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Abstract: With the advancement of an intellectual and numerical society, the coal mining industry
has also begun to change to intelligence. As an important aspect of intelligent coal mine construction,
coal mine communication has put forward more stringent standards for communication quality.
For the complex communication environment in mines, the transmission of communication sig-
nals is always damaged by various noises and interferences, resulting in serious distortion of the
communication signals received at the receiving end. Therefore, the use of traditional receivers for
information recovery has the problem of high bit error rate (BER), which cannot meet the standard of
intelligent coal mine construction. Based on this, the aim of this research is to combine convolutional
neural networks (CNN) and multi-input multi-output orthogonal frequency division multiplexing
(MIMO-OFDM) communication systems to design an intelligent receiver model for complex mine
communication systems. At the receiver side, CNNs are used to take the place of all the information
processing processes. First, features are extracted from the received IQ signal by the convolutional
neural network, and then the original information bit is recovered using a multi-label classifier to
finally realize end-to-end information restoration. The experimental results show that the intelli-
gent receiver model designed in this research has more accurate information recovery capability in
the complex mine channel environment compared with the traditional receiver. In addition, they
also verify that the intelligent receiver can still recover information effectively when the traditional
receiver cannot recover information properly in the case of partial loss of received data.

Keywords: intelligent coal mine communication system; mine information recovery; mine intelligent
receiver; deep learning; end-to-end signal processing

1. Introduction

With the advancement of the industrialization revolution, the coal mining industry
is also changing regarding intelligence and intensification. As an important aspect of
intelligent coal mine construction, the intelligence of a coal mine communication system
has become a topic worthy of study [1–3]. As a restricted space, mine tunnels are much
more complex than surface communication scenarios, and there are many branches and
bends distributed in the narrow space. Therefore, there are serious transmission losses
in mine communication. When electromagnetic waves propagate in mines, it will be
absorbed by the denser coal dust and water vapor in the air or reflected by the uneven
roadway rock walls and obstacles, thus causing serious transmission losses [4]. Due to
multipath fading [5], the transmission characteristics of the mine signals are destroyed,
which makes the communication system less reliable. With the innovation of communica-
tion technology, some of the communication technologies that have been used maturely in
terrestrial communication have been introduced into mine communication systems. For
example, MIMO-OFDM technology is considered as one of the most important transmis-
sion technologies in wireless communication systems because of its excellent transmission
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performance [6]. MIMO systems improve channel capacity and OFDM uses multi-carrier
technology to resist frequency selective fading caused by non-ideal factors during transmis-
sion, which also improves the system reliability to some extent. However, MIMO-OFDM
technology also has many limitations. For example, MIMO systems need to achieve a high
level of accuracy in channel state information and keep the channel stable, which is not
guaranteed in real communication. In addition, with the increased number of antennas,
the complexity of signal processing at the receiver increases.

