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Abstract: The tendencies and perspective directions of development of modern digital devices of relay
protection and automation (RPA) are considered. One of the promising ways to develop protection
and control systems is the development of fundamentally new algorithms for recognizing emergency
modes. They work in accordance with the triggering rule, which is formed after processing the
results of model experiments. These algorithms are able to simultaneously control a large number
of features or mode parameters (current, voltage, resistance, phase, etc.). Thus, the algorithms are
multidimensional. This approach in RPA becomes available since the computing power of modern
processors is quite enough to process the required amount of statistical data on the parameters of
possible normal and emergency operation modes of electrical network sections. The application of
classical machine learning algorithms in RPA tasks is analyzed, in particular, methods of k-nearest
neighbors, logistic regression, and support vectors. The use of specialized trainable triggering ele-
ments is studied both for building new protections and for improving the sophistication of traditional
types of relay protection devices. The developed triggering elements of the multi-parameter RPA
contribute to an increase in the sensitivity and recognition of accidents. The proposed methods for
recognizing emergency modes are appropriate for implementation in intelligent electronic devices
(IEDs) of digital substations.

Keywords: relay protection and automation (RPA); IEC 61850; machine learning; simulation; RPA
algorithm; k-nearest neighbor method; logistic regression method; support vector machine

1. Introduction

World trends in the electric power industry determine several promising areas of
scientific research in the field of relay protection and automation (RPA) [1–15]. Among
them are noted:

• Development of principles for building adaptive protections, i.e., protections that
automatically adjust to the modes of operation of electric power systems (EPS) [3–9];

• Issues of organizing remote access and cybersecurity, automated data acquisition and
analysis, timely response to changes in the EPS mode [10,11];

• Analysis of the need to increase the requirements for relay protection and automation,
controllability and observability of the modes of distribution networks, including
those with sources of distributed generation [12–15];

• Application of technologies for simulation of EPS facilities for the purposes of relay
protection and automation. New principles for building relay protection and au-
tomation systems based on modern communication technologies and the IEC 61850
standard [4,11,16].

The existing tendency to increase the share of digital relay protection devices, as well
the growth of their computing power, is likely to continue in the future. The development
of communication technologies in relay protection will provide access for any IED to almost
all mode parameters measured within the substation. On the other hand, the requirements
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for the efficiency of the RPA devices are becoming stricter. Protections should become
more sensitive and faster and are capable of adapting independently to the operating
mode of an electrical network of complex configuration. The introduction of distributed
generation sources and renewable energy sources into distribution networks contributes
to the expansion of the variety of potentially possible network operation modes [12–15],
thereby complicating the task of adaptation.

One of the directions of technical improvement of relay protection and automation
systems is the development of new algorithms for recognition of emergency modes, which
uses the information available through communication systems to the fullest and most
effectively [1,4,16]. The approach involves replacement of traditional types of relay protec-
tion (current protection, distance protection, and other automatic) with decision-making
systems adapted to a specific protected object.

The construction of these systems requires solving the following problems:

1. Obtaining statistical data that fully and reliably describes the values of the parameters,
both in normal and emergency modes.

2. Identification of regularities in the obtained data, allowing to formulate a recognition
rule that reliably separates normal and emergency modes.

The solution of the first task can be carried out with the help of EPS simulation.
Modern processors make it possible to perform multiple run simulations of a network
section in a reasonable time and obtain the required distributions of signs of normal and
emergency modes with sufficient accuracy. To conduct simulation, it is advisable to use the
Monte Carlo method [17], since it will allow to determine not only the ranges of possible
values of the signs of the regime, but also their frequency distributions, as well as to
establish the correlation between the signs.

Formation of optimal conditions for operation of relay protection is a much more com-
plicated process, because it requires analysis of a large amount of model data, characterizing
the modes of operation of the electric power system.

Performing the analysis “manually” is extremely difficult, due to its high complexity
and individuality for each specific circuit-mode situation. However, the algorithms of
machine learning, one of the branches of artificial intelligence that is actively developing
today, are proving their effectiveness in solving problems of this kind.

In contrast to rigidly defined decision-making algorithms, which include traditional
types of relay protection, machine learning allows you to identify empirical patterns in the
data and build an emergency operation rule in accordance with them.

