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Abstract: APV systems producing both crops and electricity are becoming popular as an alternative
way of producing renewable energy in many countries with land shortage issues (e.g., South Korea).
This study aims at developing a hybrid performance model of an Agrophotovoltaic (APV) system that
produces crops underneath the PV modules. In this study, the physical model used to estimate solar
radiation is integrated with a polynomial regression approach to forecast the amount of electricity
generation and crop production in the APV system. The model takes into account not only the
environmental factors (i.e., daily temperature, precipitation, humidity, and wind speed) but also
physical factors (i.e., shading ratio of the APV system) related to the performance of the APV system.
For more accurate modelling, the proposed approach is validated based on field experiment data
collected from the APV system at Jeollanam-do Agricultural Research and Extension Services in
South Korea. As a result, the proposed approach can predict the electricity generation quantity in the
APV system with an R2 of 80.4%. This will contribute to the distribution of the APV system, which
will increase farmers’ income as well as the sustainability of our society.

Keywords: agrophotovoltaic; energy system; photovoltaic; renewable energy

1. Introduction

For decades, the land shortage problem in South Korea has been considered as a major
obstacle to the construction of solar power plants (or solar farms). As approximately 70% of
South Korea’s territory (i.e., 220,848 km2) is mountainous, it is difficult to find vast area of
flatland with sufficient solar irradiation to generate electricity via photovoltaic (PV) panels.
Because of the mountainous eastern region, the western region was considered the most
preferred area for the construction of solar power plants [1–3]. The problem is that most of
the land in the northwestern region is cities, and the other land in the southwestern region
is farmland. More specifically, 4834.57 km2 (30.58%) of the total farmland in South Korea
(i.e., 15,809.57 km2) is located in the southwestern region, and this is the only option for
building solar power plants [4]. Otherwise, deforestation must be carried out in the eastern
region, which causes serious adverse impacts on the environment. Thus, a reduction in
food production is inevitable if solar power plants are built on farmland, which is contrary
to generating renewable energy for human survival at the expense of food security.

In fact, the Korean government has a target of producing 32.2 GW of solar energy by
2030. This requires approximately 425.04 km2 of the land, which is 70% of the land in Seoul,
South Korea [5]. About 5.16% of rice paddy fields need to be converted into solar power
plants to produce renewable energy. Given that South Korea’s grain self-sufficiency rate is
21% in 2019 [6], the solar plant construction on existing farmland could result in a serious
reduction in the food supply.

Nevertheless, renewable energy production is essential for the sustainable develop-
ment of the country. Contrary to coal that produces 109 kg CO2-e/MWh, solar energy
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generates only 6 kg CO2-e/MWh, so it is one of the effective energy sources for reduc-
ing greenhouse gas (GHG) emissions [7]. To solve environmental problems, the U.S. is
considering imposing USD0.025 per kg CO2-e as a GHG emission tax [8], and the Korean
government pays a Renewable Energy Certificate (REC) with the System Marginal Price
(SMP) to purchase solar energy [9]. This additional monetary support is contributing to the
spread of solar power plants in South Korea. In 2020, renewable energy was 20,545 MW
out of 129,191 MW, and 71% of renewable energy came from solar power plants [10].

To overcome the energy production problem without adversely affecting existing food
production, this study adopts the agrophotovoltaic (APV) system as an alternative [11]. As
the system enables the production of crops while solar energy is generated by photovoltaic
(PV) panels, it is a promising solution for countries with land scarcity (see Section 2.1 for
more details) [7]. To build an efficient APV system, this study aims to introduce a hybrid
performance model of an agrophotovoltaic (APV) system in South Korea as an extension of
the previous study [7]. The performance estimation modeling for renewable energy power
plants such as PV power plants, wind farms, and biorefineries is a critical task because it
provides a reliable and practical way to efficiently operate the facilities in advance [12]. By
accurately estimating the capacity of a power plant, not only the investment costs but also
the environmental destruction can be minimized [13]. Thus, there are many studies on the
performance modeling of renewable energy power plants. For example, Zafeiropoulou [14]
and Sijakovic et al. [15] proposed a forecasting model integrated with artificial intelligence
(AI) for estimation of a renewable distribution system involving wind and solar energy
sources. Business use cases were considered for reliable energy-resource management under
extreme weather conditions. Moreda et al. [16] used the SISIFO PV simulator [17] to estimate
the electricity quantity generated by PV modules of an APV system in Brenes in Spain.

