguyen et al. [25] also studied food
waste and their hydrochars to confirm their ability in energy production by emphasizing
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their physicochemical, structural, and combustion performance. Sharma et al. [26] studied
in detail the mechanism and process parameters of the hydrothermal carbonization of
municipal solid waste as a potential biofuel taking into account the environmental impact.
It was suggested that the optimized parameters of the process can ensure the improved
properties of hydrochars identified by advanced instrumental methods for a net renewable
energy production potential value.

The need for a profound discussion concerning the hydrothermal carbonization of
municipal solid waste in order to fully understand its behavior was underlined by many re-
searchers [5,27–31]. Accordingly, in this study, the hydrothermal carbonization of municipal
solid waste is investigated in detail, in particular under-sieve mixed waste, mainly focused
on the fuel properties of hydrochar derived under various conditions of the process.

2. Materials and Methods

The stream of municipal mixed waste, investigated in this research, was collected from
a rotating sieve drum at an Italian mechanical-biological treatment plant. The particles of
material were smaller than 60 mm and referred to as under-sieve fraction (USF)—Figure 1.
The USF was grey, fluffy, and resembled dust. A composition analysis of USF identified
some paper, plastics, glass, wood, textiles, food waste, coffee pods, inert materials, and
metals [32]. However, approximately 75% of the USF proved to be indistinguishable due
to its small size—Figure 2. To simplify handling of the samples the material was dried
and milled.

Figure 1. Under-sieve fraction of municipal mixed waste prior to and after hydrothermal carbonization.

Figure 2. Composition of under-sieve fraction of municipal mixed waste [32].

For hydrothermal carbonization, a 1000 mL, stainless steel, Zipperclave® Stirred
Reactor (Parker Autoclave Engineers, Erie, PA, USA) was used. The schematic of the
experimental set-up is presented in Figure 3. The USF was mixed with deionized water
prior to the experiment, achieving 0.15 dry solids to water ratio. The experiments were
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conducted at 200 and 220 ◦C with reaction times of 1, 4, and 8 h measured from the
moment the reactor was heated to the desired temperature. During the process, the
mixture was constantly stirred and afterwards immediately cooled down by feeding cold
water through the coil inside the reactor. The separation of solid and liquid products was
conducted via vacuum filtration. The produced hydrochars were dried at 105 ◦C in an oven
overnight and stored in sealed containers prior to further analyses. The hydrochars were
brown in color and with an increase in the process temperature or residence time the color
became darker. After hydrothermal carbonization the material can be easily ground after
drying. Additional information about the USF and hydrochars can be found in a previous
publication by Śliz et al. [32].

Figure 3. Experimental setup used for hydrothermal carbonization and filtration [32].

The proximate and ultimate analyses were performed by a muffle furnace according to
European Standards (EN 15414–3:2011, EN 15403:2011, and EN 15402:2011) and a Truspec
LECO 628 CHNS Analyzer (PKN-ISO/TS 12902:2007), respectively. Additionally, the
high heating value determination was carried out by means of a LECO AC500 Isoperibol
Calorimeter (DIN 51,900 and ISO 1928).

The combustion process was investigated by means of thermal analysis in an air
atmosphere. Samples deposited in the crucible were heated from room temperature up to
700 ◦C at a heating rate of 10 ◦C/min. This method enables TG, DTG, and DSC curves for
USF and hydrochars to be presented.

