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Abstract: The increasing number of security breaches in centralized systems provides the necessity
to introduce decentralization in more fields. The Blockchain is a widely utilized decentralization
technology that is implemented in various industries. Therefore, this technology can be used to protect
sensitive services, such as those associated with the configuration changing of information systems.
This article proposes a new protocol operating as a decentralization layer over any configuration
scheme. It uses smart contracts—programs existing on the Blockchain—to keep track of configuration
proposals and authorize new configurations. The configuration change can be proposed at any time.
However, only once it is authorized by appropriate parties can it be introduced to the system. The
new protocol provides an additional security layer, ensuring that every action is accounted for and
authenticated. Furthermore, it enforces that administrators authorize every change. The protocol
was designed to be flexible and easily adaptable to scenarios that did not use distributed ledger
technology before. It uses the HTTP protocol with the JSON standard for protocol messages to
allow easier adoption and transparency. The features of the proposed protocol were analyzed from a
security point of view as well as from the financial perspective related to costs of using Blockchain
technology. Security analysis shows that the protocol is resilient to the most common security risks
that haunt state-of-the-art IT systems. Additionally, the authors proved that this solution could be
implemented in both private and public Blockchains. A reference implementation was shared in a
public repository. The proposed protocol was also compared with the most similar state-of-the-art
work in the academic research highlighting the key differences and improvements.

Keywords: Blockchain; authorization; authentication; accounting; configuration; smart grids

1. Introduction

It is safe to say that aspects of people’s lives are now increasingly being digitized—
social interactions, banking, and entertainment being the prime examples. However, due
to network connectivity’s benefits, increasing numbers of systems that previously worked
offline are now connected to the network (often to the internet as well)—for instance,
systems associated with production, fridges, cars, or in general, Internet of Things devices.
However, there is also an increasing need for security in the underlying infrastructure,
including power grids, which are now becoming smart grids, and in the energy sector in
general [1–4]. Quite often, such information systems require precise configuration that will
dictate how they should operate. The severity of such configuration differs from system to
system. However, the proper configuration must be applied in a system because of security
and efficiency. Moreover, important information is the time when the configuration was
applied and who is responsible for this action. It is crucial to verify if a person responsible
for changing the configuration had sufficient authority/privileges to do so. Many systems
and devices require a strict change policy with comprehensive management. This paper
proposes a structured approach to achieve a decentralized protocol for configuring such
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systems using Blockchain technology. Furthermore, it is clear that standardization is
required, as even the Ethereum platform decided to introduce standards for smart contracts
in the form of Ethereum Request for Comments (ERC) [5].

The Blockchain is the most common implementation of a distributed ledger tech-
nology that tracks, processes, validates, and authenticates transactions. In essence, it is
a decentralized database with no central administration. Decentralization eliminates a sin-
gle point of failure. The defining characteristic of a Blockchain is its immutability. Once the
transaction is recorded and published, it cannot be reversed or deleted. The first notable
usage of Blockchain was introduced by Satoshi Nakamoto in [6], which is the foundation
of Bitcoin—the most popular cryptocurrency. Bitcoin created a peer-to-peer network al-
lowing a trustless exchange of value. It is often referred to as “Blockchain 1.0”. Newer
projects introduced the possibility of executing arbitrarily written code in Touring-complete
programming languages. This on-chain program is most often called a smart contract
and has its own address on the Blockchain once deployed. Blockchains supporting smart
contracts are often referred to as “Blockchain 2.0”. Currently, the community is shifting
to “Blockchain 3.0”, which is focused on integrating Blockchain 2.0 technology with more
aspects of human life, not limiting it to the financial world.

1.1. Motivation

There is no denying that, currently, society is used to operating in a centralized model.
For example, every financial operation, be it a money transfer, compensation for work,
or even a purchase of commodities, needs to go through the third party that needs to
accept the operation. Furthermore, there is a massive flood of fake news and targeted
advertisement only because people use systems designed to generate the most profit for its
creators—often big tech companies. There is nothing wrong with using such systems if one
wishes to. However, it still requires users to trust that their data or actions are performed
in a secure and privacy-preserving manner, and even that they will be performed at all.

One of the paradigms of decentralization is that users do not need to trust any third
party to do anything. Instead, such security should be implemented by design and incen-
tivized by the whole ecosystem instead of the good will of a particular system’s owner.
This is why Blockchain technology is gaining popularity and is being adapted into more
domains. This paper attempts to introduce decentralization into one more field—change
control in IT systems.

A high-level usage example of the protocol proposed in this paper is as follows. Let
us suppose there is a factory producing equipment in a robotic production line. In such a
critical scenario, multiple people from different departments must approve every change in
the production parameters, including administration, management, and quality assurance.
The proposed change may come from any of these departments with a different purpose.
For instance, the management department might want to introduce a change in the pro-
duction system to reduce operating costs. Such a change can be proposed at any time.
However, after it is proposed, other departments need to review the change and authorize
it only if they find it suitable. Once all required parties agree on the change, it will be
introduced to the system. In this scenario, it is essential to keep track of who proposed and
approved the specific change and when it happened.