Recently, rapidly developing artificial intelligence (AI) has brought new solutions
to many fields, especially deep learning, as one of the most outstanding branches of
AI, which has made important contributions in fields such as computer vision (CV) and
natural language processing (NLP) [7–9]. Therefore, a growing number of researchers
have started to study the application of deep learning in communication systems, hoping
that deep learning techniques can be used to solve communication challenges that are
difficult to be solved by traditional communication algorithms. There are many studies
on the introduction of deep learning into communication systems, including channel
estimation [10], channel decoding [11], channel equalization [12], channel modeling [13],
modulated signal identification [14], or other local performance optimization. For signal
modulation identification, the literature [15] addresses cognitive radio and proposes the
use of deep learning methods for automatic signal modulation identification. The authors
used a data-driven approach to train CNNs on different datasets to achieve higher accuracy
signal recognition. For channel estimation, the literature [16] utilizes deep neural networks
for channel estimation and signal detection in OFDM systems and demonstrates that
the deep learning approach has some improvements on the system BER performance
under severe wireless channel interference. For signal decoding, a deep neural network
scheme for polar coded short packet decoding was used in the literature [17]. A decoding
method for decoding polar codes in a flat fading channel is designed using a deep learning
approach. Simulation results show that the method can obtain the coding gain under the
fading channel with a simple codebook structure. For MIMO communication systems, a
self-encoder-based unsupervised deep learning scheme for the physical layer of single-user
MIMO communication is proposed in the literature [18]. The study combines multiple
MIMO assignments into one end-to-end optimization task as a way to reduce the BER
of signal transmission. It is shown that deep learning techniques and self-encoders can
transmit signals more efficiently at high signal-to-noise ratios and exceed the performance
of conventional spatial diversity MIMO systems. Although the above studies are significant
for performance optimization of wireless communication systems, they are still at the
level of local optimization of a single module. Some scholars have also started to use
neural networks to optimize multiple modules in communication systems. Deep neural
networks are proposed in the literature [19] to replace two signal processing modules,
equalization and decoding, as a way to improve the processing of multipath signals.
However, there is still a performance gap compared to the minimum MSE method with
known channel statistical states. In the literature [12], a deep learning-based channel
estimation and equalization approach is used to address the problems of conventional
channel estimation algorithms in the presence of interference. The results show that
deep learning algorithms can effectively solve the dilemma of traditional algorithms.
The above studies mainly use deep neural networks to optimize one or several signal
processing modules, which are simply a combination of local optimization and do not
achieve complete overall optimization. To achieve overall optimization at the receiver side,
the literature [20] introduces the concept of a deep receiver model that achieves end-to-
end recovery of information under non-ideal channel conditions and verifies that this
receiver model outperforms the conventional hard-decision receiver in terms of BER. The
authors use the classical DenseNet to construct the receiver model. However, the structural
design of DenseNet makes the training very difficult and cannot be adapted to the mine
communication scenario.
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Inspired by the above work, this research aims to explore the integration of deep
learning with MIMO-OFDM communication systems and design an intelligent receiver
model based on convolutional neural networks. The CNN is used to substitute the whole
information recovery process at the receiver side to achieve the overall optimization at
the receiver side, which is used to further improve the information recovery accuracy
at the receiver side of the MIMO-OFDM communication system in the complex mine
environment. The main work of this research has the following points.

• A new intelligent receiver model is designed for information recovery of MIMO-
OFDM wireless communication systems under complex mines. The model uses
convolutional neural networks to replace the information recovery processes such
as channel estimation, equalization, symbol synchronization, demodulation, and
decoding in conventional receivers to realize end-to-end recovery of the received
signal and global optimization at the receiver side. We used the IQ signal received by
the receive antenna of the MIMO-OFDM system as the input to the network model and
then recovered the original bits using a multi-label classifier after feature extraction by
the convolutional neural network.

• We designed a VOVNet-based intelligent receiver model and conducted simulation
experiments by setting a fixed modulation coding scheme in a constant channel
scenario and a dynamic channel scenario, respectively. The simulation data were
generated in MATLAB 2019b simulation software, and the data were fed into the
model for training after a simple normalization process. The trained network model
was used to predict the newly received IQ data and complete the decoding of the
brand new data.

• Due to the complex and changeable communication scenarios in mines, it may lead
to sudden communication interruptions, resulting in the loss of communication data.
Therefore, we specially performed data loss tests on the intelligent receiver model
designed in this paper.

The rest of this paper is organized as follows. Section 2 introduces the knowledge
of the mine fading channel model and MIMO-OFDM wireless communication system.
Section 3 describes in more depth the process of building the intelligent receiver model
for coal mines. Section 4 validates and discusses the experimental results of the model
under a variety of conditions. Finally, Section 5 provides the conclusions of this paper and
directions for future work.

2. Theoretical Basis

This section describes the theoretical basis of the coal channel fading model and
MIMO-OFDM communication techniques. These descriptions are the theoretical basis for
the subsequent research.

2.1. MIMO-OFDM Communication System Model

The MIMO-OFDM system uses multi-antenna technology to transmit OFDM mod-
ulated signals, which can effectively use the multipath effect to overcome signal fading,
improve data transmission rate, and reduce the BER of signal transmission. In this paper, a
centralized MIMO-OFDM system was used with the number of antennas, Nt and Nr, at the
transmitter and receiver ends, respectively, as shown in Figure 1. The original information
bit stream was encoded into Nt binary bit stream by constellation modulation and MIMO
coding to be OFDM modulated data, and then the signal transmitted to the wireless chan-
nel by the transmitting antenna after being OFDM modulated. After the wireless channel
transmission to the receiver side to obtain Nr received signals, OFDM demodulation to
obtain the MIMO-OFDM system of multiplexed subcarriers, and finally MIMO decoding,
demodulation and other operations obtain the recovery information bit stream.
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Figure 1. Conventional MIMO-OFDM system architecture.

