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Abstract: The conversion and utilization of carbon dioxide (CO2) have dual significance for reducing
carbon emissions and solving energy demand. Catalytic reduction of CO2 is a promising way to
convert and utilize CO2. However, high-performance catalysts with excellent catalytic activity, selec-
tivity and stability are currently lacking. High-throughput methods offer an effective way to screen
high-performance CO2 reduction catalysts. Here, recent advances in high-throughput screening of
electrocatalysts for CO2 reduction are reviewed. First, the mechanism of CO2 reduction reaction by
electrocatalysis and potential catalyst candidates are introduced. Second, high-throughput computa-
tional methods developed to accelerate catalyst screening are presented, such as density functional
theory and machine learning. Then, high-throughput experimental methods are outlined, includ-
ing experimental design, high-throughput synthesis, in situ characterization and high-throughput
testing. Finally, future directions of high-throughput screening of CO2 reduction electrocatalysts are
outlooked. This review will be a valuable reference for future research on high-throughput screening
of CO2 electrocatalysts.

Keywords: CO2 reduction; electrocatalyst; high-throughput computing; machine learning; high-throughput
screening; in situ characterization

1. Introduction

With the development of the economy and the rising global population, energy de-
mand has surged year by year. Currently, most energy is from fossil fuels, which leads
to the emission of a large amount of CO2 [1,2]. CO2 is among the leading greenhouse
gases that cause global warming and thus great harm to the global ecological environment.
Meanwhile, CO2 is an important carbon source for producing many chemicals and fuels,
such as carbon monoxide, methanol, methane, formic acid, oxalic acid, formaldehyde, and
so on [3–9]. Therefore, converting CO2 into energy substances and chemical feedstocks
plays a vital role in reducing CO2 emissions and addressing energy demand.

The utilization of CO2 as a carbon source is carried out in various ways, such as
thermochemical [10–13], photochemical [14–17], electrochemical [18–21], and biochemical
methods [22–24]. However, due to the stable chemical structure of CO2 [25], it is necessary
to provide high activation energy or use catalysts to convert CO2. Catalysts can effectively
reduce the activation energy for chemical reactions and promote the reaction under rel-
atively mild conditions, thus decreasing the response’s energy consumption. Therefore,
high-performance catalysts are critical for CO2 conversion.
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Current research on CO2 conversion is devoted to the mechanism of CO2
reduction [26–28] and the search for high-performance CO2 reduction catalysts with ex-
cellent activity, selectivity, and stability [4,29–31]. The indicators used to evaluate the
performance of catalysts include product conversion rate, amount of side product, catalyst
stability, energy efficiency, and so on [32–34].

Previously, screening of high-performance catalysts is mainly based on trial-and-error
learning. Generally, the performance of catalysts is closely related to many parameters,
such as catalyst composition, structure, and so on. Therefore, the parameter space for the
exploration of high-performance catalysts is so huge that it is difficult to screen out high-
performance catalysts using conventional methods [35,36]. In addition, high-throughput
screening of CO2 reduction catalysts still faces the problems of low efficiency, high cost,
and insufficient accuracy. To address the problem, high-throughput methods are proposed
for the rapid screening of high-performance catalysts.

High-throughput methods make it possible to systematically explore the parameter
space and effectively solve the complex problem of exploring the large parameter space by
processing a large number of catalyst candidates in parallel at one time, greatly improving
the screening efficiency and reducing the screening cost. High-throughput screening of
high-performance CO2 reduction catalysts generally involves four steps, e.g., experimental
design, high-throughput synthesis, in situ characterization, and high-throughput testing.
A systematic and timely review of high-throughput technologies will facilitate the fast
screening of high-performance catalysts for CO2 conversion.