1.2. Contribution

The protocol proposed in this paper uses Blockchain technology to facilitate the
scenario described in the previous paragraph. Everyone wishing to suggest a change
must record this on the Blockchain. Similarly, every authorization will also need to be
performed on the Blockchain. This way, actions taken by interested parties are protected by
asymmetric cryptography, and all of them are accounted as they are recorded on the public
Blockchain. A significant part of the authorization is also transferred to the Blockchain as
the smart contracts are used to keep track of proposals and authorizations.
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Furthermore, the protocol defines a clear path that every change proposal should fol-
low, which helps to create a transparent business process that is secure and easily verifiable.
The proposed protocol was designed to be flexible and operate as an additional layer over
the currently used configuration scheme. It can be used to configure any system. However,
based on the features described in this paper, the protocol is best used in environments that
require the highest possible level of accountability and transparency, such as factories or
critical infrastructure, including smart grids. In summary, the contribution of this paper
covers the following issues.

• Motivation and needs of decentralized solutions for configuring information systems
are discussed.

• An innovative asynchronous configuration protocol based on Blockchain technology
is introduced. The novel protocol is formally defined, including the commit structure,
requests, responses, and smart contracts.

• Examples of lightweight objects and structures to support flexibility and applicability
in modern communication networks are presented. Templates of smart contracts used
to authorization purposes are provided.

• The functionality of the proposed protocol is verified, including analysis of Blockchain
interaction fees and latency. Security considerations regarding the new protocol
are provided.

• The new solution is implemented and shared in a public repository [7].

This article consists of six sections. Section 2 contains a description of the current
state of the art. Section 3 introduces a high-level overview of the proposed protocol and
describes a typical scenario. Section 4 includes defined requests and responses, as well
as the description of smart contracts used in the protocol. The article is summarized in
Sections 5 and 6.

2. State of the Art

Blockchain technology has taken the world by storm ever since a group or individual
named Satoshi Nakamoto proposed Bitcoin in 2008 [6]. Initially, Blockchain technology
was focused on purely financial aspect of society; however, as the technology evolved,
it was introduced to more areas. Currently, it is also strongly applied for authentica-
tion, authorization, and accounting purposes. The research focuses on various aspects of
Blockchain—one of them being connecting it with other technologies and looking for new
applications [8,9]. There have been attempts at proposing a standardized approach for
multiple applications, for instance, a decentralized authentication and authorization proto-
col similar to OAuth2 [10], an identity authorization mechanism based on two sub-chains
with a registration process [11], and a protocol for configuring network devices based on
Hyperledger [12].

As identified by Li et al. [9], the most recent Blockchain iteration (called Blockchain 3.0)
concerns its integration with various industries. The community has identified that
Blockchain can help with user authentication and authorization. For instance, Lin et al. [13]
have developed a Conditional Privacy Preserving Authentication protocol for vehicular
networks (VANET) using Blockchain, and specifically the Ethereum platform, which was
proved to conform to security requirements along with providing a good user experi-
ence because of small delays. Perera et al., on the other hand, have created a Certificate
Management Scheme using Blockchain structure for VANET [14]. The application of
various Blockchains for data collection in the automotive industry was described in [15].
Abubakar et al. [16] created a lightweight authentication protocol for SIP-based VoIP sys-
tems also using the Ethereum Blockchain. Shahzad et al. have proposed an authentication
solution based on Blockchain for communication security in 6G networks [17]. Blockchain
is also used for supply chain security and product traceability [18–20]. Another industry
benefiting from Blockchain technology is the Internet of Things, which uses it to facilitate
data security and access control [21–23].
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The general idea proposed by Helebrandt et al. [12] is similar to the one proposed in
this paper, with some notable differences—primarily the fact that the protocol proposed
in this paper is ready to be used in public Blockchains. The differences are stressed in
the following sections. It is worth mentioning that some of the statements, although true
at the time of publishing, are now outdated. Originally, the Blockchain technology was
not associated with high throughput or scalability [8]; however, the world has now been
introduced to Blockchains with a higher TPS (transactions per second—the value indicating
how many transactions on average are processed by Blockchain) than Visa’s [24]. The Solana
Blockchain team, in fact, states that its scalability is limited only by current hardware.

3. A New Protocol

The idea behind using Blockchain technology to support an asynchronous config-
uration protocol providing authentication, authorization, and accounting (AAA) is not
convoluted, especially when taking into account the fact that the Blockchain itself is a dis-
tributed ledger technology, and every interaction with it is public. Hence, the “accounting”
part of a new protocol’s functionality is ready out of the box.

The most common way to authenticate is a shared secret (passwords). This is easy
to implement for developers, easy to maintain for administrators, and easy to use for
users. However, one major drawback is a single point of failure—the database where
hashes of users’ passwords are stored. If a system using a shared secret for authentication is
compromised, and such a database is leaked, usually, it is a matter of time before passwords
are cracked using a brute-force approach. It might take a long time, but a determined
attacker will crack them sooner or later. Moreover, such a scenario applies if the system
was incorporating best practices and was not storing passwords in a clear-text format,
which users can most often only hope for. Blockchain uses asymmetric encryption, so
the equivalent of the password is a private key. However, it is not stored anywhere—it
is known only to its owner. A private key is associated with a public key (known in the
Blockchain world as an address). Hence, any interaction with Blockchain coming from a
specific address is enough to know that this interaction was triggered by the person owning
the private key associated with that address.

