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Abstract: Advanced small modular reactors (SMRs) have recently been developed in many designs;
therefore, nuclear energy stands out as a promising alternative to sustainability and reliability in
replacing fossil fuel energies in microgrids. SMRs have been shown as the best option due to the fact
of their lower initial capital, greater scalability, and siting flexibility compared to large nuclear plants.
Nowadays, there are several simulators able to reproduce all the safety and control mechanics of
different nuclear reactors; however, there exists a lack of emulators able to put these functionalities
into a real scenario to ensure the feasibility of the use of nuclear energy within energy systems,
especially in nonconventional systems. This paper aims to mimic the central control system of
SMRs by modeling the nuclear processes aiming to contribute to real-time simulations using SMRs
integrated with renewable energy in microgrids that could be applied for different scenarios, such
as cogeneration systems or fast-charging stations for electric vehicles, by considering the impact on
dispatch and reliability. The simulation process of the proposed model was validated experimentally
using the hardware-in-the-loop technique, which consisted of the modeling being integrated into
the hardware and tested using real-time simulators. The proposed system, also denominated as
SMR-in-the-Loop, was designed and adapted to be easily integrated with existing microgrid systems
to represent the behavior of an SMR in nuclear-renewable hybrid energy systems, avoiding high
investments and complexity in testing and implementing actual nuclear reactors.

Keywords: small modular reactor; hardware-in-the-loop; nuclear-renewable hybrid energy systems;
modeling and simulation

1. Introduction

Over the last decades, it has become more evident that to measure the level of develop-
ment of civilization, it is necessary to analyze how efficiently and sustainably electricity is
generated. It is already evident that renewable energies are key to fighting climate change;
therefore, it is a trend that must be part of all types of energy grids. However, these systems
are considered to be intermittent sources due to the fact of their fluctuating nature and
their dependency on external factors that cannot be controlled and their efficiency, which is
highly influenced by the weather, resulting in problems of energy supply and continuity of
service [1].

Renewable energy systems mostly need dispatchable generation to maintain stability.
This is where nuclear energy stands out as a promising alternative in aiming for reliable and
carbon-free electricity. Nuclear power plants (NPPs) can reduce greenhouse gas emissions
and mitigate several other toxic air pollutants. Hence, NPPs can provide many benefits
including fossil fuel replacement, renewable sources integration, and application with
cogeneration systems [2].

Although researchers have shown the importance of nuclear energy in meeting the
world’s increasing energy demand and mitigating the effects of global warming, the
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nuclear sector has slowed in growth over the last few years, mainly due to the fact of its low
popularity resulting from the most worldwide known nuclear disasters, which resulted
in large-scale nuclear plants falling out of favor with some governments and populations.
The most well-known and socially influential nuclear accidents, namely, Three Mile Island,
Chernobyl, and Fukushima, are the main reasons nuclear energy has a misconception
among the population [3]. However, giving up this technology based on these events is a
big mistake. They were improving technology, ensuring greater security and reliability, and
taking advantage of the numerous benefits that nuclear energy can provide to humanity [4].

Although shreds of evidence show that nuclear energy is safer and more sustainable
than fossil fuels, nuclear power corresponds to only 4% of the global energy mix. To reverse
this scenario, new nuclear reactor technologies have begun to be developed to increase
their security and reliability, emphasizing small modular reactors (SMRs). In accordance
with the International Atomic Energy Agency (IAEA), small modular reactors (SMRs) are
often used to describe nuclear reactors that can be built and assembled in a factory and
then shipped to be installed on location [5].

1.1. Small Modular Reactors

Several nations are developing small modular reactors (SMRs) to incite the use of
nuclear energy in the world’s energy matrix to meet future energy demands and environ-
mental standards. These reactors aim for the deployment of innovative nuclear technologies
in energy systems by providing advantages in the field of security, safety, and waste man-
agement; improved manufacturing techniques and installation logistics; adapting plant
output to increase operating flexibility; efficient resource utilization and economy; flexibility
in design, siting, and fuel cycle options; increased affordability [6].

Moreover, these developments seek to increase the accessibility of nuclear energy in
markets where the use of a conventional nuclear power plant is unfeasible, in other words,
to arouse nuclear energy investment in scenarios where nuclear energy is usually not an
option such as in developing countries, microgrids, and energy systems with a lower rate
of increase in demand for the replacement of fossil fuels as fuel sources.