Unlike the previous studies [12–17], this study develops a performance estimation
model considering the production quantities of solar energy as well as crops simultaneously
with analytical capability. To this end, the physical model for estimating extraterrestrial
global solar radiation is integrated with polynomial regression (PR) which is one of the
most popular techniques in the field of machine learning (ML) [18]. Contrary to the existing
artificial intelligence approaches [7,19–21], the proposed approach enables an explanation
of the impact of environmental factors (i.e., daily temperature, precipitation, humidity, and
wind speed) and physical factors (i.e., shading ratio of the APV system) on the performance
of the APV system through the values of its coefficient. It has been validated against field
experiment data collected from the APV system at Jeollanam-do Agricultural Research and
Extension Services in South Korea. The novelty of this study is that it is the first study using
both ML and physical models for the estimation of the performance of an APV system
under field study data.

This paper is organized as follows: Section 2 will provide background on the APV
system and its performance models; Section 3 will introduce the hybrid performance model
in detail; Section 4 will address the experiment scenario and results; Section 5 will discuss
the conclusion and future work associated with this study.

2. Background
2.1. Photovoltaic and Agrophotovoltaic Systems

Similar to the existing PV system, the APV system generates electricity via the PV
modules but cultivates crops underneath the PV modules. For this purpose, the APV system
requires a ground clearance height of 2 m (or more) to be able to use a small tractor [11].
Moreover, the distance between the PV arrays is approximately from 6 m to 12 m to reduce
shading in farmland [22]. These constraints increase the total installation cost of an APV
system and reduce the amount of electricity produced per unit area of the system.

Nevertheless, the APV system has been studied in many countries, including in
Germany, Japan, China, the U.S., France, Chile, and South Korea [4,23–25]. Because the PV
modules create shade on farmland, the soil underneath the PV modules maintains moisture,
preserving the organic matter and no additional irrigation is required [26]. Figure 1a shows
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the APV system at the Jeollanam-do Agricultural Research and Extension Services in Naju-
si (35.0161◦ N, 126.7108◦ E), Jeollanam-do, South Korea. To understand the shading impact
on crop growth under PV modules, the system consists of three different shading ratios
(i.e., 21.3, 25.6, and 32.0%). Daily electricity generation per unit area (kWh/m2/day) from
June 2020 to October 2020 is shown in Figure 1b.
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Figure 1. Subject APV system: (a) APV structure; (b) Electricity generation by the APV system. APV:
Agrophotovoltaic [7].

The subject system has an area of 4410 m2 (63 m × 70 m), and its height is 5.42 m. The
costs of building the subject system are described in Table 1 [4]. LG405N2W-V5 is used as
a PV module in the subject system. In Table 1, the unit construction costs increase as the
shading ratio increases because the high sharing-ratio APV system has a high density per
square meter.

Table 1. Construction costs of an APV system (edited from Kim et al. [4]).

Data Type 21.3% 25.6% 32%

Total construction cost (USD) 17,370.72 27,793.14 34,741.43
Solar module cost (USD) 4961.25 7938.00 9922.50

Structure cost (USD) 8211.81 13,138.90 16,423.63
Electric distribution system cost (USD) 3911.23 6257.97 7822.46

Other costs (USD) 1 286.42 458.27 572.84
Number of PV modules per unit area (units/m2) 0.062 0.066 0.089

Unit construction cost (USD/m2) 15.32 16.34 22.06
1 The costs include the building permit fee and the fee for linkage to the existing electric distribution system.

Table 2 describes the climatic data of the studied area in the summer period
(June–August) [7]. Note that the monsoon season in South Korea runs from late June
to mid-July, so solar radiation in July is lower than in other months. The average daily
electricity generation in June, July, August, September, and October is, respectively, (99.83,
74.95, 97.81, 81.73, and 88.37) kWh/m2/day.

For the given climate described in Table 2, five different crops were harvested, such
as sesame, mung bean, red bean, soybean, and corn. Notice that the selected season
(i.e., June–August) is the main farming season for these five crops. The field experiment
adopted a randomized completed block design with three replicates to arrange the plots,
and the size of the subplot was 8 × 10 m (80 m2). The plant density was nine plants per
square meter. The harvested yields are illustrated in Table 3 [4]. Of the five plants, only the
corn yield slightly increased under the 21.3% shading conditions. A slight decrease in the
production of sesame (Sesamum indicum) and soybean (Glycine max) yields occurred under
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the 21.3% shading conditions. However, the beans (i.e., mung bean and red bean) have a
low shade tolerance.