The purpose of the article is to apply classical machine learning algorithms and data
analysis methods to recognize complex normal and emergency modes in new advanced
electrical networks (power grids) to improve relay protection and automation devices.

2. Machine Learning in the Task of Developing New Algorithms for Identifying
Emergency Modes of EPS

The term “artificial intelligence” (AI) summarizes a fairly large range of different
algorithms to analyze information and make decisions, often while simulating human
cognitive activity [18–22].

The term “artificial intelligence” (AI) generalizes a fairly large range of different
algorithms that allow one to analyze information and make decisions, often imitating
human cognitive activity [18–22].

Machine learning (Figure 1) is a section of artificial intelligence designed to build
algorithms that can learn from empirical data [22–25]. Unlike statistical methods, machine
learning methods directly analyze instances (realizations) of the training sample and not its
statistical characteristics. Depending on the problem being solved, as well as the data used
for training, algorithms are divided into supervised learning and unsupervised learning.

Unsupervised learning algorithms are designed to discover hidden patterns in input
information. They use “unlabeled” data and require minimal human intervention. A
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typical unsupervised learning problem is a clustering problem, i.e., the task of combining
objects into relatively homogeneous groups (clusters).
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Figure 1. The main directions and methods of artificial intelligence.

Supervised learning involves the formation of algorithms capable of predicting the
value of an unknown quantity based on some feature vector. The desired value depends
on them. The training sample consists of a set of data vectors for which the value of the
objective function is known. In the case when the target variable is continuous, then such a
task is called a regression task. If the observed feature vector needs to be associated with a
discrete value from a given list, then such a task is called a classification problem.

Like other areas of artificial intelligence, machine learning is being actively explored
for possible applications in the electric power industry, in particular in relay protection.
However, existing studies are more likely to demonstrate the capabilities of a particular
algorithm than to develop a systematic approach to the introduction of machine learning
in the power industry. In this regard, a comprehensive study of the possibility of using
classification algorithms in relay protection is relevant.

An important stage in the development process is the selection and training of algo-
rithms that directly decide on the operation of protection in emergency modes. The task of
constructing trainable RPA modules based on “labeled” (classified) model data is a typical
supervised learning task, namely, a classification task. Next, we analyze the application of
classical machine learning algorithms in the problem of classifying EPS modes, which are
also the most common in solving pattern recognition problems.

3. Application of Simulation in the Problem of Classifying EPS Modes

As a data source for training and analyzing the studied machine learning algorithms,
let us consider a network section with a source of distributed generation (Figure 2). The
figure shows both constant and changing parameters of the simulation model. Let us
formulate the recognition task as follows: it is necessary to develop a triggering element
for the RPA device installed at the beginning of the lineω1, which provides protection of
the line from three-phase and phase-to-phase short circuits. In this case, detuning from
operating modes and load self-start modes should be implemented.

As a result of modeling in Matlab, all possible modes of operation of the considered
electric power system (Figure 2) statistical distributions of the effective RMS current value in
the operating modes, modes of self-start, and during short circuits on the line ω1 (Figure 3)
were constructed.
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Figure 3 shows that a significant part of the emergency short-circuit currents turned
out to be commensurate in magnitude with the normal currents and load self-starting
currents. This is due to the fact that the generator included in the branch line can reduce
the proportion of short-circuit current flowing through the installation site of the protection,
thereby reducing its sensitivity [26]. Obviously, the use of current protection in the analyzed
section of the electrical network is not effective due to low sensitivity. That is, the classic
current protection will not perceive a short circuit in the network as an emergency mode.

Figure 4 characterizes the efficiency of the use of distance protection (DP) for the
scheme under consideration (Figure 2). Using the results of simulation, the values of
complex resistances were calculated, estimated at the place where the protection was
installed for each of the experiments, and placed on the complex plane.

Distance protection with a characteristic (Figure 4), obtained by the condition of
detuning from normal modes and modes of self-starting of the load, is able to disconnect
the short circuit that occurs on the line with a probability of 74%. Despite the fact that
the result inherent in distance protection significantly exceeds the result characteristic
of current protection, its efficiency is still insufficient for reliable detection of emergency
modes of a section of an electrical network.



Energies 2022, 15, 6525 5 of 19
Energies 2022, 15, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 4. Many complex measurements of resistance in the analyzed modes [26]. 