One of the central promises of SMR technology is a reduction in the investment cost
through modularization, which allows for the manufacture of these reactors on a large
scale, which are built and assembled in a factory and then shipped to be installed at the
location, reducing both the cost and time involved in its construction. Due to the lower
initial price compared with a large NPP, it is expected that emergent nations will start
to invest more in this technology [7]. In other words, standardization causes projects to
take less time, and as they are modular, there is the possibility of starting with a smaller
production and adding small reactors as needed. The project can start small and grow over
time, unnecessary for the total initial investment. In addition, everything that reduces or at
least dilutes the expense of a plant is essential for the survival of nuclear energy, since the
investment cost is not one of its positive points.

Another potential application of SMR power production is integrating energy systems
with a high share of renewable sources. As the most common renewable energy systems
used currently, such as solar and wind, are highly dependent on the weather and, con-
sequently, are intermittent, their use is only justified when integrated with a sustainable
and dispatchable energy source, and this is where SMRs stand out as the best option in
these scenarios.

The original concept of an SMR is defined based on the output nuclear power plant rate,
typically less than 300 MW. However, these reactors provide a broad range of applications
beyond the electrical system, possibly addressing partial or full thermal power to cogenerate
applications, such as heating, hydrogen generation, and desalination. This possibility of
using the capacity of a nuclear reactor in several applications results in a significant increase
in the return on investment [6].

Nowadays, there is a wide range of SMR design concepts in different stages of devel-
opment worldwide, and many types use different reactor designs, configurations, types
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of moderators, coolant systems, and fuel, resulting in unique designs. According to the
International Atomic Energy Agency (IAEA), over 70 designs of SMRs are currently under
development. Advanced reactors based on the concept of light water reactors (LWRs) are
the most used SMR design, representing approximately half of the SMR concepts under
development. The other half corresponds to reactors incorporating alternative coolants,
such as molten salts and liquid metals, modern system configurations, and more effective
fuels [8]. A summary of the main reactor designs under development is shown in Figure 1.
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Another reason these reactors are more economically attractive is that each module
can be replenished individually. In the case of conventional reactors, they must be turned
off for weeks to cool down, and only then can they be filled. In addition, in the case of
traditional reactors, the period of replenishment leads to economic loss, since during the
entire time, the plant needs to be shut down, stopping the production of electricity. Finally,
these SMRs are designed to be integrated into nonconventional energy systems, which
means that nuclear energy will probably be used beyond the conventional baseload concept.
However, these SMRs are not actually small and cheap enough to become economically
feasible for installment in research centers or laboratories for simulation purposes [9].

1.2. Nuclear Power Plant Simulators

Numerous studies have analyzed the functioning and benefits of SMRs. It is becoming
evident for the need of complex real-time simulation-embedded systems, discarding the
need to implement an actual reactor for research and standards procedures. Currently, there
are several simulators able to reproduce all the safety and control mechanics of different
nuclear reactors, providing practical learning related to the engineering and physics of
nuclear reactors. According to the International Atomic Energy Agency (IAEA), these
simulators are currently available on the market for education and training [10] as shown
in Table 1.

However, in addition to the comprehensive availability of simulators, there is still a
lack of emulators able to put these functionalities into a real scenario to ensure the feasibility
of the use of nuclear energy within energy systems, especially in nonconventional systems
and, therefore, to simulate the behavior of an SMR in a hybrid microgrid with less outlay
and complexity compared with actual testing reactors.
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Table 1. Available nuclear reactor simulators [10].

Pressurized Water Reactor (PWR)

• Advanced PWR: Two-Loop Large PWR (Korean-OPR 1000)

• Russian-Type PWR (VVER-1000)

• Advanced Passive PWR (AP-600)

• Integral Pressurized Water Reactor (SMR)

Boiling Water Reactor (BWR)

• Conventional Boiling Water Reactor with Active Safety Systems (BWR)

• Advanced BWR with Passive Safety Systems (ESBWR)

Pressurized Heavy Water Reactor (PHWR)

• Conventional Pressurized Heavy Water Reactor (PHWR)

• Advanced PHWR (ACR-700)

Under Development

• High-Temperature Gas-Cooled Reactor (HTGR)

• Sodium-Cooled Fast Reactor (SFR)