This paper will review the recent applications of high-throughput technologies and
focus on the following four parts: (1) Present the reaction mechanism of CO2 electrocat-
alytic reduction and typical catalyst candidates. (2) Introduce the research progress of
high-throughput computational methods, such as density functional theory and machine
learning. (3) Discuss high-throughput experimental methods, including experimental
design, high-throughput synthesis, in situ characterization, and high-throughput test-
ing. (4) Summarize the application prospects of high-throughput methods in screening
high-performance catalysts for CO2 electrocatalytic reduction. Both high-throughput
computational and experimental methods are indispensable for high-throughput screen-
ing. High-throughput computing could better determine the parameter space for high-
throughput experiments, thus improving the screening efficiency. In return, experimental
results obtained by high-throughput experiments are able to provide the large data for
high-throughput computing and help to improve the accuracy of high-throughput comput-
ing. A combined review of high-throughput computational and experimental methods will
benefit the development of high-throughput screening.

2. Mechanism of CO2 Electrocatalytic Reduction

CO2 can be converted into valuable chemical feedstocks and fuels in various ways,
such as thermochemical, photochemical, electrochemical, and biochemical reactions. Among
these methods, the electrochemical reaction has the advantages of a changeable electrode,
tunable potential, controllable temperature, recoverable electrolyte, clean electric energy
supply, and compact structure [37]. Therefore, electrocatalytic reduction is widely used for
CO2 conversion. A typical electrocatalytic system consists of an electrolyte, two electrodes,
and a thin membrane between the two electrodes, as shown in Figure 1a [28]. Under
an applied potential, CO2 reduction occurs at the cathode/electrolyte interface; ions and
molecules in the electrolytes react with CO2 at the interface to form various products [28].

CO2 electrocatalytic reduction is very complex, and the reaction strongly depends on
electrolyte, catalyst, applied potential, and temperature [38]. Typical electrolytes for CO2
electrocatalytic reduction include aqueous solutions, ionic liquids, and organic solvents.
The mechanism of CO2 electrocatalytic reduction in an aqueous solution and the formation
pathways of five main C1 products in the reduction process is shown in Figure 1b [39].
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Figure 1. Electrocatalytic system and principle of CO2 electrocatalytic reaction. (a) Model of a
typical electrocatalytic system. Reprinted with permission from Ref. [28]. Copyright 2020, Elsevier.
(b) Mechanism of CO2 electrocatalytic reduction on electrodes in aqueous solutions. The formation
paths of the five main C1 products are illustrated during the reduction process. Reprinted with
permission from Ref. [39]. Copyright 2017, John Wiley and Sons. (c) C2 and C3 pathways starting
from *CO on Cu surfaces. Reprinted with permission from Ref. [40]. Copyright 2019, American
Chemical Society.

The catalysts for CO2 reduction have important influences on product selectivity. Nu-
merous elements and compounds have been developed as catalysts for the electrocatalytic
reduction of CO2, such as Ti, Cr, Mn, Ni, Cu, Pt, Au, and Ag [41–46]. The main products
and the corresponding metal elements are summarized in Table 1 [29]. When Ni, Fe, Pt, Ti,
Ga, and Co are used as the electrocatalysts for CO2 reduction, H2 desorbs more easily from
the surface, and thus H2 is mainly produced [47]. Au, Ag, and Zn have weak adsorption
capacity for CO intermediates, thus mainly generating CO. In contrast, Pd, Hg, In, Sn, Cd,
Tl, and Bi containing p electrons have stronger adsorption capacity for CO2

·− and mainly
produce HCOOH [39]. For Cu, due to the suitable adsorption and desorption capacities
between the Cu surface and active intermediates, C−C coupling reaction occurs on the Cu
surface in the middle of adsorption, and some high-value-added hydrocarbons, such as
methane, are generated [48]. In addition, Cu is a relatively inexpensive metal, showing
promising application prospects.

The electrocatalytic reductions of CO2 on Cu substrate under various electrode po-
tentials have also been investigated, and sixteen different reaction products are detected.
Among the sixteen products, C2 and C3 products could be obtained through intermediates,
such as adsorbed *CO [49–51]. Possible pathways for C2 and C3 products starting from
*CO on the copper surface are shown in Figure 1c [40].
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Table 1. Main products of CO2 reduction reaction on different catalytic materials. Reprinted with
permission from Ref. [29]. Copyright 2016, Elsevier.