Distance protection with a characteristic (Figure 4), obtained by the condition of de-
tuning from normal modes and modes of self-starting of the load, is able to disconnect the 
short circuit that occurs on the line with a probability of 74%. Despite the fact that the 
result inherent in distance protection significantly exceeds the result characteristic of cur-
rent protection, its efficiency is still insufficient for reliable detection of emergency modes 
of a section of an electrical network. 

4. Considered Machine Learning Methods 
A further increase in the recognizing ability of the protection can be achieved as a 

result of the use of recognizing elements based on machine learning algorithms. 

4.1. K-Nearest Neighbor Method 
The k-nearest neighbor method [25,26] belongs to the group of metric classification 

algorithms. At the same time, the elements of the training sample that are closest to the 
object being classified are analyzed in order to make a decision about its belonging to a 
particular class. 

The k-nearest neighbor method has the most intuitive operating principle among ma-
chine learning algorithms [25,26]. The classification of the mode (object) is carried out ac-
cording to the most frequently occurring class among its “neighbors”. This happens for 
the objects of the training sample located at the minimum distance from the object being 
classified. The number of “neighbors” is chosen when determining the parameters of the 
mathematical model, based on the requirements of a specific classification problem. The 
method can use various distance functions [27]. The following are most commonly used: 

Euclidean metric: ( )
m 2

i i
i 1

D(x, y) x y
=

= −  (1) 

Figure 4. Many complex measurements of resistance in the analyzed modes [26].

4. Considered Machine Learning Methods

A further increase in the recognizing ability of the protection can be achieved as a
result of the use of recognizing elements based on machine learning algorithms.

4.1. K-Nearest Neighbor Method

The k-nearest neighbor method [25,26] belongs to the group of metric classification
algorithms. At the same time, the elements of the training sample that are closest to the
object being classified are analyzed in order to make a decision about its belonging to a
particular class.

The k-nearest neighbor method has the most intuitive operating principle among
machine learning algorithms [25,26]. The classification of the mode (object) is carried out
according to the most frequently occurring class among its “neighbors”. This happens for
the objects of the training sample located at the minimum distance from the object being
classified. The number of “neighbors” is chosen when determining the parameters of the
mathematical model, based on the requirements of a specific classification problem. The
method can use various distance functions [27]. The following are most commonly used:

Euclidean metric : D(x, y) =

√
m

∑
i=1

(xi − yi)
2 (1)

Chebyshev distance : D(x, y) = maxi=1...m|xi − yi| (2)

Manhattan distance : D(x, y) =
m

∑
i=1
|xi − yi| (3)

where x = [x1, x2 . . . xm], y = [y1, y2 . . . ym]—Vectors in m-dimensional space, the distance
between which is to be determined; D(x,y)—Value of distance between vectors.

To be able to objectively assess the advantages of the k-nearest neighbors method, let
us choose the feature space formed by the active and reactive components of the complex
resistance (Figure 5). When setting up the classifier, we take the value of k equal to 5, and
we choose the Euclidean metric as a distance function.
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The modes whose simulation is implemented for protection training are divided into
two categories: α-modes and β-modes. α-modes are understood as short circuits and other
emergency modes that must be disabled by relay protection, while β-modes are understood
as alternative modes, i.e., those during which protection must not act.

As an example, in the training sample, we select five (k = 5) values and define their
classes. The distance to them is minimal from the classified value of the complex resis-
tance (1). Among the nearest neighboring values of the complex resistance there were
three objects belonging to the class α and two objects characteristic of the class β (Figure 5).
Therefore, in accordance with the majority principle, the current analyzed mode belongs to
the class α.

Let us select on the setting plane (in the feature space) the areas of protection operation,
within which the mode will belong to class α when implementing the algorithm under
study (Figure 6).
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Let us estimate the efficiency of the recognition algorithm by the RPA device using
the error matrix [24], which contains the probabilities of correct classification of each of the
classes, as well as the probabilities of errors of the first and second kind. Let us randomly
divide the total set of model simulation experiments into two groups, one of which will be
used for training the protection algorithm, and the second for its subsequent testing. The
error matrix, as applied to the conditions of the study of the k-nearest neighbors method, is
illustrated in Table 1.
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Table 1. Error matrix corresponding to the k-nearest neighbors method [26].