1.3. Load following—Modes of Nuclear Power Plant Operation

Due to the complexity, the lack of efficiency, and the risks in carrying out maneuvers in
nuclear plants, NPPs have commonly been classified as baseload electricity generators over
the last decades, which provide a constant energy supply to the load. However, this concept
is beginning to change lately as a result of the increasing penetration of unstable energy
sources into the electric grid, such as renewable sources, as well as the increasingly common
microgrid with a high fluctuation of energy demand, which leads NPPs to operate with a
variable output rate to follow the energy demand, known as the load-following technique.
In addition, in nuclear reactors, this mode of operation typically works by reducing or
increasing the reactivity in the core, which can be achieved using several methods, resulting
in a variation in the thermonuclear power reduction [11].

Figure 2 shows a simplified control system concept of a nuclear power plant, which
is composed of a reactor, a heat transport system (HT), a steam generator (boiler), and an
electrical generator (T/G). In this figure, the blue boxes represent the NPP subsystem, while
the yellow ones are the different control systems, which are explained in detail below [12].
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Basically, there are two modes of operation in a nuclear power plant, namely, the
normal and alternate modes. Their selection will depend on the actual scenario and the
necessity of adjusting the output power. When a variation in the electrical demand occurs,
the mismatch will provoke a frequency variation in the electrical grid. This fluctuation in
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the electric grid will be sensed by the turbine generator, which will change its speed aiming
to meet the level and frequency of the energy demand.

In the normal mode, this change in the turbine speed will be reflected in the governor
valve, adjusting the amount of steam directed to the turbine. The reactor’s regulating
system then recognizes this steam level variation, which will activate regulation techniques
to adapt the reactivity inside the reactor’s core according to the turbine generator. This
mode is also known as reactor following or the turbine leading mode, since the turbine will
define the output power, and the reactor will respond by changing the reactivity inside
the core.

On the other hand, in the alternative mode of operation, the electrical output is defined
first in the reactor core, and the turbine will change the output power according to the
desired reactivity level. This mode is also known as reactor leading, since in this mode, the
output in the turbine will reflect the reactivity in the reactor [13].

The following subsections explain the details of each load-following mode of operation.

1.3.1. Normal Mode

In this mode, the turbine leads the reactor, and the operation process occurs as follows,
with the steps identified in Figure 3:

1. The desired value of the generator output is specified by the unit operator (setpoint);
2. The unit power regulator (UPR) reads the target value entered by the user (setpoint)

and compares it with the actual generator output power (T/G);
3. According to the gap between the setpoint value and the output power, the turbine

controller changes the opening of the governor valve (Gov) to control the amount of
steam entering the turbine;

4. Changing the governor valve opening (Gov) also changes the pressure and water
level inside the boiler. The boiler level control (BLC) ensures that the amount of water
inside the boiler is at the desired level;

5. The boiler pressure control (BPC) is responsible for monitoring and controlling the
boiler pressure by setting the steam discharge valve (SDV) opening;

6. The BPC also calculates the change in the reactor power setpoint and sends a command
to the reactor regulating system (RRS) to compute the new setpoint value;

7. The RRS compares the demanded power setpoint request from the BPC with the
current power of the reactor power and, according to the difference, changes it to the
reactivity mechanism using the moderator temperature coefficient (MTC) to mitigate
the power error;

8. The reactor power variation also affects the heat produced in the reactor’s core and,
consequently, the amount of heat transferred (HT) to the steam generator;

9. The heat transport system’s pressure and inventory control (HTP/I) is responsible
for controlling the heat transport pressure to maintain the pressure at a fixed setpoint
(and in some reactors with a pressurizer, the pressurizer level is also controlled).
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1.3.2. Alternate Mode

In this mode, the reactor leads the turbine, and the operation process occurs as follows,
with the steps identified in Figure 4:

1. The desired value of the generator output is specified by the unit operator (setpoint);
2. The RRS compares the demanded power setpoint request by the user (setpoint) with

the actual power of the reactor power;
3. According to the difference, the reactivity mechanism changes using the moderator

temperature coefficient (MTC) to mitigate the power error;
4. The reactor power variation also affects the heat produced in the reactor’s core and,

consequently, the amount of heat transferred (HT) to the steam generator;
5. The heat transport system pressure and inventory control (HTP/I) is responsible for

controlling the heat transport pressure to maintain the pressure at a fixed setpoint
(and in some reactors with a pressurizer, the pressurizer level is also controlled);