Group Metal Element Main Product

I Ni, Fe, Pt, Ti, Ga, Co H2

II Au, Ag, Zn CO

III Pd, Hg, In, Sn, Cd, Tl, Bi HCOOH

IV Cu Hydrocarbons/Oxygenates

Among the parameters affecting the electrocatalytic reduction of CO2, the study of
electrocatalysts has dramatically promoted the utilization of CO2. However, electrocatalytic
reduction of CO2 remains challenging, due to poor product selectivity, low electrocat-
alyst activity, poor electrocatalyst stability, high energy consumption, and low energy
efficiency [52,53]. These challenges severely restrict the electrocatalytic reduction of CO2.

Many studies have shown that doping different elements to form heterogeneous
electrocatalysts, which possess abundant catalytically active sites, proves to be an ef-
fective strategy to enhance catalytic performances [54–56]. However, the screening of
high-performance heterogeneous electrocatalysts for CO2 reduction needs to be carried
out in a vast parameter space, which is hard to be accomplished by conventional meth-
ods. High-throughput methods are well suited to address the challenge and have been
developed to screen high-performance CO2 reduction electrocatalysts.

3. High-Throughput Computational Methods

Generally, high-throughput screening methods can be divided into high-throughput com-
putational methods and high-throughput experimental methods [57,58]. High-throughput
computational methods, such as density functional theory (DFT) [59,60] and machine
learning, have been widely used for the screening of high-performance CO2 reduction
electrocatalysts [61–63]. DFT is able to calculate the adsorption energy of intermediates on
the catalyst surface, thus predicting the catalytic performance [32,64,65]. However, DFT
is computationally expensive and requires professional knowledge and specific training.
Machine learning can mine the hidden information behind existing data on catalysts and
predict the performance of catalysts with different compositions [66]. However, machine
learning is hard to uncover the underlying mechanism behind the composition-activity
relationships [67]. Therefore, DFT and machine learning are often applied jointly for high-
throughput screening by predicting the catalytic activity, identifying the active center,
optimizing catalyst composition, and understanding the reaction pathway.

A typical screening process using machine learning includes data collection, data
processing, model building, and model optimization, as shown in Figure 2a [68,69]. First,
data on the composition, structure, electrochemical property, and catalytic performance of
catalyst candidates are collected. Second, the data are processed using feature engineering
methods to obtain descriptors, which can be used to build the machine learning model.
Then, a machine learning model is established to predict catalytic activity, identify the
active center, optimize catalyst composition and understand the reaction pathway [70].
Finally, the model is optimized with experimental data.

The activity of catalysts is usually characterized by adsorption energy and binding
energy. Therefore, adsorption energy and binding energy of CO2 electrocatalytic intermedi-
ates are often used to predict the activity of catalysts [71]. For example, DFT and supervised
learning are used to obtain the adsorption energies of CO and H at all positions on the
surfaces of two types of high-entropy alloys to obtain high-performance alloy catalysts for
CO2 reduction [72]. The spatial maps of CORR activity versus CO2RR/CORR selectivity
for CoCuGaNiZn and AgAuCuPdPt systems are shown in Figure 2b [72].

The type and nature of active sites on the catalysts strongly influence the performance
of CO2 conversion to various products. However, it is still hard to determine the active
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sites on the catalysts [73]. Advanced computational methods can address some of the
limitations by uncovering the structure-activity relationship. For example, a framework,
which uses machine learning to guide DFT calculation and uses active learning for model
optimization, is proposed to predict the performance of CO2 electrocatalytic reduction and
has successfully screened 131 surfaces of 34 alloys for CO2 electrocatalytic reduction [74].
Alternatively, machine learning, multiscale simulation, and quantum mechanics are com-
bined together to predict the surface activity of gold nanoparticles and dealloyed golds
and have successfully identified the optimal active sites for CO2 electrocatalytic reduction,
greatly reducing the computational effort [75].