Class
Recognized Class

α β

True class
α 95.2% 4.8%

β 2.9% 97.1%

Analysis of the Table 1 shows that the use of the k-nearest neighbors method ensures
the detection of 95.2% of the short circuit on the protected line, and with a probability of
2.9%, a false triggering of the protection is possible.

Depending on the specific case and the requirements for RPA, modifications of the
k-nearest neighbors method are possible [26]. For example, instead of the majority principle,
the following classification rule (criterion) can be adopted: an object belongs to class α only
if each of its k-nearest neighbors also belongs to class α. Otherwise, the object belongs to the
class β. This criterion will make it possible to eliminate the possibility of false assignment
of the object’s operation mode to the set of α-modes, thereby provoking a non-selective
operation of the relay protection device. In this case, by modifying the decision rule at the
cost of some loss of sensitivity, it is possible to reduce the probability of false triggering
of the protection algorithm. It is also possible to reduce the number of false protection
triggering in operating modes and load self-start modes by increasing the parameter k. This
leads to a roughening of the protection, a decrease in sensitivity, but the probability of a false
protection operation is reduced to zero. Increasing the recognition of emergency modes
is also possible by expanding the set of information features (increasing the dimension of
the feature space). The maximum percentage of recognized short circuits achieved using
the k-nearest neighbors method was 98.8%. At the same time, a further increase in the
dimension of the feature space did not lead to an increase in the recognition ability of
the RPA.

4.2. Logistic Regression Method

Unlike the k-nearest neighbors method discussed above, the logistic regression method [28]
is a method of linear data classification, which consists in finding the optimal hyperplane
in the feature space that separates α and βmodes from each other. The determination of
the equation of the optimal separating plane is carried out by finding the minimum of
the objective function, specified in such a way that its value increases in proportion to the
classification error of the training sample objects. The optimization problem is formulated
as follows:

−
N

∑
i=1

Yi· ln(sigm(Bi × Z)) + (1− Yi)· ln(1− sigm(Bi × Z))→ min
Z

(4)

where Bi—the i-th element of the training sample; Z—the desired vector of hyperplane
coefficients; and Yi—the label of the i-th element (0 or 1).

The sigm function, called the sigmoid, is given by expression (5):

sigm(a) =
1

1 + e−a (5)

The vector Z, along which the optimization is carried out, specifies the coefficients of
the separating hyperplane. Since the number of elements of the training sample (N) can
reach several thousand values, the most effective ways to solve the given optimization
problem are iterative methods (steepest descent, gradient method).
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Having found the vector of coefficients Ẑ, at which the minimum of the objective
function is provided, it becomes possible to determine the probability that an arbitrary
object x belongs to the class α according to expression (6):

p(x ∈ α) = sigm(x× Ẑ) (6)

The classification of the object x consists in comparing the probability p(x ∈ α) with
some selected setting pset in the range (0, 1). Changing the setpoint allows you to increase
the sensitivity or coarsen the classifying algorithm.

As an example, consider a training sample (Figure 7), formed on the basis of the results
of modes simulation of the network section shown in Figure 2. As a feature space, we
choose such quantities as active power (P), as well as the modulus of complex resistance (Z).
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As a result of solving the optimization problem (4) for this sample, the vector Ẑ
received the following value:

Ẑ =

 0.877
−0.415
1.362

 (7)

Therefore, the trigger condition is given by the following equation:

p = sigm(0.877·P− 0.415·Z + 1.362) > pset (8)

where pset—the selected threshold.
To illustrate the principle of operation of the logistic regression method, let us deter-

mine the value p in accordance with expression (6) for each point of the feature space.
The surface thus obtained is shown in Figure 8.
Having chosen the setpoint by the value p, we divide the feature space into the areas

of triggering and non-triggering. For the presented two-dimensional example, the trigger
boundary becomes a straight line. Figure 9 illustrates the trigger limits characteristic of
several values of the response threshold pset.