Table 2. Observed climatic data [7].

Month Solar Radiation
(MJ/m2)

Surface Temperature
High (◦C) 1

Surface Temperature
Low (◦C) 2

Precipitation
(mm)

Humidity
(%)

Wind Speed
(m/s)

June 3.70 29.40 19.43 12.72 76.93 2.01

July 2.77 27.71 20.92 14.80 84.67 1.94

August 3.62 34.05 24.25 17.83 73.36 2.45

September 3.03 27.74 16.74 7.17 74.11 1.67

October 3.27 24.68 8.73 0.30 56.94 1.67

1 The highest air temperature; 2 the lowest air temperature.

Table 3. Harvested grain yields (Mg/ha) of all five crops grown in four different degrees of shade [4].

Crop Type Shading Ratios (%)

0 21.3 25.6 32

Sesame (Sesamum indicum) 0.96 0.89 (−7%) 1 0.83 (−14%) 1 0.45 (−53%) 1

Mung bean (Vigna radiata) 1.95 1.54 (−21%) 1 1.1 (−44%) 1 1.09 (−44%) 1

Red bean (Vigna angularis) 2.35 1.75 (−26%) 1 1.52 (−35%) 1 1.47 (−37%) 1

Corn (Zea mays) 8.09 8.56 (+6%) 1 6.4 (−21%) 1 5.63 (−30%) 1

Soybean (Glycine max) 3.64 3.15 (−13%) 1 2.88 (−21%) 1 2.54 (−30%) 1

1 Numbers in parentheses indicate the loss (−) or gain (+) of the yield, compared to the yield without shading.

2.2. Estimation Models for Electricity Generation by a Photovoltaic Module

The most popular model for estimating the solar energy (E, kWh) generated by a PV
module is shown in Equation (1). The model consists of three factors, such as daily solar
radiation per unit area (S, kWh/m2/day), capacity of a PV module per unit area (Pout,
kW/m2), and electricity generation efficiency (k) [27,28].

E = S× Pout × k (1)

Another model, which is shown in Equation (2), considers the size of the PV module
(A, m2) and the operating hours (h).

E = A× Pout × h (2)

Due to their simplicity, both of the models are widely used to estimate electricity
generation in a large-scale solar power plant [7]. However, both models did not precisely
incorporate multiple climate factors, such as temperature, wind speed, humidity, and
precipitation in the estimation of electricity generation so they are likely to have low
prediction accuracy. To overcome this issue, Cha et al. [28] introduced a climate-based
model including two climatic factors such as air temperature (x, ◦C) and wind speed
(y, m/s) in Equation (1). Equations (3) and (4) show the climate-based model.

E = S× h(x, y)× Pout × k (3)

h(x, y) = 742.9 + 176.5x + 3.562y− 13.14x2 − 0.7466xy− 0.151y2 (4)

To capture the nonlinear relationship between the two climatic factors and electricity
generation, a quadratic formula (see Equation (4)) was developed. However, since it is
calibrated with the dataset collected by Cha et al. [28], all of the parameters should be
adjusted if an engineer has to use a new dataset.
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Nevertheless, in the modeling effort mentioned, it is difficult to accurately consider
the impact of various factors on the electricity generation of a PV module. Therefore, novel
modeling approaches have been developed using artificial intelligence techniques, such
as polynomial regression (PR) and deep learning (DL). Since PR, which is one of the most
popular techniques in the field of machine learning (ML), enables an indication of the
significance of a predictor via its coefficient value, Mellit et al. [29] proposed a PR model for
estimating the amount of electricity generation of PV modules. Kim et al. developed a PR
model for the estimating energy consumption of a PV-green roof building [30]. According
to [4], the PR model can be developed with seven variables, such as (1) X1: daily solar
radiation (MJ/m2); (2) X2: maximum daily temperature (◦C); (3) X3: minimum daily
temperature (◦C); (4) X4: daily precipitation (mm); (5) X5: daily humidity (%); (6) X6: daily
wind speed (m/s); and (7) X7: shading ratio (%). The seven variables in Equation (5) have
been identified from the existing literature [4,31,32].