Moreover, based on those results, the characteristic parameters of the combustion
process were determined. Among them an ignition temperature, Ti, and a burnout temper-
ature, Tb, should be distinguished. According to the literature, the ignition temperature
(point C) can be found at the intersection of the horizontal line drawn from point B, when
devolatilization started, and a tangent line drawn from point A, where the vertical line
from the first DTG peak crosses the TG line. The burnout temperature was found at the
mass stabilization point where the mass loss rate decreased to below 1%/min [33,34].
Combustibility indices, such as the ignition index (Di), were also included:
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Di =
DTG1

t1·ti

where DTG1 is the value of the highest mass loss rate (first peak in the DTG curve), t1 and
ti are the times of occurrence of this first peak and when the ignition temperature was
reached, respectively. The sooner the ignition started and the highest mass loss rate was
achieved, the higher the value of the Di index reached. This corresponds with an easy
release of volatile matter and simple ignition. Next, is the burnout index (Db):

Db =
DTG1

∆t0.5·t1·tb

where ∆t0.5 is the time at which the mass loss rate reached half of its maximum value and tb
is the time the combustion process takes to reach burnout temperature. The lower value of
Db required less time to complete the combustion process. The comprehensive combustion
index (CCI or S) follows:

S =
DTG1·DTGmean

T2
i ·Tb

where DTGmean is the mean value of the mass loss rate. It reflects the ignition, combustion,
and burnout properties of the fuel. Higher values of the S index indicate easy combustion
at an early stage [35]. The combustion stability index (CSI or Hf) is calculated according to
the following equation:

H f = T1· ln
(

∆t0.5

DTGmean

)
where T1 is the temperature corresponding to DTG1. Index Hf expresses the rate and
intensity of the combustion process in which lower values are preferred. Combustibility
indices were calculated based on equations presented by Mureddu et al. [36,37].

To investigate the morphology of the samples, a scanning electron microscope, (SEM)
FEI Inspect S50, was employed and supported by the energy dispersive X-ray spectroscopy
(EDS). Fourier-transform infrared spectroscopy was conducted with the Nicolet 6700 FTIR
(Thermo Scientific, Waltham, MA, USA), including the attenuated total reflectance module
to assess changes in bonds of municipal mixed solid waste.

3. Results and Discussions

To summarize the results of proximate analysis, a Tanner diagram is presented in
Figure 4. It has been established that for the combustion of municipal solid waste certain
requirements have to be met. Namely, the moisture content cannot exceed 50%, ash content
cannot be higher than 60%, and combustible fraction has to be at least 25% [38]. The
materials which meet those restrictions are depicted in the bottom right corner of the
triangle diagram (grey area). Herein, the hydrochars were dried after the HTC process and
easily fulfilled those requirements. However, an increase in the moisture content would
cause them to move up and slightly to the left side of the diagram (simultaneously, the
ash and combustible fraction content would decrease), which should retain them in the
highlighted area of the autothermic combustion. Similar conclusions were presented by
Komilis et al. for municipal solid waste [39]. The results of the proximate and ultimate
analyses can be found in Table 1. The detailed description, presented in previous publication
concerns the under-sieve fraction of municipal mixed solid waste [32]. Nevertheless,
to summarize the key changes in the properties of hydrochars, it could be concluded
that with a longer residence time and a higher reaction temperature, it would cause a
higher value of high heating value and a lower mass yield (ratio of hydrochar mass to
feedstock mass). An increase in the ash content with a longer reaction time was also a
noticeable trend. The correlation between the process parameters and the analysis results
is also in accordance with general trends found by various researchers investigating the
hydrothermal carbonization process [7,40].
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Figure 4. Composition of the under-sieve fraction of municipal mixed waste.

Table 1. Results of ultimate and proximate analysis [32].

C,% H,% N,% S,% O,% A,% VM,% FC,% HHV, MJ/kg

USF 36.0 5.2 1.3 0.2 18.1 39.2 51.7 9.2 14.6
200_1 h 32.6 4.2 0.8 0.5 13.9 48.0 45.9 6.1 13.5
200_4 h 33.7 4.2 0.9 0.5 12.6 48.1 45.0 6.9 14.2
200_8 h 32.3 4.0 1.0 0.5 10.2 52.0 42.7 5.3 14.4
220_1 h 38.3 4.7 0.9 0.1 15.3 40.7 48.4 11.0 16.4
220_4 h 38.2 4.5 1.1 0.2 10.3 45.7 42.0 12.3 16.7
220_8 h 40.5 4.8 1.3 0.3 7.0 46.1 42.9 11.0 18.5