Authorization is a different concept. The most common authorization scheme is simply
a field in a table storing users’ identifications, which are assigned to specific groups with
different privileges (for example, “staff”, “guests”, or “administrators”). Authorization is
applied after successful authentication. Once the service knows who is trying to access or
modify a given resource, it checks if that user has sufficient privileges using the mentioned
table. For the proposed protocol to work, a Blockchain supporting smart contracts is
required, so-called “Blockchains 2.0” or above (examples of such Blockchains are Ethereum
or EOS; however, for example, Bitcoin does not meet the requirements). Smart contracts are
essentially pieces of computer programs residing on the Blockchain that can be executed
when certain conditions are met. Smart contracts are located directly on the Blockchain.
Therefore, they are immutable—once defined and published, the smart contract will always
work in the same manner. A smart contract associated with the proposed protocol needs
to have a list of Blockchain addresses that identify administrators (or simply users with
privileges required to perform a given action).

An asynchronous aspect of a new protocol is that anyone can propose a change at
any given time, but they will be staged only once the administrator authorizes them.
Contrary to the solution proposed in [12], the configured service, system, or device does
not interact with Blockchain at any time—it is only notified which change should be staged
based on what was authorized via smart contract. This approach makes the protocol more
resistant to Denial of Service (DoS) attacks and is ready to be used both on the public and
private Blockchains. The flow diagram of a new protocol is presented in Figure 1. It is
worth mentioning the “server” in the figure represents a system’s component responsible
for applying the configuration. It might be a part of the configured system itself or a
separate entity.
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Figure 1. Flow diagram of the proposed protocol.

The essence of the protocol operation, based on the diagram seen in Figure 1, is the
following list of actions (each number on the left side of the figure corresponds to the
particular step):

1. The server continuously monitors the state of Blockchain looking for the emitted
events. It will only act when events affecting that particular server are identified.

2. A client, which can be anyone, uses the system and receives the data currently saved
in database along with the change scheme.

3. Then, once the client decides to propose a change, it sends a specific request using a
previously saved schema.

4. The server creates a new commit associated with that change and assigns it a nonce,
which is returned to the client along with Blockchain data (address and interface of the
smart contract). At this point, no change was introduced and data was not changed.

5. Once the client decides to publish the change request, he or she interacts with the
Blockchain via smart contract shared by the server. On successful interaction, autho-
rization information is returned. It contains the address of a smart contract that the
administrator needs to interact with to stage the changes.

6. Only once the administrator authorizes specific change is the server notified, and it
updates the database with new data.

Let us assume the proposed changes are stored in a repository, for example, a database,
and will be identified using the hash value of those changes. In order to introduce change
into the system, it is necessary to interact with the smart contract associated with that par-
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ticular system. If the change was proposed by an administrator (e.g., someone authorized
to stage them), then the smart contract immediately emits an event (an event in terms of
the Ethereum Smart Contract is in the form of a log) informing that changes identified by
a particular hash can be staged. If additional authorization is needed, the smart contract
will create another contract (called Authorizer) responsible for authorizing that particular
change. Administrators who want to authorize this change interact with the Authorizer
contract. This contract will inform the base contract that someone has authorized a change.
Once the change is authorized via the Blockchain mechanism, the base contract will also
emit an event informing that those changes can be applied. The server with access to a
repository, where potential changes are stored, listens to those events. Once an event is
received, the system validates and implements the associated changes.

The mechanism proposed in this paper is designed to be operational on a public
Blockchain. Furthermore, the mechanism does not require a separate smart contract for
each application (although it can be set up in such a manner). Contracts are agnostic when
it comes to the configured underlining system, meaning that a single contract can operate
as an endpoint for various services (as long as they share the same administrators).

4. Formal Protocol Description

This section describes the protocol in greater detail. It first focuses on the commit
structure, which represents a specific change proposal. The following subsections describe
requests and responses defined in the protocol. Then, this section is concluded with
the characterization of smart contracts and a short note on governance in the protocol.
The protocol was designed to be lightweight and easily adaptable to the existing solutions,
hence the usage of a well-established and widely used JSON data format [25] for both data
transmission and storage and HTTP protocol [26] used for communication. Furthermore, it
was designed to be flexible and applicable in as many scenarios as possible.

4.1. Commit Structure

The solution proposed in this paper defines a structure of an update in configuration.
This update is referred to as a “commit”. The commit is a JSON object and consists of
various fields, which are listed in Table 1.

Table 1. Fields present in the commit JSON object.

Field Name Data Type

changes JSON object

creator String

nonce Integer

additional_authorizers JSON array

depends_on JSON array

The keys of the changes JSON object are the variable names, which are dependent on
the system under configuration. Values present in this object represent the change proposal.
Should this commit be staged, the values present in the changes object would become the
new configuration. This field is solely dependent on the application or system configured.

The string assigned to the creator key needs to contain the Blockchain address of the
commit’s creator, which is essentially his or her public key in hex representation prefixed
with “0×”. This element allows for the unambiguous identification of the creator.

The nonce is a 32-bit number randomly generated on the server-side for each commit.
The nonce is supposed to increase the difficulty of a brute-force attack. Every interaction
with the Blockchain is public. In order not to share the configuration publicly, all users
refer to commits by their hashes. The protocol allows the situation where the configuration
scheme is public, so anyone could know which parameters are configurable and what their
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data types are. In such cases, an attacker would be able to generate hashes corresponding
to different configuration proposals and act on them once spotted on the Blockchain.
The creator’s address is also part of the commit, influencing the commit’s hash. However,
the mechanism cannot rely on this. Although the protocol allows anyone to propose
a change, in most cases, only specific people will be responsible for this. Hence, the creator
key might be easily guessable. To prevent these brute-force attacks, the nonce field was
introduced to the protocol so that no two commits share the same hash, even if all of their
fields are the same.