E = −147.38+ 27.16X1 − 9.61× 10−2X2 + 1.03× 10−2X2
2 − 1.67× 10−4X3

2
+ 2.79× 10−3X3 + 7.39× 10−3X2

3 − 2.93× 10−4X3
3

+ 1.59× 10−3X4 − 3.02× 10−4X2
4 + 1.11× 10−6X3

4
+ 5.15× 10−1X5 − 8.23× 10−3X2

5 + 4.04× 10−5X3
5

− 4.23× 10−2X6 + 507.82X7

(5)

As shown in Equation (5), most of the climate variables have a non-linear relationship
with the electricity generation of the PV modules, which means that the traditional simple
models (i.e., Equations (1) and (2)) are not suitable for estimating the amount of electricity.

Deep learning (DL) is, next to PR, another popular modeling algorithm for estimating
the amount of electricity generation [33]. For example, an artificial neural network (ANN)
is used to model solar power generated by a PV module [34]. Since the DL model has
multiple layers of artificial neurons or nodes for the estimation, it can accurately estimate
electricity generation quantity under various independent variables used for the PR model.
To efficiently develop the complex structure of the DL model (i.e., multi-layer neural
network) through four stages consisting of data preprocessing (or labeling), parameter
setting, deep learning modeling and model evaluation, an open-source library such as
DeepLearning4J [7] is widely used. Note that DeepLearning4J is one of the JAVA-based
DL libraries for constructing a multi-layer neural network [35]. Although the prediction
performance of the DL is higher than that of the PR model, it is difficult to address the
impact of each independent variable on electricity generation, since the DL model is a
black-box approach [36].

3. Physical-Based Performance Modeling for an Agrophotovoltaic System

The goal of this study is to introduce a hybrid performance agrophotovoltaic system
(APV) model in South Korea. In particular, to overcome the limitations of the existing
AI-based models considered to be black-box approaches (see Section 2.2), the physical-
based model for estimating the extraterrestrial global solar radiation is integrated with
polynomial regression (PR). Once the physical-based model estimates the extraterrestrial
global solar radiation, the PR model transforms the extraterrestrial global solar radiation
into solar radiation for a site with the subject APV system in relation to climatic conditions
such as air temperature and precipitation. This actual solar radiation is used to compute
the amount of electricity production as well as crop yields. Sections 3.1 and 3.2 explain the
proposed hybrid model in detail.

3.1. Electricity Generation from a Photovoltaic Module

The physical-based model consists of many equations to compute extraterrestrial
global solar radiation (I0). According to Equation (6), extraterrestrial radiation (MJ/m2) can
be computed based on the solar constant (GSC, 1367 Wh/m2), Julian date (n), latitude of
the subject area (φ, degree), declination (δ, degree), and solar hour angles (w1, w2) [37,38].
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I0 = 12×3600
π GSC

[
1 + 0.033 cos

( 360n
365
)]

×
(

cos φ cos δ(sin w2 − sin w1) +
π(w2−w1)

180 sin φ sin δ
) (6)

Equations (7) and (8) represent the solar declination (δ) and the transparency of the
atmosphere (KT), respectively [39,40].

δ = 23.45◦ sin
(

360◦ × 284 + n
365

)
(7)

KT =
I
I0

(8)

Particularly, in Equation (8), the transparency of the atmosphere is the ratio of solar
radiation (I) in the subject area to extraterrestrial radiation [41]. In other words, radiation
(I) is influenced by atmospheric conditions so its value is always lower than that of extrater-
restrial radiation (I0). However, the existing model shown in Equation (8) is too simple
to incorporate the impact of atmospheric conditions on solar radiation in the subject area.
Thus, this study utilizes the polynomial regression approach proposed by Kim et al. [42].
Unlike simple linear regression, polynomial regression enables the capture of a nonlinear
relationship between the variables using a polynomial formula [4]. It is applied to multiple
studies to predict the amount of electricity and crop production [4,43–45]. Equations (9)
and (10) represent a generic polynomial regression model [42].

y = f1(x1) + · · · + f j
(
xj
)
+ ε, ε ∼ N

(
0, ∑j∈J σ2

j

)
(9)

f j
(

xj
)
= β j0 + β j1

(
xj
)
+ β j2

(
x2

j

)
+ · · · + β jL

(
xL

j

)
f or ∀j ∈ J (10)

where J is the set of independent variables used to predict the values of the dependent
variable y. The basic assumption of the model is that the error term (ε) follows a normal
distribution with the mean equal to zero and the variance of ∑j∈J σ2

j . Suppose that x is a
matrix of independent variables shown in Equation (13); and y is a vector of observed values

of y. Estimated parameter set
^
β can be computed by Equation (11) with Moore–Penrose

inverse (+) [43].
^
β =

(
xTx
)

+ xTy (11)

where

x =

1 x11 x2
11 · · · xL

11 x21 · · · x1
n1 · · · xL

n1
...