The composition of catalysts could also be optimized by high-throughput compu-
tational methods. For example, DFT calculation and active learning are used to predict
the adsorption energy of intermediates for CO2 electrocatalytic reduction to ethylene and
systematically adjust the catalyst composition to optimize the performance of Cu-Al alloys
and obtain the high-performance catalyst composition [61].

High-throughput computational methods can also predict the free energy of the re-
action pathways of CO2 electrocatalytic reduction [76]. For example, DFT and machine
learning are used to predict the activity and reaction pathways of CO2 reduction by hun-
dreds of transition metal phthalocyanine catalysts [77]. Both DFT and machine learning
show similar results for the predicted reaction pathways, and the screening efficiency is
improved by 6.87 times, as shown in Figure 2c.

Energies 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Applications of machine learning in high-throughput screening of high-performance elec-
trocatalysts for CO2 reduction. (a) Steps of machine learning for high-throughput screening. 
Adapted with permission from Ref. [68]. Copyright 2022, John Wiley and Sons. (b) Plots of CORR 
activity versus CO2RR/CORR selectivity for CoCuGaNiZn systems (left) and AgAuCuPdPt systems 
(right) predicted by Gaussian process regression. Reprinted with permission from Ref. [72]. Copy-
right 2020, American Chemical Society. CORR denotes CO reduction reaction. CO2RR/CORR selec-
tivity is defined as the probability of surface sites with weaker or the same H adsorption strength as 
Cu. CORR activity is defined as the ability to reduce CO further, as the joint independent probability 
of surface sites with weaker or the same H adsorption strength as Cu and stronger or the same CO 
adsorption strength as Cu. (c) ML-predicted and DFT-calculated free energies of different reaction 
pathways for CO2RR to CO by Ag-MoPc (left) and Ag-CoPc (right). The * at the upper left of the 
substance name denotes that the substance is adsorbed on the surface of a catalyst. Reprinted with 
permission from Ref. [77]. Copyright 2021, American Chemical Society. 

Figure 2. Cont.



Energies 2022, 15, 6666 6 of 18

Energies 2022, 15, x FOR PEER REVIEW 6 of 18 
 

 

 
Figure 2. Applications of machine learning in high-throughput screening of high-performance elec-
trocatalysts for CO2 reduction. (a) Steps of machine learning for high-throughput screening. 
Adapted with permission from Ref. [68]. Copyright 2022, John Wiley and Sons. (b) Plots of CORR 
activity versus CO2RR/CORR selectivity for CoCuGaNiZn systems (left) and AgAuCuPdPt systems 
(right) predicted by Gaussian process regression. Reprinted with permission from Ref. [72]. Copy-
right 2020, American Chemical Society. CORR denotes CO reduction reaction. CO2RR/CORR selec-
tivity is defined as the probability of surface sites with weaker or the same H adsorption strength as 
Cu. CORR activity is defined as the ability to reduce CO further, as the joint independent probability 
of surface sites with weaker or the same H adsorption strength as Cu and stronger or the same CO 
adsorption strength as Cu. (c) ML-predicted and DFT-calculated free energies of different reaction 
pathways for CO2RR to CO by Ag-MoPc (left) and Ag-CoPc (right). The * at the upper left of the 
substance name denotes that the substance is adsorbed on the surface of a catalyst. Reprinted with 
permission from Ref. [77]. Copyright 2021, American Chemical Society. 