The additional_authorizers JSON array is an array of strings, each representing a Blockchain
address (in the same format as the creator key). This could be provided by the commit’s
initiator or filled in by the server or can even be stored in the smart contract itself—it would
depend on the implementation. Regardless of which side is filling this information, if the
creator is not authorized to stage changes (the creator is not a privileged administrator),
then this field cannot be an empty array unless it is defined in the smart contract.

The depends_on JSON array is an array of strings. Each string is a hex representation of
a hash of another commit. This list indicates that the commit holding this list cannot be
staged (even if authorized by administrators) until all of the commits identified by their
hashes in this list are also staged. This field is not optional. However, it can be an empty
array, which indicates that this particular commit does not depend on any other. This list is
filled by the creator.

As already mentioned in the depends_on description, the crucial part of this mechanism
is a commit hash. It is calculated using the SHA3-512 hash function in the test implemen-
tation of this protocol, although this particular hash function used is not obligatory. It
is, however, strongly encouraged not to use hash functions that produce output shorter
than 256 bits. This hash is used as an identifier of a particular commit in the Blockchain,
i.e., users refer to specific commits by their hash. Longer hashes decrease the chance of
using a brute-force approach in guessing the commit’s content, especially the value of the
changes JSON object, which helps to keep the proposed configuration confidential.

An example of a commit is presented in Listing 1. This particular commit proposes
to change an application’s variable named “boolean_value” to a value of “true” and the
“background_color” variable to a value of “red”. It does not depend on any other commit
and requires one administrator to authorize that change.

Listing 1. A commit example.

{
" changes " : {
" boolean_value " : true ,
" background_color " : " red "
} ,
" c r e a t o r " : "0 xFFcf8FDEE72ac11b5c542428B35EEF5769C409f0 " ,
" nonce " : 98430 ,
" a d d i t i o n a l _ a u t h o r i z e r s : [
"0 xb1E7bC63d4f537d746F1C1342D517963feB7C5C7 "
] ,
" depends_on " : [ ] ,
}

4.2. Requests

This subsection considers the structure of requests sent to a server, and the responses
are described in the next subsection. The communication between a client and a server is
based on HTTP protocol, as it is a well tested and widely used carrier protocol for various
types of data. Every message sent from the client to server needs to have a specific structure,
which is an HTTP POST request. The body of the request is a JSON object with two keys:
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• proto_action, which is a string and is always necessary. It defines the type of re-
quest sent.

• payload, which is a JSON object and sometimes can be omitted (depended on the
proto_action).

The proto_action defines what type of message is sent and what server should reply.
The possibilities are described below.

• get_change_from_hash is used to get the human-readable commit based on its hash. This
action needs interaction with the Blockchain, and it requires two separate requests
to the server to complete. In the first request, the payload key of the request needs to
contain a commit_hash key, which contains the hex representation of a commit’s hash,
and a public_key key which holds the Blockchain address of the user who wishes to
see the proposed commit. The server is obliged to check if the public_key is associated
with one of the administrators or creator of the commit and to check if the commit of
this hash exists. If all of those are true, then the server generates a token along with
a challenge associated with it so that it can be authenticated. It is important to be able to
connect the token to the challenge associated with it. It might be stored in a repository
on the server as an arbitrary connection. In the proof-of-concept implementation,
the challenge was calculated as a hash of the token, which connects the challenge to
the token. However, it does not allow the token to be obtained from the challenge.
At this point, the server responds to a client. In the case of the second request, e.g., the
token was authenticated via interaction with the smart contract, the client request
instead of public_key needs to contain the token field with the authenticated token.
The server must validate if the token was authenticated and associated with the
correct commit. Exemplary requests can be found in Listings 2 and 3.

Listing 2. A get_change_from_hash initial request example.

{
" pro to_ac t ion " : " get_change_from_hash " ,
" payload " : {
" commit_hash " : " ac2be638082283e54 . . . " ,
" public_key " : "0 xFFcf8FDEE72ac11b . . . " ,
}
}

Listing 3. A get_change_from_hash request with authenticated token example.

{
" pro to_ac t ion " : " get_change_from_hash " ,
" payload " : {
" commit_hash " : " ac2be638082283e54 . . . " ,
" public_key " : "0 xFFcf8FDEE72ac11b . . . " ,
" token " : "17 fe335be2244c9d01e7c4f952a17019 . . . " ,
}
}

• get_config does not require a payload key to be present. This is the message request-
ing the current configuration of the system. It is possible that the system should
not share this configuration openly, in which case a similar mechanism as that for
get_change_from_hash with one-time tokens and challenges can be implemented.

• get_schema instructs the server to return the schema of change. This includes the
order of fields along with their data type. It informs the client about configurable
parameters. Furthermore, it also dictates what the commit looks like, which allows
a client to calculate the commit’s hash.
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• change_config is used to propose new commits. This is the core functionality of the
protocol. It requires an interaction with the smart contract. The payload field, in this
case, consists of a single key—commit. This key maps to the JSON object, which maps
to the flattened commit structure described in Section 4.1, e.g., it consists of the same
information. However, there are no nested JSON structures. An exemplary request is
presented in Listing 4.

Listing 4. A change_config request example.