6. The steam from the boiler then drives the turbine according to the setpoint, resulting
in the output power rate according to the desired value.
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1.4. Modeling Nuclear Reactors

In the literature, several studies have analyzed the control systems of nuclear reactors.
In [14], the authors developed a MATLAB/Simulink model for six groups of delayed
neutrons with temperature reactivity feedback and different input reactivities. In [15],
the author reduced the point kinetic equation of six groups of delayed neutron equations
into one influential delayed neutron group and developed a Simulink model to solve it.
This paper used this methodology to provide the total delayed neutron fraction and the
decay constant for one group of delayed neutron precursors for four different nuclear fuels,
namely, uranium-235, uranium-233, uranium-238, and plutonium-239. In [16], the author
presented two other models of a PWR: a linearized and isolated core model and a nonlinear
model for a nuclear system with U-tube steam generators. This was one of the research
projects in the literature that motivated the development of this paper. For this paper, the
desired power output rate was considered as a modeling input, which would control the
reactivity and, consequently, the generation of energy either by the position of the control
rods, the cold leg temperature, or the steam valve opening. Figure 5 shows the modeling
schematic used in this paper.
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2. Small Modular Reactor in the Loop
2.1. Hardware-in-the-Loop (HIL)

Hardware-in-the-loop (HIL) is a setup that allows for the interconnectivity of hardware
and controllers with real-time simulators by emulating real-life conditions, reducing the
complexity and cost compared to actual physical tests [17]. Hardware-in-the-loop consists
of various virtual types of sensors, such as accelerometers or gyroscopes, and actuators,
such as electric motors, turbines, and pumps, all connected to a central computer.

The HIL technique provides tremendous advantages for devices under development,
because it avoids the necessity of the final physical product for performance testing, espe-
cially for devices where manufacturing requires a complex system, dangerous raw material,
a costly and time-consuming process, and large equipment such that testing in laboratories
becomes unfeasible [18]. Figure 6 shows the basic concept of an HIL system.
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2.2. SMR-in-the-Loop (SMRiL)

The proposed SMR-in-the-loop, or SMRiL, was developed using the typical hardware-
in-the-loop (HIL) technique, and it is used as part of the simulation environment to produce
real-world scenarios for small modular reactors, aimed at increasing the efficiency of tech-
nology in energy grids. The main point of SMR-in-the-loop is to mimic the reactivity control
devices of a reactor by considering real-world conditions and responding to unpredictable
energy demands, in other words, using the device in a lab or a real energy microgrid to
analyze this source’s effectiveness and reliability. Figure 7 exemplifies the schematic of an
SMR-in-the-loop implementation.
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In emulating different reactor designs and regulating systems to compare feasibility
in microgrid scenarios, it is helpful to identify possible errors and complement existing
research on the use of SMR in microgrids by testing critical techniques that are hard to try
otherwise such as transmission line limitations, intermittency of other energy sources, un-
predictable fluctuation of load profiles, testing of the actual efficiencies of the cogeneration
processes, and integration with different networks (i.e., water, thermal, and electrical).

The proposed system was used to model and evaluate the behavior of power genera-
tion from a typical PWR by considering the normal mode of Load Following operating, in
which the reactor will adjust its power output as energy demand fluctuates throughout
the day by managing the opening of the governor valve in order to control the amount
of steam entering the turbine, and consequently changing the output to the desired rate.
The proposed model aims to contribute to real-time simulations using nuclear modeling
to simulate SMRs integrated with renewable energy in microgrids that could be applied
to different scenarios, such as cogeneration systems or fast-charging stations for electric
vehicles, by considering the impact on dispatch and reliability. For the modeling and
simulation, MATLAB Simulink software and Arduino hardware were used.

3. Nuclear-Renewable Hybrid Energy Systems

As mentioned before, using renewable sources and nuclear energy is essential to
ensuring sustainability and energy resilience. However, there are disadvantages and risks
associated with any energy source; while renewable is highly dependent on the weather
and, consequently, intermittent, nuclear energy systems consist of a complex control system,
and it is a time-consuming and expensive technology to be implemented [2].

Nuclear reactors provide a nonlinear output power when submitted to a power
rate variation, making integration with a microgrid even more complex. The energy
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management system needs to address the response delay in stabilizing the output power,
which uses alternative sources and energy storage systems to ensure the optical energy
flow in the energy system.