Figure 2. Applications of machine learning in high-throughput screening of high-performance
electrocatalysts for CO2 reduction. (a) Steps of machine learning for high-throughput screening.
Adapted with permission from Ref. [68]. Copyright 2022, John Wiley and Sons. (b) Plots of CORR
activity versus CO2RR/CORR selectivity for CoCuGaNiZn systems (left) and AgAuCuPdPt systems
(right) predicted by Gaussian process regression. Reprinted with permission from Ref. [72]. Copyright
2020, American Chemical Society. CORR denotes CO reduction reaction. CO2RR/CORR selectivity
is defined as the probability of surface sites with weaker or the same H adsorption strength as Cu.
CORR activity is defined as the ability to reduce CO further, as the joint independent probability
of surface sites with weaker or the same H adsorption strength as Cu and stronger or the same CO
adsorption strength as Cu. (c) ML-predicted and DFT-calculated free energies of different reaction
pathways for CO2RR to CO by Ag-MoPc (left) and Ag-CoPc (right). The * at the upper left of the
substance name denotes that the substance is adsorbed on the surface of a catalyst. Reprinted with
permission from Ref. [77]. Copyright 2021, American Chemical Society.

High-throughput computational methods, such as DFT and machine learning, have
made substantial progress in screening high-performance electrocatalysts for CO2 reduction.
However, predicted results need to be verified by experiments [78]. In return, experimental
results will help to revise the computational models for better prediction. Nevertheless,
screening high-performance CO2 electrocatalysts will benefit both the development of
machine learning algorithms and the continuous increase of catalyst data.

4. High-Throughput Experimental Methods

The demand for large data by high-throughput computational methods can be solved
to a certain extent by high-throughput experimental methods. The steps of a typical experi-
mental process involved in high-throughput screening of high-performance electrocatalysts
for CO2 reduction include: (1) design of experiment, (2) high-throughput synthesis, (3) high-
throughput testing, and (4) feedback and optimization, as shown in Figure 3 [57]. The
essential of high-throughput experimental approaches to screen out the catalyst with the
best performance is the high-throughput synthesis and testing of many catalyst candidates
in parallel, which greatly benefit from the development of automation and advanced in
situ technology [79–81].

4.1. Experimental Design

The goal of experimental design is to simplify the experimental route to facilitate the
high-throughput screening of high-performance catalysts from a large sample reservoir.
Determining the potential parameter space and reducing the potential parameter space
effectively after each experiment are the two keys of experimental design [57]. Therefore,
before performing experiments, collecting parameters as many as possible is necessary
to determine the potential parameter space. Then, designing a strategy to explore the
potential parameter space and reduce it to a smaller potential parameter space after each
experiment is essential.
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For example, an ultrafast multidimensional group testing method is proposed to
explore the parameter space of a quaternary catalyst, as shown in Figure 4a [82]. The
method divides the parameter space into eight subgroups and distinguishes the high-
performance subgroups each time. By repeatedly reducing the size of the parameter space
and distinguishing the high-performance subgroups, the method quickly screens out the
optimal quaternary catalysts for photocatalytic hydrogen evolution.

Deconvolution is an alternative strategy to effectively reduce the number of tests
required to identify high-performance catalysts from mixtures of ligands and metal pre-
cursors [83]. For example, a combinatorial strategy utilizing deconvolution is developed
to discover high-performance catalysts for the dehydrative Friedel-Crafts reaction, as
shown in Figure 4b [84]. The methods include two steps: First, screen one or two reaction
parameters in a single block of reactions and identify the best result; Second, perform
iterative deconvolution of the precatalysts and ligands using the conditions identified in
the first step.

The idea of evolution has also been used to optimize the composition of catalysts. For
example, the concept of variation and selection is applied to optimize the composition
of catalysts generation by generation, and two excellent catalysts for CO2 reforming of
methane are successfully obtained [85].

4.2. High-Throughput Synthesis

After experimental design, high-throughput synthesis is an indispensable step for
high-throughput screening. Catalyst synthesis can be divided into solution-based chemical
methods and thin-film deposition methods. Solution-based chemical methods start from
catalyst precursors in a solution and prepare catalysts through impregnation, precipita-
tion, drying, grinding, and heat treatment. Flexible control of material compositions and
largescale flow synthesis are the two main advantages of solution-based chemical methods.
For example, to study the effect of different promoters on the performance of CO2 hydro-
genation, Rh catalysts on the surface of SiO2 are successfully prepared from impregnated
nitric acid solutions with various promoters after drying and heat treatment [86].