Considering the channel as a flat fading channel, the channel pulse between the nt-
th transmitting antenna and the nr-th receiving antenna is correspondingly hnr ,nt(t). If
frequency bias and initial time delay are neglected, the signal received at the nr-th receiving
antenna can be expressed as:

ynr (t) =
Nt

∑
nt=1

hnr ,nt(t)snt(t) + vnt(t) (1)

In terms of a matrixm this can be denoted as:

Y = HS + N (2)

where S denotes the signal after MIMO coding and OFDM modulation, N is Gaussian
white noise with zero mean and variance σ2, and H is the channel matrix, which can be
expressed as:

H =

 h1,1 . . . h1,Nt
...

. . .
...

hNr ,1 · · · hNr ,Nt

 (3)

where hi,j(1 ≤ i ≤ Nr, 1 ≤ j ≤ Nt) is the channel coefficient with respect to the channel
between the i-th receive antenna and the j-th transmit antenna.

There are two implementations of MIMO technology: spatial diversity and spatial
multiplexing. Space-time coding is the most commonly used spatial diversity technique.
Among them, space-time packet coding (STBC) is a widely used space-time coding scheme
with its concise coding method. STBC is a reliable high-speed wireless communication
transmission optimization scheme, which can effectively reduce the bit error rate and
expand the channel capacity. Alamouti space-time coding [21] is a classic two-antenna
transmit diversity method in which two symbols, s1 and s2, are transmitted in two consecu-
tive time slots; in the first time slot, s1 and s2 are radiated to the wireless channel by the first
antenna and the second antenna, respectively; in the second time slot, −s∗2 is transmitted
by the first antenna and s∗1 is transmitted by the second antenna. The coding matrix can be
expressed as follows:

s =
[

s1 −s∗2
s2 s∗1

]
(4)

where each line represents the transmit data of each antenna in each time slot. With a
single receive antenna, the signal received in the first time slot can be expressed as:

y(1) = h1,1s1 + h2,1s2 + n1 (5)
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The signal received in the second time slot can be expressed as:

y(2) = −h1,1s∗2 + h2,1s∗1 + n2 (6)

where y(k) denotes the signal received at the k-th time slot.

2.2. Mine Wireless Channel Model

The mine communication environment is complex, and there are many branches and
bends in the narrow space, as well as obstacles, etc. Therefore, the mine wireless channel is
susceptible to damage from external factors, such as noise and interference, and there is
serious fading. Generally, underground wireless channels can be divided into two types:
large scale fading and small scale fading.

The large-scale fading of the mine channel mainly consists of free-space path loss
and specific electromagnetic wave transmission loss in the mine environment [22]. For
an arbitrary distance, the path loss ζ(t, d) at a specific time and location follows a normal
distribution in dB.

ζ(t, d) = ζ(t, d) + 10n lg
d
d0

+ Xσ(t) (7)

where t is time, d is signal transmission distance, d0 is the reference distance, n is the path
loss index, indicating the path loss growth rate, and Xσ(t) is the shadow fading, obeying a
normal distribution with mean 0 and variance σ2.

The electromagnetic wave propagation loss in the mine tunnel is related to the rough-
ness of the tunnel wall, the inclination degree, and the polarization mode of the antenna,
etc., where the vertical polarization loss is

Lver = 4.343λ2z

(
w2

a3
√

ϕ1 − 1
+

ρ2 ϕ2

b3
√

ϕ2 − 1

)
(8)

where λ is the wavelength of the electromagnetic wave signal, z is the distance between
the transmitting and receiving antennas, ω is the half-wave number in the horizontal
propagation direction, a and b are the height and width of the alleyway, ϕ1 and ϕ2 are the
relative dielectric constants of both sides and the top and bottom plates, and ρ is the half-
wave number in the vertical propagation direction. The total loss of horizontal polarization
wave is

Ltotal = Lhor + Lrough + Ltile (9)

where Lhor is the horizontal polarization loss, Lroughis the roughness loss, and Ltile is the
tilt loss.

Lhor = 4.343λ2z

(
w2 ϕ1

a3
√

ϕ1 − 1
+

ρ2

b3
√

ϕ2 − 1

)
(10)

Lrough = 8.636π3∆h2zλ

(
1
a4 +

1
b4

)
(11)

Ltile = 4.343π2ϑ2z
1
λ

(12)

where ∆h is the height of the roadway surface undulation and ϑ is the inclination angle of
the top wall roadway wall.