{
" pro to_ac t ion " : " change_config " ,
" payload " : {
" boolean_data " : true ,
" background_color : " red " ,
" a d d i t i o n a l _ a u t h o r i z e r s " : "0 xFFcf . . . , 0 xE11B . . . " ,
" depends_on " : " " ,
}
}

• get_abi is used to receive an ABI (ABI stands for Application Binary Interface—it is
used in the Ethereum Blockchain to describe how to interact with the smart contract
it is associated with) for either the base contract or authorizer contract. It requires
a payload to be present in the request. Inside the payload, there needs to be an abi_type
key mapping to either “base” or “authorizer”.

4.3. Responses

The server response body is also a JSON object, which always contains a success key,
which is a numeric value indicating a success (value 1 means successful operation, anything
else is a failure). If the success value indicates a failure, then the response also needs to
contain a message key, which will hold a string message describing the reason for failure.
On the other hand, if the success value indicates successful operation, then other keys
present in the response are dependent on the proto_action. Those responses are defined
as follows.

• get_change_from_hash—after the initial client request, which results in token and chal-
lenge generation, the server returns a JSON object consisting of the success key set to 1,
token_value, and challenge keys set to generated token and challenge, contract_address
which holds the address of a smart contract to which the user must authenticate his or
her token, and abi, which instructs the client how to interact with that smart contract.
Response for the second request (i.e., one containing authenticated token) returns the
success set to 1 and changes, containing the changes proposed in this commit if the
token passes all validation. In case of failure at any step, the server responds with the
success attribute set to 0 and message set to a string describing the error. Exemplary
responses associated with this proto_action can be found in Listings 5 and 6.

Listing 5. A get_change_from_hash response with token and challenge.

{
" success " : 1 ,
" token_value " : "17 fe335be2244c9d01e7c4f952a170 . . . " ,
" cha l lenge " : " b7725f7835b594f face23 . . . " ,
" contrac t_address " : "0 xe78A0F7E598Cc8b0Bb87894 . . . " ,
" abi " : "\" [ {\\\" inputs \ \ \ " : [ { . . . "
}
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Listing 6. A get_change_from_hash response with proposed changes.

{
" success " : 1 ,
" changes " : {
" boolean_data " : f a l s e ,
" background_color " : " red "
}
}

• get_config—the server responds with the currently running configuration. This action
is not critical as it depends on the system or application. As mentioned before,
this action might succeed only if a specific token was authenticated. In some cases,
the configuration is visible in normal operation. The returned data are not part of the
configuration process, meaning that various formats can be implemented. For instance,
the server may return the data encrypted with the specific public key so that only the
owner of the associated private key can see the configuration.

• get_schema—the server returns the currently defined schema. It contains the order in
which changes should be put in the JSON object, the order of fields in the commit,
and the schema’s hash. The client is required to construct local commits based on this
response. The exemplary response is presented in Listing 7.

Listing 7. A get_schema response.

{
" changes_order " : " boolean_data , background_color " ,
" f i e l d s _ o r d e r " : " changes , c rea tor , nonce , . . . " ,
" schema " : {
" a d d i t i o n a l _ a u t h o r i z e r s " : " [ s t r i n g ] " ,
" background_color " : " s t r i n g " ,
" boolean_data " : " bool " ,
" c r e a t o r " : " s t r i n g " ,
" depends_on : " [ s t r i n g ] " ,
" nonce " : " −" ,
} ,
" schema_hash " : "83 d6aeedddb0e . . . " ,
}

• change_config—the response follows the general rules outlined so far. It contains the
success field indicating whether the operation was successful. In case it was not, it is
set to 0, and another field, named message, is present containing a string describing the
error. In case the operation was successful, the success is set to 1, and there are two other
JSON objects present in the response—commit and contract_details. The commit object
contains the nonce key, with the generated nonce for this particular commit, and the
hash_begins_with key, which contains the first 12 characters of a hex representation of
the commit’s hash. Those 12 characters are enough for the client software to verify if
the server and client agree on the commit’s content. The contract_details contains the
addr key with the address of the smart contract to interact with along with abi, which
describes how to interact with it. An example of a response for this action is presented
in Listing 8.
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Listing 8. A get_schema response.

{
" success " : 1 ,
" commit : {
" hash_begins_with " : " ac2be6380822 " ,
" nonce " : 98430
} ,
" c o n t r a c t _ d e t a i l s " : {
" addr " : "0 xe78A0F7E598Cc8b0Bb87894B0F60 . . . " ,
" abi : "\" [ {\\\" inputs \ \ \ " : [ { . . . " ,
}
}

• get_abi—the response contains the success field indicating whether the operation was
successful and the abi field containing the ABI if the success is set to 1 and message
otherwise.

4.4. Smart Contracts

The smart contract itself—implemented for Ethereum blockchain as a proof-of-
concept—has a functionality similar to a multi-signature wallet solution with additional
features. This is the part of the protocol that is responsible for authorization. The smart
contract is designed in a completely service-agnostic manner. The contract itself needs to be
aware of which addresses are associated with the administrators. As long as given services
share the same administrators, the same smart contract can be used. The vase contract
(overview visible in Listing 9) is responsible for authenticating tokens to read the proposed
changes as well as actually emitting events telling the server to stage them.

Listing 9 contains the variables and function names used in the contract. However,
for clarity, the actual implementation was omitted in this paper, and comments providing
the high-level description were provided instead. The complete implementation used for
testing and verification can be found in a public repository [7]. It is worth mentioning that
the smart contracts considered in this paper are not audited and should not be considered
production-ready software. They are purely a proof-of-concept implementation to verify
the functionality of the proposed solution. However, they do not derive from the well-
tested contracts or interfaces (such as OpenZeppelin) to limit the implementation to the
logic related to the new protocol and they intentionally lack some of the features that would
be required—for example, it is not pausable. It is good practice to implement a “pause”
functionality in a smart contract that allows the halting of all critical operations should
an unexpected event occur. For example, if there was a vulnerability identified, then it
might be better to “pause” the contract until countermeasures are implemented rather than
risk the potential exploitation. It should be noted that before going further with official
standardization or implementing this protocol based on this proposal, the smart contracts
need to be audited.