. . .
...

1 x1m x2
1m · · · xL

1m x2m · · · x1
nm · · · xL

nm

 (12)

y =

y1
...

ym

 (13)

To identify the best fit polynomial regression model without causing an overfitting
issue, a ten-fold cross-validation (CV) with a minimum value of Leave-Out Cross Validation
(LOOCV) error is used [42], and Equation (12) describes the LOOCV error.

ECV =
1
N
(y− ŷ)T(y− ŷ) (14)

As with mean squared error (MSE), the squared error between the predicted value
(y) and the observed value (y) is computed in Equation (14). Algorithm 1 illustrates the
pseudocode of the developed polynomial regression algorithm. The proposed polynomial
regression algorithm is used to compute the transparency of the atmosphere (KT) which
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is influenced by three independent variables, such as the maximum daily temperature
(X1, ◦C), the minimum daily temperature (X2, ◦C), and the daily precipitation (X3, mm).

Algorithm 1. Pseudocode for the polynomial regression algorithm with gradient descent

1: LOAD dataset from the database
2: SPLIT dataset into ten equal-sized blocks
3: REPEAT
4: SET L which is a set of degrees of independent variables
5: REPEAT

6: COMPUTE parameter set
^
β under L

7: COMPUTE the LOOCV error (ECV(L))
8: COMPUTE gradients G = ∂ECV(L)/∂L
9: UNTIL the LOOCV error (ECV(L)) is less than threshold θ

The dataset collected from June to October 2020 at Jeollanam-do Agricultural Research
and Extension Services in South Korea is used (see Section 2.1 for more detail), and Equation
(15) shows the result of the polynomial regression algorithm with the LOOCV error of 0.5186.

I = KT I0 =
(
−0.1731 + 0.0203X1 − 0.0096X2 − 0.0014X3 + 3.51× 10−6X2

3

)
I0 (15)

As shown in Equation (15), the transparency of the atmosphere (KT) is influenced by
three independent variables and it has a polynomial structure. This implies that Equation (3)
may result in an inaccurate prediction result to estimate the value of solar radiation (I) in
the subject area from the value of extraterrestrial radiation (I0). Equation (16) represents the
solar energy estimation model based on solar radiation (I) computed by Equation (15) [40].

E = I × Apv × µsys (16)

where Apv is the size of the PV module (A, m2) and µsys is the APV system’s electricity
conversion rate. The conversion rate is a constant including the PV module efficiency and
conversion loss.

3.2. Crop Yield Estimation

The crop growth can also be estimated from extraterrestrial global solar radiation
(I0) and solar radiation (I) in the subject area (see Equations (6) and (15)) addressed in
Section 3.1. According to [41], crop growth can be estimated based on solar radiation as it
is mainly influenced by the photosynthesis process of each crop. Thus, Equation (17) can
be utilized to estimate the yield (Mg/ha) of five crops (i.e., sesame, mung bean, red bean,
soybean, and corn).

Yyield,k = 0.3356 + 1.0304[λk I(1− Rshade)] + 0.0139[λk I(1− Rshade)]
2 (17)

where Rshade is the shading ratio given by the APV system; I(1− Rshade) represents the
amount of solar radiation reaching the k-type crop; and λk is the impact of solar radiation
on the yield of k.-type plants In fact, each crop requires different lighting conditions for its
growth so that λk is used to represent a characteristic [41].

4. Experiments
4.1. Model Validation

Table 4 shows the difference between the observed values and the values estimated in
terms of declination (δ) and solar radiation (I) in the subject area where the transparency
of the atmosphere (KT) is 0.22. The R2 value between the observed declination and the
estimated declination is 99.73% so the declination values estimated by Equation (7) have
a high prediction accuracy. On the other hand, the R2 value between the observed solar
radiation and estimated solar radiation by Equation (8) is only 2.25%.
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Table 4. Declination and solar radiation data.