The proposed SMRiL was developed to integrate this kind of hybrid energy system,
and a real-time simulation was used to test the grid’s reliability under different conditions.
Figure 8 illustrates a schematic of a hybrid energy system and the main components that
could be integrated into the system, in which the blue boxes represent energy sources,
green boxes represent energy storage systems, yellow boxes the energy loads, and the grey
box the controller responsible for converting energy between alternate and direct current
network. The main purpose of evaluating this hybrid system was to ensure its resiliency,
regardless of the components of the system and environmental conditions; in other words,
an effective hybrid system needs to be able to adapt itself in any possible scenario.
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4. Modeling Nuclear Energy Systems
4.1. Reactor Specification

The reactor specification for this work was based on a typical pressurized water reactor
(PWR), based on the H. B. Robinson Steam Electric Plant [19], consisting of a pressurized
vessel, pressurizer, and three vertical U-tube steam generators with recirculation. The
project considered constant values for a specific reactor design; however, this work aimed
to provide an adaptable system that would evaluate any PWR reactor design. The reactor
specifications used in this project are stated in Table 2.

4.2. Reactor Point Kinetic Equation

The number of neutrons in a nuclear reactor, which directly reflect the level of reactivity
in the core, is a function of time, position, and energy. The neutron population changes in
the reactor’s core according to the fission reaction of uranium or plutonium with a neutron
from a previous generation. When the nuclear population increases in the reactor, the
number of fissions increases, consequently increasing the reactor power. The same happens
otherwise. However, the production of neutrons is not only by the prompt emerging from
fission reactions but also by some neutrons whose fuel can produce a high concentration of
neutrons that occasionally decay and release either beta particles or additional neutrons.
These extra neutrons that come from decay are known as delayed neutrons.
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Table 2. PWR reactor specifications [19].

Core Thermal and Hydraulic Characteristics

Total primary heat output 2200 MWth
Nominal primary system pressure 2250 psi

Total coolant flow rate 1.02 × 108 lb/h
Average coolant velocity along the fuel rods 14.3 ft/sec
Total mass of the coolant in the primary loop 40,6050 lb

Nominal coolant inlet temperature 546.2 ◦F
Nominal coolant outlet temperature 602.1 ◦F

Active heat transfer surface area 42,460 ft2

Average heat flux 171,600 BTU/h. ft2

Fuel tcoolant heat transfer coefficient 176 BTU/h. ft2. ◦F

Kinetic Characteristics

Doppler coefficient −1.30 × 10−5 (Delta k/k)/◦F
Moderator temperature coefficient −2.00 × 10−4 (Delta k/k)/◦F

Moderator pressure coefficient 3.00 × 10−6 (Delta k/k)/psi
Prompt neutron lifetime 1.60 × 10−5 sec
Delayed neutron fraction 6.40 × 10−2

Steam Generator Data

Number of U-tubes 3.26 × 103

U-tube diameters 8.75 × 10−1 in
Average tube wall thickness 5.00 × 10−2

Mass of U-tube metal 9.18 × 104 lb
Total heat transfer area 4.44 × 104 ft2

Steam Conditions at Full Load

Steam flow 3.17 × 106 lb/h
Steam temperature 5.16 × 102 ◦F

Steam pressure 7.70 × 102 psig

Primary Side Coolant

Reactor coolant flow 3.39 × 107 lb/h
Reactor coolant water volume 9.28 × 102 ft3

Second Side Fluid

Feedwater temperature 4.35 × 102 ◦F
Secondary side water volume, full power 1.53 × 103 ft3

Secondary side steam volume, full power 3.20 × 103 ft3

With delayed neutrons, the neutron population in the reactor’s core increases, and this
scenario directly affects the chain reaction. For this reason, it is essential to consider these
delayed neutrons to have adequate reaction control. Engineers usually use the point kinetic
equation to determine the neutron population, considering both prompt and delayed
neutrons. Equations (1) and (2) reduce the reactor to a point, not considering the neutron
flux’s shape and density distribution.

dn(t)
dt

=

(
ρ(t)− β

Λ

)
.n(t) +

6

∑
1

λici(t) (1)

dci(t)
dt

=

(
βi
Λ

)
.n(t)− λici(t) (2)

where n(t) is the neutron density, which is proportional to reactor power; ρ is the reactivity;
ci is the i-th delayed neutron concentration; β is the effectively delayed neutron fraction; Λ
is the prompt neutron generation time; λi is the decay constant of the ith delayed neutron
and ci is the fraction of the ith delayed neutron. This paper considered uranium-235 as
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a fissile material for the reactor core. Table 3 summarizes the typical values of the decay
constant and the fraction of the six delayed neutrons for the materials used in this paper.