3.1. Thermogravimetric Analysis

The results of the thermogravimetric analysis are presented in Figures 5 and 6. The
combustion profiles are depicted in the form of TG and DTG curves. The shape of those
curves clearly represents the influence of the reaction time on the combustion performance
of hydrochars. A typical combustion process can be divided into three stages [12,41]. The
first stage, which starts almost immediately after increasing the temperature to above room
temperature and lasts to circa 150 ◦C, is connected with moisture release. Herein, this
stage was omitted as the samples were dried after the separation of the phases following
the experiments. The beginning of the next stage is marked by the ignition temperature.
In Figure 5, depicted in green, the volatile matter is released and combusted. For USF,
the Ti equals 247 ◦C and at this stage the highest mass drop occurs. The first DTG peaks
have a value of 5.973%/min and were found at 289 ◦C. In the next step, the mass loss
rate decreases, and at a higher temperature the last stage concerning the combustion of
char is distinguished—marked as stage II and depicted in blue. The second DTG peak
is much lower (2.332%/min at 463 ◦C for USF). The burnout temperature was 489 ◦C
and subsequently the mass loss stabilized. Hydrochars in general, have a higher mass of
residue after the combustion process and a lower volatile matter content in comparison
to an untreated sample, as a mass loss begins at higher temperatures. After hydrothermal
carbonization the first DTG peak becomes lower and switches to higher temperatures
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in the range of 325 to 332 ◦C for all of the hydrochars [42,43]. Based on these results, it
could be stated that the HTC process evidently causes the decrease in the combustion
time. The ignition temperature rises due to the decrease in the volatile matter content.
The samples 200_1 h and 220_1 h presented the highest ignition temperatures, 288 ◦C and
282 ◦C, respectively. However, after a longer reaction time of 8 h, the ignition temperatures
decreased reaching 273 ◦C for hydrochar derived at 200 ◦C and 256 ◦C for hydrochar
treated at 220 ◦C. Simultaneously, burnout occurs at lower temperatures, 443 ◦C for samples
carbonized at 200 ◦C and c.a. 463–477 ◦C for those pretreated at 220 ◦C. Moreover, the mass
rate loss in the first stage of combustion was maintained only for samples treated for 1 h
and is close to 6%/min. Samples treated for 4 and 8 h of residence time dipped to 3.8 and
2.7%/min at 200 ◦C, and to 3.6 and 3.2 at 220 ◦C.

Furthermore, the temperatures in the second stage of combustion decreased. For USF
it was 409 ◦C, while for samples retained at 200 ◦C it was closer to 375 ◦C, and for those
treated at 220 ◦C it was 10 ◦C higher at 385 ◦C.

The analysis of TG and DTG profiles not only presents the combustion performance but
are also the basis for assessing the key combustion factors summarized in Table 2. Among
them combustion indices should be distinguished. A lower ignition index (Di), which
dropped from 0.0106%·min−3 for USF to the lowest value of 0.0036%·min−3 for sample
220_8 h, corresponds to a lower volatile matter content and a higher ignition temperature.
Index S connects the ease of ignition, burning velocity and burnout temperature. The
highest value for USF, 22.0 × 10−8%·min−2·◦C−3, indicates that it ignites faster and more
intensively than in the case of hydrochars—a lower ignition temperature and a high mass
loss rate [44]. Conversely, the lowest value, 4.6 × 10−8%·min−2·◦C−3, was reached for
hydrochar derived at 220_8 h. Similarly, the lowest value of the Hf index for USF suggests
better combustion properties [35,36]. A few trends can be noticed when comparing results
calculated for hydrochars obtained at different parameters. Prolonging the reaction time
from 1 to 8 h causes a decrease in fuel properties estimated by combustibility indices. By
comparing the processing temperature, the following observation could be made: when a
higher temperature was applied, stronger effects were observed. In addition, it should be
noted that the HTC process increased the ignition temperature but a longer residence time
caused a decrease in its value, whereas the burnout temperatures were lower for hydrochars
than for feedstock. At the same time, the first DTG peak occurred at a higher temperature
for hydrochars, approximately 330 ◦C, than for feedstock, 289 ◦C. A similar observation on
the influence of HTC on the combustion process was presented by Arellano et al. [45]. In
summary, hydrothermal carbonization does not significantly improve the fuel properties
of the under-sieve fraction of municipal solid waste, but it probably slightly improves the
stability of the combustion process due to the release of a lower content of volatile matter.