In this paper, Nakagami-m fading [23], which is commonly used for wireless channels
in mines, is used as a small-scale fading model in the alleyway with the probability density
function of

F(r) =
2mmr2m−1

Γ(m)Ωm exp
(
−(m/Ω)r2

)
(13)

where r is the Nakagami-m envelope, m is the fading factor, characterizing the signal fading
intensity, with larger m values indicating less signal fading, Γ(•) is the Gamma function,
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and Ω is the average power. The Nakagami-m distribution is used to accurately characterize
the fading of multipath signals in complex scenes. The actual channel scenarios, such as
long straight tunnels and turnouts in mine tunnels, are characterized by varying the value
of m.

3. Network Model

This section describes the implementation of the MIMO-OFDM intelligent receiver. For
the original information bit stream with M bits at the transmitter side, it is transmitted to the
receiver side through a series of operations at the transmitter side via a wireless fading chan-
nel. The receiver side performs feature extraction on the received IQ = (Re[y(k)], Im[y(k)])
signal, and then the extracted feature vector is subjected to multi-label classification to
finally achieve the recovery of the original information bit stream. Convolutional neural
network, as an outstanding technology to promote the rapid development of deep learning,
has significantly improved the feature extraction ability of neural network by superposition
of convolutional layers. ReseNet [24] is proposed to solve the performance degradation
problem caused by the accumulation of convolutional layers. Similarly, the introduction of
DenseNet [25] pushed the feature extraction capability of convolutional neural networks to
a new level. With the expansion of CNN in terms of depth and width, the ability of the
network model to extract features from data becomes more outstanding, but the demand of
the network model on computational resources also becomes more obvious, which makes
the training process of convolutional neural networks difficult and time-consuming. In
particular, DensNet has a serious feature redundancy problem, which makes the network
model training very difficult. Therefore, Lee etal. improved the feature aggregation model
on the basis of DenseNet and redesigned the activation function and finally proposed
VOVNet [26], which significantly reduces the inference speed of the model. In response to
the demand for instant mine communication systems, we used VOVNet to build a mine
intelligent receiver model.

3.1. Feature Extraction Network

Owing to the dense connection structure of DenseNet, the extraction ability of data
features is excellent, but it also brings problems, such as a long training time and serious
feature redundancy. In response to these problems, VOVNet proposes the one-short
aggregation (OSA) module to improve the dense connection structure of DenseNet and
realize the efficient use of GPU. This module improves the dense connection structure in
DenseNet and realizes the efficient use of GPU, which speeds up the model fitting speed
and reduces the redundancy of features and the demand for computational resources.

Feature Aggregation Model

DenseNet is a special type of CNN, where each layer in the network is related to
other layers to ensure that each layer has access to the maximum information flow. This
ensures that each layer has direct access to the output feature information of all previous
layers and passes the feature information extracted from this layer to the subsequent
network layers, as shown in Figure 2. Due to the severe feature reuse in the middle
convolutional layer of the densely connected structure, unnecessary redundancy is caused.
Therefore, removing the feature transfer between intermediate convolutional layers and
performing feature aggregation only in the final convolutional layer can effectively solve
the feature redundancy problem. VOVNet is to reduce the intermediate layer feature reuse
by aggregating the feature maps of all layers at once in the final layer while ensuring that
the input and output channels are the same, as shown in Figure 3.
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Figure 2. Dense aggregation model.

Figure 3. One-short aggregation model.

The core of DenseNet is the DenseBlock module, which consists mainly of 1 × 1
convolution and 1 × 3 convolution. Based on the problems of DenseNet, VOVNet proposed
an OSA module to replace the DenseBlock module on the basis of the DenseNet network
structure. The OSA module aggregates the feature maps of all layers at once only at the
final layer, ensuring that the input and output channels are the same, and removes the
1 × 1 convolution operation from the DenseBlock. To increase the feature extraction effect
of the model, the OSA module also incorporates the residual connectivity of ResNet and
the channel attention mechanism in SENet [27], as shown in Figure 4.

Figure 4. One-short aggregation module. F1x3 denotes the convolution operation with a convolution
kernel of 1 × 3; Cat denotes the feature map connected in the channel dimension; Favg denotes the
global average pooling; Fc is the fully connected operation; Act is the h-sigmoid activation function;
X denotes element multiplication; + denotes element addition.