Month
Observed Values Estimated Values

δ I δ I

June 23.10 3.70 23.35 3.71
July 21.20 2.77 20.93 3.66

August 13.50 3.62 12.97 3.44
September 2.20 3.03 1.59 3.02

October −9.60 3.27 −8.25 2.57

Based on the climatic data (see Table 2), the transparency of the atmosphere (KT) is
recomputed, and Equation (15) considering climatic conditions such as maximum daily
temperature (X1, ◦C), the minimum daily temperature (X2, ◦C), and daily precipitation
(X3, mm) is used to estimate the solar radiation (I) in the subject area. The estimated solar
radiation values in June, July, August, September, and October are 3.70 MJ/m2, 2.80 MJ/m2,
4.08 MJ/m2, 3.00 MJ/m2, and 2.83 MJ/m2, respectively. The R2 value between observed
solar radiation and estimated solar radiation is 74.37%.

As illustrated in Table 5, the amounts of electricity produced follow a fairly similar
pattern compared to the solar radiation data in Table 4. July has the minimum amount
of electricity and August has the maximum amount of electricity. The R2 value between
the measured amount of electricity and the estimated amount of electricity is 80.17%. The
electricity conversion rates (µsys) of the 21.3% shading ratio, 25.6% shading ratio, and 32.0%
shading ratio are 0.018, 0.013, 0.012, respectively. As the APV system with a high shading
ratio (32%) has more PV modules per unit (i.e., m2), it has the highest conversion rate. On
the other hand, the APV system with a low shading ratio (21.3%) devotes its electricity
generation to crop production.

Table 5. The measured amount of electricity quantity and the estimated amount of electricity.

Category Shading Ratio
Month

June July August September October

Measured Electricity
(E, kWh/m2/day)

21.3 1 0.06 0.04 0.05 0.05 0.05

25.6 2 0.06 0.04 0.06 0.05 0.05

32.0 3 0.08 0.06 0.08 0.07 0.07

Estimated Electricity
(E, kWh/m2/day)

21.3 1 0.05 0.04 0.06 0.05 0.05

25.6 2 0.05 0.04 0.06 0.05 0.06

32.0 3 0.07 0.05 0.08 0.07 0.08
1 The size of the PV module (Apv) is 1134 m2; 2 The size of PV module (Apv) is 1701 m2; 3 The size of the PV
module (Apv) is 1575 m2.

Table 6 describes the crop yields estimated by Equation (17). According to the crop
yield data illustrated in Table 3, the λk values for sesame, mung bean, red bean, soybean,
and corn are 0.1824, 0.4388, 0.5000, 2.0998, and 0.9863, respectively. The R2 value between
the measured yields and the observed yields of the five crops is 96.36%.

4.2. Model Application

The developed and calibrated hybrid model is applied to estimate electricity genera-
tion at Yeongam-gun, Jeollanam-do, South Korea PV power plants [46,47]. Table 7 describes
the climate data observed in Yeongam-gun over a five-year period [48]. Unlike Naju-si (see
Table 2), Yeongam-gun has stronger solar radiation so it has multiple PV power plants [49].
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Table 6. The estimated grain yields (Mg/ha) of all five crops.

Crop Type Shading Ratios (%)

0 21.3 25.6 32

Sesame (Sesamum indicum) 0.96 0.89 (−14%) 1 0.80 (−17%) 1 0.76 (−21%) 1

Mung bean (Vigna radiata) 1.85 1.52 (−18%) 1 1.45 (−21%) 1 1.36 (−27%) 1

Red bean (Vigna angularis) 2.06 1.69 (−18%) 1 1.61 (−22%) 1 1.50 (−27%) 1

Corn (Zea mays) 8.09 6.33 (−22%) 1 5.98 (−26%) 1 5.47 (−32%) 1

Soybean (Glycine max) 3.81 3.05 (−20%) 1 2.90 (−24%) 1 2.67 (−30%) 1

1 The numbers in parentheses indicate loss (−) or increase (+) in the yield compared to the yield without shading.

Table 7. Observed climate data.

Year Solar Radiation
(MJ/m2)

Surface Temperature
High (◦C) 1

Surface Temperature
Low (◦C) 2

Precipitation
(mm)

Humidity
(%)

Wind Speed
(m/s)

2017 10.05 27.66 18.40 4.27 79.50 2.02

2018 9.59 27.80 18.46 7.23 76.00 2.34

2019 12.21 27.16 18.50 7.12 77.80 1.92

2020 14.95 26.72 18.24 8.05 78.80 1.96

2021 16.70 28.14 19.06 6.69 79.80 1.50
1 The highest air temperature; 2 the lowest air temperature.