Thin-film deposition methods mainly include physical vapor deposition [87] and
chemical vapor deposition [88,89] and have the advantages of well controlled thickness,
good adhesion with a substrate, and reduced waste. For example, thin-film electrocatalysts
of Cu doped with different concentrations of Co are prepared by controlled sputtering
deposition, as shown in Figure 5a [29]. The system uses high-purity Ar as sputtering
gas, and thin films with different compositions of Cu doped with Co are prepared on Si
substrates by adjusting the sputtering power. Thin-film deposition methods could prepare
catalysts layer by layer and different layers generally have a distinct boundary. For example,
the catalyst for CO2 electroreduction prepared by electron beam deposition consists of a
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50 nm-thick Ti layer deposited on a quartz substrate and a 125 nm-thick Au1−yPdy layer
deposited on the Ti layer, as shown in Figure 5b [90].
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With the development of advanced technologies, such as automation, high-throughput
platforms based on robotics, inkjet printing, and flow reactor have been proposed and
applied to the high-throughput synthesis of catalysts [82,85,91]. Robots can perform the pre-
cise manipulation of catalyst precursors on microplates, which are either solutions or pow-
ders. New pipetting systems and their management software are developed to efficiently
manipulate catalyst precursors onto microplates. For example, an open-source manage-
ment software that can generate efficient pipetting-to-microplate work plans is developed,
and its reliable execution is supported by visual guidance, as shown in Figure 5c [92].
The software features a graphical web interface that builds workflows and displays each
pipetting step.

Though robots can quickly and accurately dispense precursors for catalyst preparation
and a large number of experiments could be realized by robots in parallel, it still takes a long
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time to screen multiple variables [83]. In addition, due to the diversity of sample types and
the complexity of control programs, widespread applications of robots in high-throughput
synthesis are still challenging. To solve the problem, a Bayesian optimization algorithm is
applied to drive the robots to realize autonomous operations, as shown in Figure 5d [93].
The Bayesian algorithm autonomously drives the robots to perform 688 experiments
in 10 variable spaces in 8 days and find photocatalysts for water splitting with activity
six times higher than the original results. Therefore, the Bayesian algorithm avoids the
writing of cumbersome control programs and dramatically improves the efficiency of
high-throughput synthesis.

Inkjet printing, which is well suited for high-throughput synthesis, only uses a small
amount of materials for sample preparation and has a large throughput in mixing different
compositions at pre-designed ratios. For example, catalysts with different formulations
are prepared for photocatalytic hydrogen evolution using inkjet printing [82]. Generally,
the preparation process by inkjet printing includes the configuration of stable colloidal
nanoparticle inks, the design of a color management system for mixing, and evaporation-
induced self-assembly of nanoparticles, as shown in Figure 5e. During the preparation
process, it is essential to develop inks with good dispersity and stability [94]. For example,
AMoO4 (A = Ca, Sr, and Ba) inks are prepared by reacting H2MoO4 with Ca, Sr, and Ba
salts. A series of photocatalysts are prepared by printing different inks together to explore
the optimal photocatalysts for the conversion of CO2 to methanol [95].

Robot and inkjet printing could carry out a large number of reactions in parallel and
simultaneously synthesize a variety of catalysts with different compositions. In contrast,
microfluidic flow reactors are convenient for controlling synthesis parameters and operating
conditions, and synthesized catalysts have better repeatability, uniformity, and catalytic
property [96]. Therefore, flow reactors could optimize the quality of catalysts and further
improve the performance of catalysts, such as activity and selectivity [97]. For example,
CuO-ZnO-ZrO2 catalysts, which are synthesized by co-precipitation [98] in a microfluidic
device, improve the yield of methanol via CO2 hydrogenation, as shown in Figure 5f [99].
In the microfluidic device, solutions of catalyst precursors are fed into the microfluidic
system at a pre-designed ratio and dispersed into 1 mm-diameter droplets. After mixing,
catalyst precursors form precipitates within the droplets, and CuO-ZnO-ZrO2 catalysts
with higher specific surface area, better uniformity, and higher activity are made via aging,
filtration, drying, and sintering.