Table 3. Delayed neutron data.

Group
U-235 (Thermal Fission)

Mean Life (s) Decay Constant ( λi/s) Fraction

1 80.4 0.0124 0.00021
2 32.8 0.0305 0.00140
3 8.98 0.111 0.00125
4 3.32 0.301 0.00253
5 0.88 1.14 0.00074
6 0.332 3.01 0.00027

This paper used the Rashid [15] methodology, which reduced the point kinetic equa-
tion of the six groups of delayed neutron equations into one effective delayed neutron
group. The decay constant and a fraction of the delayed neutron can be obtained by
Equations (3) and (4), respectively.

β =
6

∑
1

βi = 0.0064 (3)

λ =

(
1
β

6

∑
1

βi
λi

)−1

= 0.0767 (4)

4.3. Reactor Core

For this project, data from H. B. Robinson Nuclear Plant was used, and the values
for the coefficients were analyzed using the information in Table 3. The equations are
described below. The reactor power was modeled using the point kinetics equations with
six groups of delayed neutrons, and the reactivity feedbacks were the result of varying the
fuel temperature, coolant temperature, and primary coolant system pressure. The following
equations give the mathematical representation of the reactor core:

• Deviations in the reactor power from the initial steady-state value (5):

dδP
dt

= − β

Λ
δP + ∑

i
λiδCi +

α f P0

Λ ∑
f uel
nodes

Ff iδTf i +
αpP0

Λ
δPp +

P0

Λ
δρrod +

αcP0

Λ ∑
coolant

nodes

FciδTci (5)

• Deviation of the normalized precursor concentration from its steady-state value (6):

dδCi
dt

=
βi
Λ

δP − λiδCi (6)

A nodal approximation to determine the temperature in the fuel and coolant was used
in the heat transportation system in the reactor’s core, which included one node for the
fuel temperature and two for coolant temperature to increase the value approximations. A
schematic of the nodes is Figure 9.
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The following equations provide a mathematical representation of each node:

• Average fuel temperature (7):

dδTf i

dt
=

Q f i(
MCp

)
f i

δP −
(UA f

MCp

)
f i

(
δTf i − δTc1i

)
(7)

• Average coolant temperature in the ith fuel node (8):

dδTc1i
dt

=

(UA f

MCp

)
ci

(
δTf i − δTc1i

)
− 2

τ
(δTc1i − δTcin) (8)

• Outlet coolant temperature in the ith fuel node (9):

dδTc2i
dt

=

(UA f

MCp

)
ci

(
δTf i − δTc1i

)
− 2

τ
(δTc2i − δTc1i) (9)

4.4. Pressurizer

A representation of the pressurizer is given by determining the energy and volume
balance, as well as the mass in the pressurizer, which is reflected by the expansion of
the water in the coolant nodes in the primary loop. The following equations provide a
mathematical representation of the pressurizer:

• Water flow in the pressurizer (10):

δWw =
N
∑

i=1
Viγi

dδTLP
dt + Viγi

dδTc1
dt + Viγi

dδTc2
dt + Viγi

dδTup
dt + Viγi

dδTHL
dt + Viγi

dδTIP
dt + Viγi

dδTp
dt

+Viγi
dδTOP

dt + Viγi
dδTCL

dt

(10)

• Pressure in the pressurizer (11):

dδPp

dt
= B1δPp + B2δWw + B3δq (11)

• Integral control action (12):

dδX
dt

= 0.00556 ∗ δPp (12)

4.5. Steam Generator

The modeling proposed in this work used a simple steam generator schematic repre-
sented by three different subsystems: the primary fluid, the secondary fluid, and the tube
metal. This paper also considered the steam generator without a control action, assuming
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that the design proposed will be applied only for small perturbations so that the controller
dead-band will avoid variations in the feedwater flow.