Table 2. Combustion parameters estimated by means of thermogravimetric analysis.

Ti
◦C

ti
min

Tb
◦C

tb
min

T1
◦C

t1
min

DTG1
%/min

t0.5
min

DTGmean
%/min

Di
%·min−3

Db
%·min−4

S
%·min−2·◦C−3

Hf
◦C

USF 247 21.77 489 45.47 289 25.85 5.973 23.08 1.097 0.0106 22.0 × 10−5 22.0 × 10−8 880.3
200_1 h 288 26.32 443 41.80 327 30.10 5.934 27.80 1.007 0.0083 18.0 × 10−5 16.7 × 10−8 1069.4
200_4 h 276 25.17 443 41.85 329 30.33 3.822 26.85 0.782 0.0053 10.9 × 10−5 8.7 × 10−8 1146.2
200_8 h 273 24.85 442 41.72 330 30.45 2.697 26.32 0.945 0.0048 10.6 × 10−5 9.7 × 10−8 1057.0
220_1 h 282 25.12 464 42.98 326 29.38 6.099 26.78 0.765 0.0075 17.0 × 10−5 12.4 × 10−8 1174.9
220_4 h 265 23.45 463 42.87 325 29.28 3.624 26.58 0.684 0.0050 11.2 × 10−5 7.8 × 10−8 1207.3
220_8 h 256 22.60 477 44.32 332 29.87 3.207 22.80 0.565 0.0036 8.1 × 10−5 4.6 × 10−8 1267.5
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Figure 5. Summary of TG and DTG curves for each experiment conducted at 200 ◦C and 220 ◦C for 1,
4, and 8 h.
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Figure 6. Comparison of TG and DTG curves for samples hydrothermally treated at 200 and 220 ◦C.

3.2. Fourier-Transform Infrared Spectroscopy

Hydrochars present a similarly shaped curve on the FTIR diagram (Figure 7) as
untreated USF. The most important peaks with corresponding bonds are illustrated in
Table 3. The increase of the reaction time caused a decrease in the peaks, which became less
distinguishable. Nevertheless, a wide mound at approximately 3100–3600 cm−1 that spiked
at approximately 3330–3340 cm−1 is identified as a characteristic stretching O–H vibration
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in hydroxyl or carboxyl groups. Its decrease with a longer reaction time and higher
process temperature indicates that those factors facilitate dehydration [46,47]. Double
peaks, in the range of 2860–2930 cm−1 represent the stretching vibration of the C–H bond
in aromatic and aliphatic compounds. Their presence indicates unsaturation [21,48]. The
disappearing peak at 1740 cm−1 is associated with the stretching of C=O in alkali esters in
hemicellulose. The decreasing signal at approximately 874 cm−1 supports degradation of
hemicellulose in HTC conditions. Moreover, the peaks at 1516 cm−1 and 1454 cm−1 are
clearly visible for the sample after hydrothermal carbonization and prove the presence of
lignin, which has a higher decomposition temperature than hemicellulose. The degrading
peak at 1102 cm−1 corresponds to C-O vibrations in cellulose. Additionally, the change in
the peaks at approximately 1155 cm−1 suggests its mild degradation. The highest peak,
which for all samples has a maximum of approximately 1030 cm−1 and merges with the
signal at 1051 cm−1, is from the stretching vibration of the C–O bond in aliphatic ether
and alcohol, respectively [49]. The results confirm that USF has some organic origin. The
decrease in intensity of the signal for the hydrochars can be associated with the fact that
some of the bonds were broken during the hydrothermal process.