4.3. In Situ Characterization

To identify the composition of synthesized catalysts and explore the catalytic pro-
cess to reveal the underlying mechanism, various characterization techniques are re-
quired [100–102]. Typical characterization methods include X-ray diffraction (XRD) and
transmission electron microscopy (TEM), which could reveal the crystal lattice of cata-
lysts, mass spectrometry (MS), X-ray energy dispersive spectroscopy (EDS), and X-ray
photoelectron spectroscopy (XPS), which could investigate the types and ratios of catalyst
compositions, and scanning electron microscopy (SEM), which could analyze the particle
morphology and size distribution [103]. Recent applications of various in situ characteriza-
tion techniques for the structural reconstruction of electrocatalysts, identification of active
sites, and recording of intermediates during water electrolysis and CO2 reduction, are com-
prehensively summarized, as shown in Figure 6a [104]. For example, the electrochemical
reduction of CO2 by Cu nano catalysts is reconstructed by in situ TEM and operando X-ray
absorption spectroscopy investigations [105]. The results suggest that the dissolution and
deposition of copper ions is the main reason for the enlargement of catalyst size and the
formation of copper oxides plays a vital role in this process.
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by electron beam deposition. Reprinted with permission from Ref. [90]. Copyright 2015, The Royal
Society of Chemistry. (c) An automatic platform that can generate efficient pipetting-to-microplate
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oxides using inkjet printing. Reprinted with permission from Ref. [82]. Copyright 2012, American
Chemical Society. (f) Controlled preparation of catalysts by flow chemistry in microfluidic channels.
Reprinted with permission from Ref. [99]. Copyright 2016, Elsevier.

4.4. High-Throughput Testing

Various high-throughput testing techniques, which characterize the catalytic behavior
in situ, have been developed to quickly test the performance of catalysts and screen out the
catalyst with the best performance. These techniques are mainly based on the characteristics
of products, such as the fluorescent or thermal signals measured by a CCD camera [80,106]
or the composition and yield of products measured by infrared spectrum [107–110], gas
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chromatography and mass spectrometer [36,111,112]. All the methods can quickly measure
the compositions and ratios of products in situ and significantly improve the efficiency and
accuracy of high-throughput testing.

For example, a fluorescent acid-base indicator is added to the electrolyte. During the
electrochemical reduction process of CO2, platinum catalysts with higher catalytic activity
consume more H+, causing the pH and thus the fluorescent intensity to increase, as shown
in Figure 6b [80]. Alternatively, infrared thermal imaging is used to study the catalytic
activity of three foam catalysts, e.g., silicon carbide, alumina, and aluminum [113]. When
CO2 is reduced to form methane by the catalysts, heat is released and the catalytic activity
is proportional to the amount of released heat, which could qualitatively be characterized
by infrared thermal imaging.

High-throughput characterization of catalytic performances by mass spectrometry is
mostly realized by designing an automatic stage and exporting the products in situ. For
example, a microreactor array with 100 channels is designed for high-throughput screening
of alloy film catalysts [114]. After the reaction of gas on the catalyst surface, the product is
sent to a mass spectrometer for analysis using a capillary sampler automatically controlled
by an x-y positioning stage, as shown in Figure 6c.

Electrochemical performances could also be measured in situ by a mass spectrometer.
For example, a scanning flow cell is implemented with an online mass spectrometer to
enable rapid in situ detection of reaction products, as shown in Figure 6d [29]. In the
experimental setup, a tip, which can direct volatile products of the electrochemical reaction
into a mass spectrometer, is incorporated into the flow cell through a PTFE membrane, thus
enabling high-throughput in situ analysis.