Listing 9. A base smart contract.

c o n t r a c t BaseChangeAAA {
s t r u c t Commit {
bool _needsAuthorization ;
uint256 _ a u t h o r i z e r s L e f t ;
mapping ( address => bool ) _ a u t h o r i z e r s ;
address _commitCreator ;
bool _ e x i s t s ;
}

mapping ( s t r i n g => Commit ) _hashToCommit ;
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address _server ;
mapping ( address => bool ) p r i v a t e _isAddressAdmin ;
mapping ( address => bool ) p r i v a t e
_isI tADeployedAuthorizerContracts ;

event BaseContractCreated ( address _baseAddress ) ;
event AuthorizerContractCreated (
address indexed _authorizerContractAddress ,
s t r i n g _commitHash ,
address [ ] _authorizersNeeded
) ;
event ChangeCanBeStaged (
s t r i n g _commitHash ,
address indexed _ c r e a t o r
) ;
event TokenAuthenticated (
address indexed _address ,
s t r i n g _chal lenge
) ;

modif ier onlyServer ( ) {
// modif ier making sure t h a t funct ion was invoked
// by an address ( server ) s e t as owner of t h i s c o n t r a c t
}

modif ier onlyAuthorizer ( ) {
// modif ier making sure t h a t funct ion was invoked
// by Authorizer c o n t r a c t
}

c o n s t r u c t o r ( address [ ] memory admins ) {
// c o n s t r u c t o r s e t t i n g the owner ( server ) address and
// saving the addresses provided as arguments as admins
}

funct ion authent icateToken ( s t r i n g memory _chal lenge )
publ ic {
// emits TokenAuthenticated Event with
// the provided chal lenge and sender ’ s address
}

funct ion createCommit (
address _commitCreator ,
s t r i n g memory _commitHash ,
address [ ] memory _commitAuthorizers
) publ ic {
// Creates a commit . I f ~ c r e a t o r of the commit i s one of
// the a d m i n i s t r a t o r s then ChangeCanBeStaged event
// i s emitted . Otherwise , i t c a l l s
// crea teAuthor izerContrac t funct ion to deploy
// a new Authorizer c o n t r a c t
}

func t ion crea teAuthor izerContrac t (
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s t r i n g memory _hash ,
address [ ] memory _commitAuthorizers
) p r i v a t e {
// Deploys a new Authorizer c o n t r a c t and a s s o c i a t e s i t
// with Commit i d e n t i f i e d by i t s hash
}

funct ion someoneAuthorizedChange (
s t r i n g memory _hash ,
address _whoDidIt
) e x t e r n a l onlyAuthorizer {
// Called by Authorizer c o n t r a c t whenever someone
// authorized a change there . This funct ion v e r i f i e s i f
// i t was a va l id operat ion
}
}

If a user proposing the change is actually an administrator, then the base contract is all
that is needed to confirm this change correctly. However, in case additional authorization is
necessary, then the base contract acts as a factory for a so-called authorizer contract, which
is deployed individually for every change that requires such authorization. An overview of
the authorizer contract is presented in Listing 10. It might be argued that the deployment
of a separate authorizer contract is not necessary, as the same functionality could be
implemented in the base contract, which is a valid point. However, there are some points
that need to be considered here. First of all, contract deployment is an expensive operation
in comparison with function calls. The authorizer contract is deployed only if additional
authorization is needed, i.e., the change was proposed by a non-administrator user. This
is done in order to disincentivize any bad actor from using the contract if not actually
wanting to propose a meaningful change, as such operation would be financially expensive.
Furthermore, splitting the logic into separate modules (or contracts) is a common practice
in software development as it helps with the readability and cognitive understanding of
the code. The contract’s size matters from Ethereum’s point of view, as the legitimate users
should be able to use it as cheaply as possible [27].

Listing 10 contains the variables and function names used in the contract. As above,
for clarity, the actual implementation is omitted in this paper, and comments providing
the high-level description are provided instead. In addition, the complete implementation
used for the testing and verification of this type of smart contract is available in a public
repository [7].

Listing 10. Authorizer contract.

c o n t r a c t Authorizer {
BaseChangeAAA _base ;
mapping ( address => bool ) _authorizerNeeded ;
s t r i n g _commitHash ;
bool _ isOnl ine ;

event SomeoneAuthorized (
s t r i n g indexed what ,
address indexed _who
) ;

modif ier onlyBase ( ) {
// modif ier checking i f Base c o n t r a c t invoked a funct ion
// t h a t uses t h i s modif ier
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}

modif ier i sOnl ine ( ) {
// modif ier checking i f t h i s c o n t r a c t i s in
// an " onl ine " s t a t e
}

modif ier validHash ( s t r i n g memory hash ) {
// modif ier checking i s provided hash i s equal to
// the one saved in t h i s c o n t r a c t ’ s s torage
}