As can be seen from the Figure 9, an increase in the triggering threshold leads to a
decrease in the probability of false triggering of the protection, at the same time reducing the
percentage of short circuits that fall into the triggering area. Let us display the nature of the
observed phenomenon in the form of a receiver operating characteristic (ROC-curve) [29],
which evaluates the quality of the classifier (Figure 10).
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The curve (Figure 10) shows that the algorithm makes it possible to achieve an un-
ambiguous recognition of the emergency mode in approximately 60% with the complete
absence of unnecessary operations. Shifting the threshold in the direction of increasing
the protection sensitivity will increase the recognition up to 90%, but at the same time,
the probability of false triggering will reach 10%. Further feeling is not justified, because
a relatively small increase in the TPR parameter (True Positive Rate) corresponds to a
significant increase in FPR parameter (False Positive Rate), which corresponds to a decrease
in the slope of the ROC curve with respect to the horizontal axis.

There are various options for using the logical regression method, for example, the
use of a non-linear modification of logical regression, which allows you to more effectively
adapt to the training sample. The use of a rectifying space can significantly increase the
classification accuracy.

Similar to other classification methods used in machine learning problems, when
implementing the logistic regression method, the number of mode parameters combined
into a feature space can vary in order to achieve the highest classification accuracy. The
analysis of the conducted model experiments showed that the expansion of the feature
space in combination with the introduction of the rectifying space technique made it
possible to achieve a sufficiently high quality of recognition, commensurate with the results
of the k-nearest neighbors method. The set of features corresponding to the maximum
percentage of recognized short circuits, while guaranteeing the absence of false triggering,
contains such quantities as phase current, reactive power, and complex resistance modulus.
In the indicated space, it was possible to correctly classify 98% of the samples of the test
sample, which is lower by 0.8% compared to the k-nearest neighbors method.

4.3. Support Vector Machine

One of the promising methods for linear data classification is the support vector
machine (SVM). In its simplest form, the method is used to recognize two classes. Similar
to the logistic regression method, the learning procedure for the implementation of relay
protection involves drawing a hyperplane in the feature space, which will separate the
elements of the training sample belonging to different classes, dividing the feature space
into areas of triggering and non-triggering of the relay protection and protection devices.
Thus, the procedure for classifying the current mode consists in determining which side
of the separating hyperplane is the mapping of the given mode onto the selected feature
space [30].

Let there be a training sample x1 . . . xN, consisting of N vectors, in view of the M-
dimensional feature space. For each element of the training sample, there is a class label
y1 . . . yN such that yi = 1 if the i-th element belongs to the class α and yi = −1 if the i-th
element belongs to the class β. Then, the hyperplane of the view wT·x + b = 0 separates
the classes if the following condition is met:

∀i ∈ 1 . . . N, yi·
(

wT·xi + b
)
> 0 (9)

An example of a separating hyperplane is shown in Figure 11. The distance between
the border and the closest representatives of both classes forms a dividing strip, the width
of which is called the “gap”. It is quite obvious that the most optimal separating hyperplane
is the one that provides the maximum gap, provided condition (9) is met. It was proven [30]
that the equation of such a hyperplane can be obtained as a result of finding the conditional
minimum of the system of expressions:{

minwH,bH
1
2 wT

H·wH,

∀i ∈ 1 . . . N, yi·
(
wT

H·xi + bH
)
≥ 1.

(10)
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However, in most practical cases, the training sample is not linearly separable, that
is, there is not a single hyperplane that satisfies the system of inequalities (11). In order
for the SVM algorithm to be applied in this case, it must be modified and allow some
misclassification of the training sample objects. A penalty is introduced for the total
classification error, and the optimization problem takes the form:

minwH,bH,ξ1 ...ξN
1
2 wT

H·wH + C·
N
∑

i=1
ξi,

∀i ∈ 1 . . . N, yi·
(
wT·xi + b

)
≥ 1− ξi,

∀i ∈ 1 . . . N, ξi ≥ 0,

(11)

where ξi—variable characterizing the classification error of the i-th object of the training
sample; C—coefficient that sets the amount of the penalty for misclassification.

Coefficient C allows you to adjust what will be more important for the algorithm—
maximizing the width of the separating strip or minimizing the total classification error.