Alternatively, electrocatalysts are directly coated on the pervaporation membrane to
facilitate the volatilization of products into a mass spectrometer and quantify the local
performance of the CO2 electrocatalytic reaction, as shown in Figure 6e [111].

Similarly, a scanning electrochemical flow cell is equipped with an online mass spec-
trometer to enable quasi-real-time detection of hydrogen, methane, and ethylene, thereby
accelerating the screening of electrocatalysts for CO2 reduction, as shown in Figure 5f [115].
After the electrochemical reaction, the effluent from the flow cell passes through a pervapo-
ration cell to separate gaseous products, which are then pumped to a mass spectrometer
for online detection.

After high-throughput testing, the relationship between catalyst composition, and cat-
alytic performance can be investigated and the uncovered relationship could help to reduce
the parameter space for the searching of high-performance catalysts. In addition, the ob-
tained experimental results could verify the prediction of high-throughput computing and
help to improve the accuracy of high-throughput computing. In return, high-throughput
computing will better determine the parameter space and reduce its size, thus improving
the efficiency of high-throughput screening.

Despite the important progress made by high-throughput methods in the screening of
high-performance CO2 reduction catalysts, there are still some challenges that need to be
addressed. For high-throughput computing, the adaptability, robustness, and explainability
of machine learning algorithms and the lack of large data need to be improved, while the
high computational cost of DFT and professional knowledge required for DFT make it a
challenge for its wide applications. For high-throughput experiments, technologies, such as
pipetting robots and inkjet printers, are restricted by factors, such as high cost and limited
materials. In addition, the high price of in situ testing equipment and their low versatility
also need to be solved. Combining high-throughput computing and high-throughput
experiments to better screen high-performance catalysts for CO2 reduction is of important
research value.
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by mass spectrometry. Reprinted with permission from Ref. [111]. Copyright 2018, American
Chemical Society. (f) Schematic diagram of an electrochemical flow cell with in situ product detection
by mass spectrometry. Reprinted with permission from Ref. [115]. Copyright 2019, American
Chemical Society.

5. Conclusions

The conversion and utilization of CO2 have a dual significance in reducing carbon
emissions and solving energy demand. However, CO2 reduction catalysts with high
activity, selectivity, and stability are still lacking. High-throughput screening provides
an efficient and low-cost strategy for the searching of high-performance CO2 reduction
catalysts. This review summarizes the research progress on high-throughput screening
of high-performance CO2 reduction catalysts. The catalytic mechanism, influencing fac-
tors, and catalyst candidates for CO2 electrocatalytic reduction are summarized, which
provide a reference for understanding the CO2 electrocatalytic process and selecting cata-
lyst candidates. High-throughput computational methods are introduced with emphasis
on the application of density functional theory that investigates the underlying mecha-
nism and machine learning that accelerates the screening efficiency. High-throughput
experimental methods include experimental design, high-throughput synthesis, in situ
characterization, and high-throughput testing, which improve the experimental efficiency.
Promising directions for high-throughput screening of high-performance catalysts include:
(1) High-performance multicomponent Cu-based catalysts. Cu is relatively inexpensive but
capable of producing different hydrocarbons, while multicomponent Cu-based catalysts
could effectively improve the catalytic activity. (2) High-throughput platforms with the
combination of high-throughput computational and experimental methods. The large data
that machine learning relies on can be obtained by high-throughput experiments. In return,
machine learning can effectively reduce the parameter space and provide guidance for
high-throughput experiments, thus improving the screening efficiency. (3) In situ high-
throughput testing techniques. Current high-throughput platforms are mainly limited by
high-throughput screening of catalytic performances. In situ high-throughput testing can
quickly obtain experimental data under operating conditions and ensure the efficiency and
accuracy of catalyst screening.
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