c o n s t r u c t o r (
address _baseAddress ,
s t r i n g memory _hash ,
address [ ] memory _ a u t h o r i z e r s
) {
// Constructor c r e a t i n g t h i s c o n t r a c t . I t saves
// the commit ’ s hash and Base c o n t r a c t ’ s address .
// Addit ional ly , i t s e t s t h i s c o n t r a c t to
// an " onl ine " s t a t e
}

funct ion goOff l ine ( ) e x t e r n a l onlyBase {
// Function which can be c a l l e d by the Base c o n t r a c t
// t h a t deployed t h i s c o n t r a c t . I t switches t h i s
// c o n t r a c t to an " o f f l i n e " s t a t e
_ isOnl ine = f a l s e ;
}

func t ion author ize ( s t r i n g memory hash )
publ ic i sOnl ine validHash ( hash ) {
// Function used to author ize a change . I f ~commit hash
// i s equal to the one expected and c a l l e r i s
// an adminis t ra tor then t h i s c o n t r a c t c a l l s
// someoneAuthorizedChange funct ion in Base c o n t r a c t
}
}

The smart contracts presented in this paper as an example were implemented in
Solidity programming language for an EVM-based (EVM stands for Ethereum Virtual
Machine) environment. It is however possible to implement the same behavior in other
programming languages for different Blockchains, as all of them are Touring-complete.

4.5. Governance

The previous description of the protocol depicts the most basic way this protocol can
be implemented. It was described as such to decrease the complexity of the narrative. That
description is sufficient if only one administrator is defined (which often might be the case).
In this scenario, all protocol security features are void if the administrator is compromised,
as the administrator has complete control over the protocol. A Governance mechanism
should be implemented to eliminate this single point of failure. This means there should be
a voting process associated with authorizing a change, i.e., only if the majority (or all) of
the administrators agree on a particular change can it be implemented. The protocol allows
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additional_authorizers to be defined in multiple places as the Governance requirements will
be different for every application.

There might be different levels of criticality associated with a given change, and not
all changes might require unanimous voting with all privileged users present. For instance,
changing an internal website’s background color does not necessarily require all adminis-
trators to interact with the Blockchain if that action is not considered critical. On the other
hand, changing the configuration related to the product’s safety parameters in a factory
will most likely require all administrators (for instance, the IT department, management,
and executive employees) to agree. Thus, the voting mechanism should be associated with
every change to maximize security.

5. Results and Security Considerations

The protocol proposed in this paper is a service-agnostic attempt at bringing a standard-
based approach to the Blockchain environment. The idea proposed by the authors is the
following: the protocol operates as an abstraction layer for the configuration process itself.
Although the proposed protocol shares similar functionality to the SNMP protocol [28], it
differs because it is actually a functional wrapper over the configuration protocol itself. It
does not dictate how the configuration should be performed, e.g., it does not require the re-
implementation of such processes if they are already in use. Instead, it adds the Blockchain
layer, which will add authentication, authorization, and accounting to the process. There is
no pre-Blockchain protocol that would implement similar behavior, making it challenging
to create a comparison. Nevertheless, it is worth stressing the critical characteristics of the
protocol in a structured manner.

Moving the authentication and authorization (critical security-related operation) to
the smart contract solves the most common issues that affect mainstream applications. First
of all, there is no risk associated with password leakage, as there are no passwords. There is
only one way to interact with the Blockchain as a user with a given address, and that is by
knowing the private key associated with that address. Those keys should be known only
to the account owner (like passwords). However, they are not stored by any application in
any way.

Furthermore, the account address (e.g., public key) and private key are pure asymmet-
ric encryption. Anyone can generate their own key pair. However, this does not require
a user to choose his or her own private key in any way. As a consequence, it eliminates the
risks commonly associated with choosing a simple password—it cannot be easily guessed.
Of course, it would be possible for someone to randomly guess a private key associated
with a given Ethereum address. However, it is highly unlikely, as the private key size
of the key used in Ethereum is 32 bytes (Blockchains use Elliptic Curve Cryptography).
The authorization aspect is covered by the Blockchain’s immutability. Once a contract is
deployed, its state cannot be modified by anything other than that contract’s functions (if
implemented). This ensures that it is always well known who is considered an administra-
tor. In the proof-of-concept implementation, there is no functionality allowing an update
of who is considered an administrator to limit the complexity. In a real-world scenario,
such functionality would be needed. However, it can be easily implemented. In any case,
the execution of such an update function would be public, and there would be no way for
anyone to be unable to check who is a privileged user.

As all information stored on the Blockchain and every interaction with it is public,
the accounting part of the security equation is covered by the Blockchain’s design itself.
Using one of the public Blockchains (such as Ethereum, Solana, NEAR, and others), which
are widely used by people around the world, increases the redundancy. Private Blockchains,
operated, for example, by a single company, are more prone to denial-of-service attacks.
Furthermore, the company can be compromised by a major security incident, and it might
be possible for such a Blockchain to be completely deleted. The chances of a similar situation
in the public Blockchain are so slim that such a situation can be considered impossible.
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However, there are challenges associated with using this protocol. The main one is that
interacting with the Blockchains requires paying for the computation, which might add up
to a substantial amount of money if frequent changes are required. If fees would be a sig-
nificant concern, then one mitigation would be implementing and using a Blockchain with
low computational fees, for example, a Solana or NEAR Blockchain instead of Ethereum,
which is relatively expensive to use. It is worth stressing that, regardless of the chosen
platform, fees cannot be eliminated.