In practice, instead of the direct SVM task described by expression (11), the so-called
dual task is solved, which is similar to the original one in terms of the final result, however,
it can be solved using faster iterative methods. When solving the dual SVM task, the
optimization takes place in terms of the variables λ1 . . . λn (expression (12)), that is, in
terms of Lagrange multipliers. The dual SVM task for a linearly inseparable sample is
derived from the direct task [25] and written as follows:

minλ1 ...λn

(
n
∑

i=1
λi − 1

2 ·
(

n
∑

i=1

n
∑

j=1
λiλjyiyjx

T
i xj

))
,

∀i ∈ 1 . . . N, 0 ≤ λi ≤ C,

∀i ∈ 1 . . . N, λiyi = 0.

(12)

The quadratic programming task (12) can be solved using one of the well-known
methods (for example, [31]).
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Having obtained the optimal Lagrange multipliers λ1 . . . λn as a result of solving (12),
we can restore the equation of the separating hyperplane:

w =
n
∑

i=1
λiyixi,

b = 1
ys
−w·xs,

(13)

where s—the index of the vector for which 0 < λs < C.
The classification of an arbitrary object using the support vector machine method

consists in assessing the measure of its belonging to a class according to expression (14)
and comparing the obtained value with the selected setting:

p(x) =
n

∑
i=1
λiyix

T
i x− b (14)

Note that to obtain the result of expression (14), it is sufficient to sum only over those i
for which λi 6= 0, that is, only over support vectors, the number of which is much less than
the total size of the training sample.

Using the example of protecting a section of an electrical network (Figure 2), we ana-
lyze the efficiency of emergency mode recognition using the support vector machine [32,33].
Consider the efficiency of the method for solving the task of constructing the relay protec-
tion algorithm (Figure 2). We implement the training of the support vector machine with a
quadratic kernel function in a two-dimensional feature space formed by active power (P)
and impedance (Z). The resulting response limit is shown in Figure 12.
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Let us evaluate the performance characteristics of the resulting algorithm for various
values of the response threshold pset. Let us display the results in the form of the operating
characteristic of the receiver (Figure 13), as well as a similar characteristic obtained as a
result of applying the logistic regression method on the accepted feature space.

Analysis of Figure 13 shows that in a two-dimensional feature space (P-Z), the sup-
port vector machine provides a greater recognition ability in relation to failure modes in
comparison with the logistic regression method. Moreover, a similar comparative analysis
with the k-nearest neighbors method for various combinations of features showed that
the support vector machine allows achieving zero recognition error with a feature space
dimension of 4 or more. Thus, we can conclude that the support vector machine is superior
to other considered methods in relation to the problem of classifying the modes of a section
of an electrical network.
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5. Improving the Technical Excellence of Relay Protection and Automation Devices
through the Introduction of Training Modules

An alternative option for using machine learning methods in relay protection and au-
tomation is to create auxiliary triggering elements that work in conjunction with traditional
types of relay protection and increase their sensitivity. Let us consider an example of using
machine learning to improve the efficiency of a distance protection device (DPD) using the
example of an electrical network shown in Figure 14.
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Let distance protection be used to protect the lineω1. In accordance with the require-
ments for relay protection, the second stage of distance protection should operate in case of
short circuits along the entire length of the lineω1, as well as partially reserve the parallel
lineω2, the adjacent lineω3, as well as the transformer T1.

At the same time, Ref. [31] imposes the following restrictions on the second stage
resistance setting (Table 2).

Let us demonstrate on the complex plane of the DP of the lineω1 a set of short-circuit
modes on adjacent elements, and select their part, in which the operation of the second
stageω1 is unacceptable according to the detuning conditions (Figure 15).

Due to the fact that the lineω3 has a relatively short length, after coordination with
the first stage of its distance protection, the possibility of reserving a significant part of the
parallel lineω2 and the transformer T1 by the second stageω1 is lost. Starting the second
stage with an interphase short circuit on the primary winding of the transformer is possible
only with a probability of 42.7%, and with a short circuit toω2 with a probability of 5.8%.
Thus, in the event of failure of the main protections, most of the short circuits on the parallel
line and in the transformer can be disabled only by the third stage of distance protection
ω1. Since the third stage has a longer time delay, the protected elements are more likely to
be seriously damaged by the long-term fault current flow.
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Table 2. Conditions for selecting the setting for the resistance of the second stage of distance protection.