3.2. Multi-Label Classifier

Considering the original bit stream data as the labels for model training, if viewed as a
regular multi-classification problem, the number of categories to be classified is 2M, which
is difficult to estimate for both the model parameters and the model training cost. Multiple
binary classifiers are used in the literature [20] to reduce the classification complexity,
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but M classifiers are required. For this reason, we consider the problem as a multi-label
classification problem and use the h-sigmoid activation function instead of the sigmoid
activation function to output the feature map as a one-dimensional vector of length M that
matches the original bit stream labels of M bits.

δ(x) is a sigmoid function, and it is very complicated to calculate the derivative of
the sigmoid function directly. For this reason, the activation function can be redesigned
in combination with the ReLU6 function to reduce the activation function derivative
complexity and speed up the model training, as shown in Figure 5.

δ(x) =
1

1 + e−x (14)

ReLU6(x) = min(max(x, 0), 6) (15)

h − sigmoid =
ReLU6(x + 3)

6
(16)

Since the original bit stream is a sequence of [0 1], the label processing process is
omitted and can be used directly as training labels. The network training loss function uses
a binary cross-entropy loss function, which can be expressed as:

Loss = − 1
N

N

∑
i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (17)

where yi denotes the true label, ŷi denotes the predicted value, and N is the number
of samples.

Figure 5. Sigmoid and h-sigmoid function curves.

3.3. Intelligent Receiver Model

In this paper, we use the powerful ability of DNN for data analysis to learn the damage
law of the signal data autonomously and perform different types of modulation on the
transmit signal in a non-ideal channel environment, as well as add different interference
signals, which correspond to the randomly generated labels of the original bit stream and
train the functional relationship between the damage signal and the labels through deep
neural networks as a way to predict the new received signal and calculate the BER of the
predicted signal. In the process of network training, different signals received through the
channel transmission correspond to different labels. As the network converges iteratively,
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the loss function between the predicted signal and the real label is calculated, and the
network parameters are automatically updated to finally achieve end-to-end recovery of
the original signal. The structural model of the smart receiver is shown in Figure 6.

Figure 6. Structure comparison between traditional receiver and intelligent receiver.

The convolutional neural network takes the received IQ signal as the input to the
network model, learns the signal change pattern dynamically on its own without knowing
the signal modulation coding method, and recovers the original information bit stream.
The receiver model uses deep neural networks for feature extraction of IQ signals and then
recovers the data by multi-label classification.

3.3.1. Implementation Method of Intelligent Receiver

The network model structure of the VOVNet-based smart receiver designed in this
paper is shown in Figure 7. The VOVNet-based intelligent receiver network model contains
a total of 5 Stages, and each Stage is followed by a 1 × 3 maximum pooling layer with a
step size of 2 for downsampling. Stage1 contains 3 layers of convolution, Stage2-Stage5
consists of OSA modules, and the classifier contains a fully connected layer, so the model
has a total of 40 layers.

3.3.2. The Training Algorithm of the Intelligent Receiver

The parametric optimizer we used was Stochastic Gradient Descent with momentum
(SGDM). A momentum mechanism was added compared to Stochastic Gradient Descent
(SGD). The current momentum V is determined by the last iteration momentum, together
with the current gradient. By adding the momentum factor, the model parameter update
can maintain the previous update trend and avoid the local optimum. The iterative process
of parameter update can be expressed as:

VdW = mVdW + (1 − m)dW (18)

W = W − αVdW (19)

where m is the momentum factor, W is the parameter to be updated in the network, and α
is the learning rate.

For the loss function, the binary cross-entropy loss function was used, as shown in
Equation (17). The training batch size was 256 and the number of training epochs was 10.
The specific training method is shown below (Algorithm 1):
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Algorithm 1: Training algorithms for intelligent receiver

1 Load training data set (Re[y(k)], Im[y(k)]);
2 Initialize network parameters W;
3 for epoch in range(10) do
4 if model loss reduction then
5 randomly select the minimum batch sample data from (Re[y(k)], Im[y(k)])

for training;
6 model losses are calculated according to equation(17);
7 model parameters are updated according to equation(18).
8 else
9 end of training.

10 end
11 end
12 return network model with minimal training loss

Figure 7. Network structure of mine intelligent receiver based on VOVNet.