The fees in Table 2 were calculated using Ganache [29], which runs a local node of
the Blockchain. Those results are relatively isolated, as the costs do not fluctuate as they
would in the public Blockchain. The actual costs depend on the specific Blockchain and
its utilization at the given time. On the other hand, differences in cost between actions
should stay relatively consistent, e.g., proposing a change costs at least 11 times more
than any other action (the second most expensive operation would be authorization of a
change with prior token authentication). Those results show that the protocol is relatively
inexpensive for the administrators compared to the user who proposes a change. In most
cases, an entity proposing a change will be a part of the same organization as the one
authorizing it. However, in other cases, the external entity wishing to participate in the
protocol must pay more fees.

Table 2. Blockchain interaction fees.

Action Cost

Commit creation without additional authorization 0.00063842 ETH

Commit creation with additional authorization 0.0162945 ETH

Additional authorization 0.00091722 ETH

Token authentication 0.00055626 ETH

Another issue is the latency. Adding Blockchain as an intermediate party increases
the overall security. However, it also decreases the speed of applying a change. Even
if no additional authorization is required and the Blockchain immediately signals that
changes can be staged, there is still a little computation required to happen on-chain,
and transactions must wait to be picked up by entities creating new blocks. Only after that
is completed can the server actually enforcing the change perform the necessary actions.
In this case, the latency can be mitigated to some extent by choosing a Blockchain platform
with relatively short block creation times and high TPS value, or in some cases, by paying
more for a transaction.

Security Considerations

The most common method of authentication is a shared secret approach (e.g. pass-
words). However, the security of this approach inherently depends on the complexity and
length of a shared secret. These features are often controlled by users. This fact introduces
flaws in the system in the form of weak and fairly quick to guess passwords. Blockchain
technology instead relies on asymmetric encryption, forcing users to generate their private
keys, eliminating the guess factor. As a result, the only way to impersonate someone on the
Blockchain is to use that person’s private key. Although theoretically possible, brute-force
approaches are infeasible due to the length of the private key.

The denial of service condition of the Blockchain will naturally render the whole
protocol unusable as long as the Blockchain network is down. Such scenarios are possible
although implausible in the mature Blockchain environments. Additionally, it is worth
noting that causing a denial of Service condition on any of the critical parts of the system
might also impact the protocol performance. Mainly, this is the component responsible for
introducing changes and listening to the Blockchain events (“server” in Figure 1). However,
even during a critical failure, when all information retained in that entity’s memory is lost,
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the protocol itself is not affected severely. The changes could be recreated by proposing
them again.

The off-chain attack on the system is another risk worth taking into account. A system
may be exploitable due to vulnerabilities residing in software not necessarily associated
with the protocol itself. The underlying system may be impacted in such a scenario.
However, it would not be possible to tamper with the protocol itself. The authorization
logic is contained within the smart contract, which is immutable by design. After the
attack, the protocol can be used in the same manner, as long as there is no leakage of the
private key.

The most significant attacks on this protocol are phishing attacks. The easiest way for
a malicious actor to exploit the protocol is to convince the administrator to leak his or her
private key. The security provided by the Blockchain is broken when a private key is known
to someone other than its owner. This risk can be mitigated to some extent by implementing
a governance mechanism mentioned in Section 4.5 and utilizing multi-signature wallets.
However, ultimately, it will depend on the administrator’s susceptibility to such kind
of attacks.

6. Discussion and Future Directions

It was already mentioned that the general idea is similar to the one proposed by
Helebrandt et al. [12]. However, there are notable differences—mainly the actual environ-
ment. Helebrandt’s idea was designed to operate in the private Blockchain associated with
a single organization. It stores the configuration on the Blockchain itself, i.e., it is public.
Furthermore, the configured devices (network equipment) had to also interact with the
Blockchain, which can be considered as another layer of resiliency in the whole process.
Such an operational design is absolutely fine in the private Blockchain. However, it is
not scalable to public Blockchains such as Ethereum (Helebrandt’s implementation uses
Hyperledger, which lacks the decentralization aspect of the Blockchain [8]). In comparison,
the protocol proposed in this paper was designed to be universal—it will be able to operate
both on the private and public Blockchain. However, it is worth noting that the actual
configuration proposal is stored in an off-chain repository, allowing to maintain a decent
level of privacy even when operating on the public Blockchain. Furthermore, it can be
argued that it would not be possible to retrieve the configuration from the Blockchain upon
complete data loss (e.g. due to critical failure). This reasoning would be correct, however,
it should be emphasized that the protocol proposed in this paper focuses on the mech-
anism facilitating controlled changes into configuration but not its retention. Therefore,
configuration backups should be implemented regardless of this protocol.

In the previous section, the authors considered challenges regarding the proposed
protocol: on-chain code execution requires paying fees, and there is inherent inertia before
enforcing a change due to the latency associated with using Blockchain. Those two issues
might be limited by choosing a specific Blockchain platform. However, they will never be
eliminated. Based on this, the protocol might not be the best fit for selected environments
where changes need to happen rapidly and frequently. On the other hand, Blockchain
provides the highest possible level of security when it comes to accounting for users’ actions
and resilience without a single point of failure. Based on this, an ideal environment for
this protocol would be mission-critical systems, which above all require consistency and
transparency, for example, factories, the military sector, or the energy sector, including
smart grids.

Future research on the proposed solution might focus on comparing the performance
of the protocol among different Blockchains. Furthermore, there are more areas, other than
configuration, which can benefit from Blockchain usage. In addition, other applications for
the proposed scheme of the protocol could be proposed in order to integrate Blockchain
technology with more aspects of the modern world.
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