3.3. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy

In the images received via scanning electron microscopy (Figure 8) a fibrous structure
of untreated under-sieve fraction of municipal mixed waste can be seen. The hydrothermal
carbonization process significantly alters the structure and morphology of the material. In
Figure 8b there are still many elongated particles visible, however they are much shorter
than those presented for untreated USF in Figure 8a. In the following Figure 8c,d, samples
after a longer residence time are depicted. The open, circular pores in Figure 8c prove that
some of the volatile matter is released during the HTC process, which may cause higher
surface degradation but also a higher specific surface area. It can be seen that with an
increase in the residence time of the process, the quantity of fine particles also increases.
This can influence not only the combustion behavior of hydrochar but also its dewaterability.
EDS analysis (Table 4) distinguished mainly carbon and oxygen, but calcium, silicon, and
sulphur can also be observed, among other elements. This provides valuable information
concerning potential challenges, such as slagging and fouling or corrosion, which may
occur in a scaled-up process [50,51].

Table 3. Indicator bands, their vibrations, and corresponding functional groups.

Wavenumber (cm−1) Vibration Functional Group or Component

3600–3100 O-H stretch hydroxyl or carboxyl group
2930–2860 C-H stretch aliphatic methylene group

1740 C=O alkali esters in hemicellulose
~1515 C=O lignin
~1455 C-H lignin
1102 C-O cellulose
1050 C-O stretch alcohol
1030 C-O stretch aliphatic ether

Table 4. Results of EDS analysis (ZAF method), wt%.

C
K

N
K

O
K

F
K

Cu
L

Na
K

Mg
K

Al
K

Si
K

P
K

S
K Cl K K

K Ca K Ti K Fe K

USF 66.31 1.24 28.87 0.15 0.19 0.33 0.17 0.33 0.74 0.00 0.17 0.20 0.09 0.86 0.08 0.27
220_1 h 66.95 1.45 28.29 0.08 0.08 0.28 0.21 0.38 1.21 0.06 0.16 0.05 0.05 0.52 0.14 0.10
220_4 h 75.21 0.99 20.94 0.08 0.13 0.19 0.16 0.32 1.09 0.02 0.17 0.03 0.00 0.39 0.08 0.20
220_8 h 75.37 1.20 19.83 0.08 0.20 0.16 0.16 0.40 1.21 0.06 0.27 0.08 0.10 0.47 0.16 0.25
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Figure 7. FTIR spectra of the USF and hydrochars.
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Figure 8. SEM images of (a) USF and hydrochars produced at 220 ◦C for (b) 1 h; (c) 4 h; (d) 8 h.

4. Conclusions

Hydrothermal carbonization of the under-sieve fraction of municipal mixed solid
waste was performed. Conducted analyses proved that the hydrothermal process altered
the structure and other physical and chemical properties of USF. The most promising
results were found for hydrochar produced at 220 ◦C for 1 h leading to a better com-
bustion performance and providing a more stable and a less violent flame. This was
confirmed by combustibility indices S = 12.4 × 10−8%·min−2·◦C−3, Hf = 1174.9 ◦C, and
Di = 0.0075%·min−3, which in comparison to USF decreased by 44%, increased by 33%,
and decreased by 29%, respectively. The correlation between the process parameters and
the analysis results was proved. The changed morphology after the hydrothermal process
results in easier grinding, handling, and dewatering of hydrochars. Further, detailed analy-
sis may aid understanding in how process parameters influence the specific properties of
hydrochars. Nevertheless, an improvement in the performance of mixed solid waste as a
fuel by transforming it into hydrochar was confirmed.
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17. Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.; Brem, G.; Wang, S.; Wen, Y.; Yang, W.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.;
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