The following equations give a mathematical representation of the steam generator:

• Primary water–energy balance (13):

dδTp

dt
=

1
TSG

δTIP −
(hA)pm

MPCP

(
δTp − δTm

)
− 1

TSG
δTP (13)

• Metal energy balance (14):

dδTm

dt
=

(hA)pm

MmCm

(
δTp − δTm

)
− (hA)ms

MmCm

(
δTm − δTsat

δPs
δPs

)
(14)

• Steam generation pressure (15):

dδPs

dt
= D1δPs + D2δTm + D3δTFW + D4δWFW + D5δWs0 (15)

4.6. Piping

For this work, two piping systems for the hot and cold leg and four plenums for the
steam generator input and output, and the upper and lower reactor were considered. It
was also considered that the piping and plenums system had mixed volumes, and the
following equation gives the temperature in the output and input sections:

• Piping temperature (16):

dδT
dt

=
1
τ

δTin −
1
τ

δT (16)

4.7. State-Space Representation of the Dynamic Equations

State-space is a calculation approach that arranges a multivariable system that contains
several inputs, outputs, and state variables. These equations can be described as first-order
differential equations [20]. The mathematical representation of the system is described in
Equations (17) and (18), where A is the state matrix, B is the input matrix, C is the output
matrix, D is the direct transmission matrix, X is the vector of state variables, and U is the
external input vector.

dX
dt

= AX + BU (17)

y = CX + DU (18)

Figure 10 shows a schematic using MATLAB/Simulink that simplifies the state-space
system calculation.
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Figure 10. State-space system using Simulink.

To solve Equations (5)–(16), it was necessary to determine the matrixes of each group.
The matrix X is the system matrix, representing the variables in the proposed system,
matrix U is the input variable matrix, the steam flow rate to the turbine, and matrix B is
the constant correspondent to the input variable. The matrixes X, U, and B, are presented
in Figure 11.
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Figure 11. Matrixes X, U, and B for the State = Space system.

The matrixes A represent the constants of each equation related to the output variables,
and it is presented in Figure 12.
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5. SMRiL Modeling

For this study, MATLAB/Simulink were used to ease the calculation of the state-
space representation and to perform the time response of the system as well as to create
a subsystem aimed at hardware integration to develop the SMR-in-the-loop and test the
system considering actual scenarios in a nuclear-renewable hybrid microgrid. Figure 13
shows the complete Simulink schematic.
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Figure 14 states the input system, which inserts the desired power rate according to a
signal from either the energy management or a user interface. The system calculates the
correspondent steam valve opening to achieve the desired output power.
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The schematic was combined into a Simulink block, as shown in Figure 16, to facilitate
hardware integration and use in real-time simulators such as OPAL-RT. The schematic was
designed to provide the reactor with nominal power and the desired output power rate as
a system input.
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To evaluate the behavior of power generation from a nuclear reactor, the output
response was simulated using a desired power rate of 50% of the full power as the signal
input. Figure 17 shows the corresponding output curve, which can analyze the system’s
behavior and time response to stabilize the output power at the desired value, which
was approximately 150 s after inserting the input signal. This time response is crucial
for evaluating the integration of NPPs with renewable and inconsistent demand profiles,
where the nuclear control system needs to variate the output to ensure the energy supply.
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Hardware Integration

The main point of this research was to develop an SMR-in-the-loop, which consisted of
a real-time simulator using the HIL method to mimic the behavior of nuclear reactors using
existing electrical and thermal networks as well as signal input from a real-time scenario.
For this, all the mathematical modeling presented in this paper was integrated into the
hardware, Arduino UNO, aimed at achieving the interconnection flexibility of the system
proposed with actual energy networks.

Hardware integration is important for enabling the system to mimic the output power
from a reactor by controlling energy sources according to the mathematical modeling.
In addition, hardware integration aims to develop a physical device that can be used in
different environments, either in lab research or in local experiments, which would not be
possible using only computer programming. Figure 18 shows the setup of the hardware
used in this project, where the user can set three different power rates to analyze the
performance, with output as a PWM signal to be sent to the energy management and
integrated with the nuclear-renewable hybrid energy system.
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Figure 19 shows the correspondent output curve, which can analyze the system’s
behavior and time response to stabilize the output power at the desired value, which
was approximately 150 s after inserting the input signal. This time response is crucial for
evaluating the integration of an NPP with renewable and inconsistent demand profiles,
where the nuclear control system needs to variate the output to ensure the energy supply.
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6. SMRiL Demonstration and Results

To demonstrate the functionalities of the proposed SMR-in-the-loop, the normal mode
technique of load following was used, as stated in Section 1.3, where the turbine generator
was synchronized with the grid and, depending on the electric load, a mismatch would
occur; consequently, the grid frequency would also change. Consequently, with the change
in the pressure of the steam line, the reactor will change the reactivity inside the core to
maintain the system’s stability at a desired power rate.