Expression Condition

zI I
t.p. ≤

zω1+
1−α
kω3
·zI

t.p.ω3

1+β+δ

Coordination with the first stage of line
protectionω3

(15)

zI I
t.p. ≤

zω1+
1−α
kω2
·zI

t.p.ω2

1+β+δ

Coordination with the first stage of line
protectionω2 at Substation B (16)

zI I
c.3. ≤

zω1+
zT1
kT1

1+β+δ

Detuning from short circuits behind the
transformer T1

(17)

Where zω1—the line impedance ω1, kω3—the current distribution coefficient equal to the ratio of the current
through the protection to the current on the line ω3, kω2—the current distribution coefficient equal to the ratio of
the current through the protection to the current on the lineω2, kT1—the current distribution coefficient equal
to the ratio of the current through the protection to the current in the transformer T1, zI

t.p.ω3—setting for the
resistance of the first stage of DP of the lineω3 (from the side of substation B), zI

t.p.ω2—setting for the resistance of
the first stage of DP of the lineω2 (from the side of substation B), zI

T1—setting for the resistance of the first stage
of DP of the transformer T1, α—current transformer (CT) error in the direction of decreasing the protected zone,
β—the error of the voltage transformer (VT) in the direction of increasing the protected zone, δ—the error caused
by the inaccuracy in the calculation of the primary electrical quantities.
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parallel line ω2 and the transformer T1 by the second stage ω1 is lost. Starting the second 
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ble only with a probability of 42.7%, and with a short circuit to ω2 with a probability of 
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Figure 15. Areas of regimes on the complex plane. 1—normal modes; 2—short circuit on the primary
winding T1; 3—short circuit behind the line T1(at ω4); 4—short circuit on ω2; 5—short circuit on ω2
(outside zone 1 of the protection stage ω2); 6—short circuit on ω3; 7—short circuit on ω3 (outside
zone 1 of protection stageω3); 8—triggering characteristic of distance protection.

It is possible to expand the coverage area of the protection in question through the use
of special triggering elements that can indicate a damaged section of the network. In the
presence of such selector algorithms, the second stage ω1, parameterized in accordance to
conditions (15)–(17), can be replaced by three stages independent of each other, having the
same time delay, and the setting of each of them will be set only according to one of the
conditions (15)–(17).

By combining the DP stages with faulty section selectors, as shown in Figure 16, it is
possible to achieve a greater probability of starting the protection during a short circuit in
the reserve zone, with the complete elimination of the possibility of non-selective triggering.

Thus, for a more efficient redundancy of DP algorithms with the required speed, it is
advisable to use specialized algorithms of triggering elements for classifying emergency
modes. We use the support vector machine for this.

To implement the learning process of the multi-parameter relay protection algo-
rithm [20,21], we single out the list of modes that the device must track (α-modes), as
well as the list of alternative modes in which its operation should be excluded (β-modes).
The α-modes are various types of short circuits in the protection zone, while the β-modes
are normal modes, as well as short circuits outside the protection zone, the operation of
which can lead to non-selective triggering.
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Let us form training samples for the auxiliary triggering elements being developed.
Obviously, for the “SVM T1” classifier, designed to detect faults inside a power transformer
(Figure 14), the data obtained as a result of modeling short circuits on T1 should be used as
α-modes. The set of β-modes should be formed by the following modes:

− short circuit behind the transformer T1;
− short circuit on a part of the lineω2, outside the coverage area of the I-st stage of its DP;
− short circuit on a part of the lineω3, outside the coverage area of the I-st stage of its DP;
− normal modes.

Note that the behavior of the “SVM T1“classifier in modes not included in the training
sample is not defined. For example, it is not excluded that this element will operate during
a short circuit at the beginning of the line ω3; however, such operation will not lead to
non-selective triggering of the circuit breaker, and therefore it is permissible.

Arguing similarly, we define α and β modes for the triggering elements “SVM ω2“
and “SVMω3“ and summarize them in Table 3.

Table 3. Formation of sets of α- and β-modes for developing triggering elements.

Triggering
Element α-Modes β-Modes

SVM T1
Short circuit

on T1

Short circuit for T1; short circuit onω2 outside I-st
stage of DP; short circuit onω3 outside I-st stage of

DP; norm. mode.

SVMω2
Short circuit

onω2

Short circuit for T1; short circuit onω3 outside I-st
stage of DP; norm. mode.

SVMω3
Short circuit

onω3

Short circuit for T1; short circuit onω2 outside I-st
stage of DP; norm. mode.