4. Experimental Demonstration

In this section, the practical performance of the intelligent receiver for the mining
MIMO-OFDM system proposed in this paper is verified by experimental simulations. In
this paper, MATLAB2019b is used as an experimental platform to build a model of a mine
MIMO-OFDM communication system that generates simulation datasets, and the intelligent
receiver network model is built on an NVIDIA RTX3090 GPU using the Tensorflow2.0 deep
learning framework. For the mine fading channel, we consider mine large scale fading and
small scale fading. Large-scale fading involves the roughness and inclination of the tunnel
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walls in the mine channel, as well as the fading coefficient of some dust; Nakagami fading is
chosen as the small-scale fading model, and the damage of the mine fading channel to the
transmitted signal is characterized by varying the fading coefficient m.

To verify the end-to-end information recovery capability of the mine smart receiver
under different channel scenarios, a 16-bit raw information bit stream was randomly
generated and the channel was coded using (7, 4) Hamming codes, followed by BPSK
digital modulation. Different coefficients m under Nakagami fading channel model were
selected. m values were chosen to contain 0.5, 1, and 2, m = 0.5 for one-sided Gaussian
distribution and m = 1 for Rayleigh distribution. m values are larger, and a smaller fading
degree indicates a better channel state. The quantity of antennas receiving/transmitting
was set to 2, the Eb/No (bit signal-to-noise ratio in dB) range was 0–10 dB, and the step
size was 1 dB. A total of 20,000 training samples and 10,000 test samples were generated
under each Eb/No, totalling 220,000 training samples and 110,000 test samples.

Observing Figure 8, it was found that, for different channel scenarios, smart reception
had a superior information recovery performance compared to conventional reception. The
error bit rate of conventional receivers reached only 10−3 at Eb/No of 10 dB and m = 0.5
due to the accumulated error, while the error bit rate of the intelligent receiver designed in
this paper reached 10−5. Overall, the change of channel fading had little effect on the smart
receiver, which indicates that the smart receiver is less sensitive to the channel environment
transformation, has good robustness, and shows more stable noise resistance performance.

Figure 8. Comparison of information recovery capability for different channel scenarios.

Figure 9 shows the comparison of the information recovery performance of the mine smart
receiver designed in this paper (noted as a multi-label classifier reception) and the literature [20]
receiver model (noted as the binary classifier reception). It can be found that, although both
belong to the overall optimized information recovery method, the multi-label classifier receiver
model has a more excellent information recovery capability. When Eb/No = 10 dB, the error
bit rate of the receiver model designed in this paper is lower than 10−5, which is slightly better
than the binary classifier reception model.
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Figure 9. Comparison of information recovery capability for different modulation methods.

To demonstrate the end-to-end information restoration capability of the smart receiver
with different digital modulated signals, we randomly generated 32-bit raw information
bit stream. Three digital modulation methods were set: BPSK, QPSK and 16QAM, the
Nakagami fading factor was chosen as 1, the number of transmitting/receiving antennas
was 2, and the range of Eb/No was 0–10 dB in 1 dB steps.

Observing Figure 10, it was found that conventional receivers had significant vari-
ability for different modulated signals. The performance of information recovery was
poorer for higher order modulation. The mine smart receiver designed in this paper was
more adaptable to signal modulation variations. Although the BER of the 16QAM signal
was about 10−4 at Eb/No = 10 dB, it was better than the conventional receiver overall.
Especially for BPSK signals and QPSK signals, the mine smart receiver can accurately
recover the initial information with similar performance.

To validate the information recovery capability of smart receivers with different
antenna combinations, the experiment set the antenna combinations as 2 × 1, 2 × 2,
3 × 2. 16-bit raw information bit streams were randomly generated. Channel coding
was performed using (7, 4) Hamming codes, followed by BPSK digital modulation. The
Nakagami fading channel coefficient m was set to 1, the Eb/No range was 0–10 dB, and the
step size was 1 dB.
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Figure 10. Comparison of information recovery capability for different modulation methods.

Observe Figure 11. When the antenna combination was 2 × 1 and Eb/No was 10 dB,
the conventional reception bit error rate was only 10−3 and the intelligent reception bit error
rate was close to 10−4. The accuracy of information recovery for both conventional and
intelligent reception was not satisfactory, which indicates that the change in the number of
antennas has a greater impact on the intelligent receiver in the mine. We conjecture that
the main reason is that the decrease in the number of receiving antennas corresponds to a
decrease in the amount of data used for model training under the same conditions, and
the model fails to reach the optimal state. Another state can be found. For conventional
receivers, the antenna combinations of 2 × 2 and 3 × 2 are close to each other in terms of
information recovery capability. This indicates that there is an upper limit to improve the
information recovery capability of the conventional receiver by increasing the antennas.
However, there is still a significant performance improvement for the smart receiver. This
indicates that there is room for further improvement in the antenna combination for the
smart receiver.