6.1. Energy Profile and Management

To simulate an electrical demand to be integrated into the system, a hypothetical
energy load was considered to serve as a base for the energy management to define the
desired power rates that the SMR needs to provide to achieve grid stability. Figure 20
shows the typical daily energy consumption used in this demonstration.
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The energy load will be read by the energy management system, which will translate
the energy demand in the signal input for the SMR-in-the-loop system. The data input is
summarized in Table 4.

Table 4. Energy demand.

Energy Management—INPUT

Time Rate

00:00 20%
02:00 15%
03:00 20%
05:00 25%
06:00 40%
07:00 55%
08:00 60%
16:00 70%
17:00 75%
18:00 90%
22:00 70%
23:00 40%

6.2. SMRiL—Output Power Control

Figure 21 shows the entire schematic of the SMR-in-the-loop, in which the energy man-
agement system is responsible for monitoring the grid in defining the desired power rate
to keep the electrical grid stable. The real-time simulator, in turn, receives the information
from the energy management to feed the hardware-in-the-loop system. Consequently, the
system will respond to the input by varying the output power rate according to the desired
power level throughout the day.
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7. Hybrid Energy System Demonstration

To make possible the interaction and evaluation of nuclear-renewable hybrid energy
systems, this paper developed a friendly user interface using MATLAB-GUI, which is able
to define the nuclear parameters from the SMRiL and also set renewable parameters, such
as the maximum power rate desired from the solar and wind energy as well as the energy
load profile, as shown in Figure 22.
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The input inserted in the user interface was used to simulate a viable system for all
possible combinations considering the output profile from the nuclear modeling as well
as the maximum power rate of each renewable source, which analyzed the best suitable
solution for the set design.

Figure 23 shows the nuclear output from the SMR modeling according to the energy
load profile inserted by the user, and Figure 24 shows the energy flow profile from the
integration of the nuclear-renewable hybrid energy system.
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8. Conclusions

Over the last years, the necessity of ensuring the flexibility of energy grids has become
more inevitable, mainly due to the movement towards replacing existing fossil fuel systems
with no-carbon emission sources, which will result in an increasing in the use of renewable
energy sources and the share of nuclear energy in the energy mix. This scenario is changing
the concept that nuclear energy is used only for baseloads, and the load-following technique
will become more frequent in nuclear power plants.

Even though there are several simulators able to reproduce all the safety and control
mechanics of different nuclear reactors; however, there is still exists a lack of emulators able
to put these functionalities into a real scenario to ensure the feasibility of the use of nuclear
energy within energy systems, especially in nonconventional systems.

Several studies found in the literature regarding nuclear and renewable energy systems
integration wrongly considered the assumption that the nuclear load-following technique
behavior has an instant and linear response, and this is especially since there is a lack of
software able to simulate nuclear energy in a microgrid. For this reason, this paper was
essential for evaluating the behavior of nuclear power plants when submitted by different
perturbations, which are a mechanism used to vary NPP output power for load following.
As shown in Figure 15, a nuclear power plant takes some time to stabilize the output power.
This delay in response is fundamental in evaluating the feasibility of using nuclear energy
in hybrid microgrids. Moreover, this study will benefit from integrating nuclear-renewable
energy systems where resilience is the main point, and the control of nuclear reactors must
be effective.

As mentioned in Section 3, this research focused on developing an integrated and
adaptive small modular reactor (SMR) model to represent different reactor designs and all
the main functions to perform a load-following technique for integration within hybrid
energy systems (HES) by analyzing existing models and identifying new features, aiming
to evaluate reactor behaviors when exposed to different perturbations.

For further studies, it should be considered to include a customizable mathematical
model where the user will be able to set the parameters of a nuclear plant and choose the
technology and adopted design. The main idea of this customizable mathematical model is
to make it possible to simulate the behavior of different nuclear reactors when exposed to
various perturbations.
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