Let us consider the display of α- and β-modes of the triggering element “SVM T1“ in
the feature space formed by the complex plane of the distance element. Figure 17 shows
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that in the selected feature space, the data are linearly inseparable, therefore, classification
by the support vector machine is only possible using the kernel function. We implement
the learning procedure on the obtained sample with a polynomial kernel function with
degree 6. The formed separating border is depicted in Figure 17.
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Figure 17. Separating border of the classifier “SVM T1”.

The developed classifier correctly makes decisions at 95% of phase-to-phase short
circuits inside the transformer, excluding only short circuits that occurred in close proximity
to the neutral and practically do not differ from the normal mode.

Displays of α- and β-modes of the triggering element “SVM ω2” in the one used in
Figure 17 feature space are shown in Figure 18.
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Figure 18. Distribution of α- and β-modes of the classifier “SVMω2” on the complex plane.

In contrast to the case (Figure 17), in Figure 18, there are obvious intersections of the
regions of α- and β- modes. Thus, it is impossible to draw the triggering border in such a
way that it accurately separates the observed and alternative modes. One of the possible
ways to solve the problem is to move to a feature space of a higher dimension. Let us add
as the third feature the effective value of the line currentω2, measured from the side of the
substation where the designed protection is installed.

In the resulting three-dimensional feature space (Figure 19), it becomes possible to
draw a boundary (separating plane), which ensures an unmistakable separation of the
modes under consideration.
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The last developed triggering element “SVM ω3“, designed to detect short circuits
on the line ω3, has a distribution of α- and β-modes in a two-dimensional feature space
formed by the complex plane of the DP, in accordance with Figure 20.
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Figure 20. The separating border of the classifier “SVM ω3”: (a) Using the linear kernel function;
(b) using the polynomial kernel function (p = 2).

The case (Figure 20) is the most “simple” in terms of recognition of emergency modes,
because error-free classification is possible in the space of features of dimension 2 with a
linear kernel function (Figure 20a). However, the use of the polynomial kernel function
(Figure 20b) is more preferable, since in this case the separating border is located farther
from the points characterizing both α- and β-modes. This guarantees a high probability
of correct operation of the recognition algorithm in the event that a mode is presented for
classification that slightly goes beyond the set of simulated modes.

Developed on the basis of the support vector machine method, additional RPA trig-
gering elements almost unmistakably identify damaged sections of the electrical network,
thereby making it possible to increase the sensitivity of distance protection in the reserve
zone. The considered example shows that the use of machine learning in relay protection
tasks is promising not only in the formation of new types of protection, but also as an
additional tool for increasing the selectivity and speed of existing types of protection.

6. Conclusions

1. It is advisable to carry out statistical simulation experiments when parameterizing
the triggering elements of traditional types of relay protection. The characteristic of the
distance protection, based on the results of simulation of a test section of the power network,
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accommodated 17% more short-circuits (faults) in the triggering zone than the characteristic
obtained by the analytical method.

2. Two simulation models of power network sections have been used to demonstrate
the capabilities of the trained multi-parameter relay protection. The relay protection trig-
gering elements based on such machine learning methods as k-nearest neighbor method,
logistic regression method as well as support vector method are implemented. A special
feature of this approach is the impossibility of manual adjustment of the triggering area.
This is what the above classification methods are for. Each method provides higher effi-
ciency of short-circuit detection in comparison with traditional types of relay protection:
current and distance.

3. According to the results of simulation, training, and application of machine learning
methods (k-nearest neighbors, logistic regression, support vector machine) for power line
relay protection, it was possible to recognize more than 98% of various short circuits,
while the distance triggering element was able to disconnect no more than 74% of the total
number of simulated short circuits. Thus, an increase in the recognition of accidents by
more than 24% was obtained. The reference support vector machine method is preferable
for application, with which error-free classification of simulated conditions is realized.

4. Based on the reference support vector machine method, a number of trainable
triggering elements aimed at identifying a faulty network element have been developed.
By selecting optimal feature spaces and model parameters, it has been possible to provide
error-free fault localization. The use of such triggering elements allows a more efficient
implementation of redundancy of adjacent sections of the protected transmission line, and
therefore it increases the reliability of relay protection.
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