To validate the end-to-end information recovery capability of smart receivers in dynamic
environments, three channel scenarios, Eb/No = 0 dB, Eb/No = 3 dB, and Eb/No = 6 dB, were
selected to represent the mining face scenario, the occlusion scenario, and the long straight
channel scenario in the mine, respectively. A 16-bit raw information bit stream was randomly
generated. In addition, the channel encoding was (7, 4) Hamming code and BPSK digital
modulation was used. The Nakagami fading channel coefficient m was set to 1, and the
number of transmitting/receiving antennas were both 2.
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Figure 11. Comparison of information recovery capability for different antenna combinations.

Observing Figure 12, it was found that the information recovery accuracy of the mine
smart receiver model designed in this paper was higher than that of the conventional
receiver in all dynamic scenarios. The three channel scenario changes were distinguished
obviously, and the scenario transition area was basically the same. At scenario 3, the BER
of the mine smart receiver was lower than 10−3, and the performance of the smart receiver
information recovery ability was stable at the same scenario.

Due to the complex working scenarios of coal mine communication systems, commu-
nication data loss due to unexpected situations is a problem that needs to be dealt with.
Therefore, we specifically considered the end-to-end information recovery performance
of the intelligent receiver in case of data loss. The randomly generated 16-bit original
information bit stream channel coding using (7, 4) Hamming code and digital modulation
method was BPSK. Data loss degrees (ratio of lost data volume to complete data volume)
were 1%, 3%, 5%, and 10%. The set Nakagami fading channel coefficient m was 1, and the
number of transmitting/receiving antennas was 2. The Eb/No range was 0–10 dB, and
step size was 1 dB.

Observation of Figure 13 reveals that the false bit rate of the smart reception at 5% data
loss was similar to that of the conventional reception at complete data, and the false bit rate
was about 10−5 when Eb/No was 10 dB at 1% and 3% data loss, which indicates that the
smart receiver has better information recovery performance compared to the conventional
receiver and can cope with more complex communication scenarios with certain emergency
communication capability. However, the smart receiver designed in this paper also has a
data loss tolerance, and the accuracy of information recovery is significantly reduced when
the data loss is 10%.
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Figure 12. Comparison of information recovery capabilities in dynamic environments.

Figure 13. Information recovery performance for some lost data.

5. Conclusions

In this paper, a mine intelligent receiver model was designed based on the MIMO-
OFDM wireless communication system in a complex mine environment. This receiver
model uses an improved CNN model to replace the traditional receiver signal processing
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process and achieves accurate recovery of the original information through autonomous
learning of IQ data. Compared with the traditional receiver model, the mine intelligent
receiver model designed in this paper has the following features:

• The mine intelligent receiver model designed in this paper achieves the overall opti-
mization effect at the receiver end. The conventional receiver model relies on theoreti-
cal assumptions between modules and has a serious error accumulation problem. Even
single-module optimization and multi-module optimization based on deep learning
only achieve the effect of local optimization, and the problem of error accumulation is
not solved. The mine smart receiver designed in this paper is a model of overall joint
optimization at the receiver side, which can realize blind reception of multiple digital
modulation and coding combinations. Through autonomous learning of training data,
data laws are extracted to achieve intelligent recovery of information.

• The mine intelligent receiver designed in this paper has stronger robustness. For the
communication data loss caused by unexpected conditions in the complex commu-
nication environment of mines, the mine intelligent receiver has certain emergency
performance and can better serve the actual mine communication scenarios.

• The mine intelligent receiver designed in this paper has rapid inference speed. By
improving the structure of the CNN model, the inference speed of the model is ac-
celerated, which is of application value to the actual mining wireless communication
system and can better meet the requirement of immediacy of the mining communica-
tion system.

Through the verification of the data generated by the simulation experimental plat-
form, the mine smart receiver designed in this paper has good information recovery
performance. However, the best enhancement has not been achieved for the number of
antennas, and since this receiver model is dependent on the amount of data, this will be the
area we need to enhance and improve. In the future, we will test this receiver model in a
real mine communication scenario and improve and optimize it accordingly for possible
problems in the real communication scenario.
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