Based on historical data on electricity generation from 2017 to 2021, the proposed
model was applied. Equation (15) is updated based on historical data [46] and the climatic
data described in Table 7, and Equation (18) shows the updated formula.

I = KT I0 =
(
−0.9497− 0.0551X1 + 0.1811X2 − 0.1007X3 + 0.0122X2

3

)
I0 (18)

Figure 2 shows the estimation result for a 98.8 kW PV power plant with a shading
ratio of 42.25% [46]. Notice that the size of the PV module (Apv) is 3603 m2. The R2 value
between the measured amount of electricity and the estimated amount of electricity is
74.64%. The amount of electricity generated per unit area (kWh/m2/day) ranges from 0.08
to 0.13 for five years and it is approximately 1.53 times higher than that of the APV system
described in Section 4.1. This is because the PV power plant only considers electricity
production so it tends to have a higher shading ratio. In other words, it is difficult to
harvest crops under PV modules.

The proposed model is applied to estimate the performance of the 3MW PV power
plant in Yeongam-gun with a shading ratio of 59.69% [47]. Table 8 describes the estimated
result from 2018 to 2020, and the R2 value between the measured amount of electricity and
the estimated amount of electricity is 74.84%. The amount of electricity generated per unit
area (kWh/m2/day) ranges from 0.19 to 0.22 for three years. In the same way as a 98.8 kW
PV power plant, it has a higher amount of electricity generated per unit area (m2) than in
the APV system mentioned in Section 4.1.

The proposed crop model (see Section 3.2) is used to estimate the crop yield with the
assumption that both of the PV power plants can be transformed into APV systems. Table 9
illustrates the estimated performance of both of the power plants. The 98.8 kW PV power
plant is characterized by a significant reduction in crop production between −28% and
−42% due to the high shading ratio (i.e., 42.25%). Similarly, because of the shading ratio of
59.69%, the crop production reduction ratios for the 3 MW PV power plant range from 39%
to 59%.
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Table 8. The estimated amount of electricity for a 3 MW PV power plant.

Category Year

2018 2019 2020

Measured Electricity (E, kWh/day) 1 12,167.91 12,034.93 11,519.06

Estimated Electricity (E, kWh/day) 1 10,323.13 9733.22 11,518.84
1 The size of PV module (Apv) is 52,000 m2.

Table 9. Estimated grain yields (Mg/ha) of all five crops.

Plant Type
Crop Type

Sesame
(Sesamum indicum)

Mung Bean
(Vigna radiata)

Red Bean
(Vigna angularis) Corn (Zea mays) Soybean

(Glycine max)

98.8 kW PV Power Plant 0.69 (−28%) 1 1.20 (−35%) 1 1.32 (−36%) 1 4.65 (−42%) 1 2.31 (−39%) 1

3 MW PV Power Plant 0.58 (−39%) 1 0.94 (−49%) 1 1.02 (−50%) 1 3.30 (−59%) 1 1.70 (−55%) 1

1 The numbers in parentheses indicate loss (−) or increase (+) in the yield, compared to the yield without shading
in Table 6.

5. Discussion

In Section 4.1, Table 4 illustrates the performance of Equations (7) and (8). Unlike the
declination (δ) model in Equation (7), the solar radiation (I) model (see Equation (8)) is not
sufficient for the estimation of electricity quantity of APV systems. Particularly, given that
the transparency of the atmosphere (KT) can be influenced by many climate factors (see
Section 2.1), Equation (8) is too simple to capture the influence of the climatic factors on the
transparency of the atmosphere (KT). This inaccurate estimation issue can be resolved by
the devised model illustrated in Equation (15). According to Table 5, the R2 value between
the observed solar radiation and estimated solar radiation is 74.37%. It implies that the
transparency of the atmosphere (KT) should consider the climatic conditions in order to
accurately estimate the solar radiation (I). The devised model is also used to estimate
the amount of electricity produced by the APV system at the Jeollanam-do Agricultural
Research and Extension Services in Naju-si, Jeollanam-do, South Korea. The R2 value
between the measured amount of electricity and the estimated amount of electricity is
80.17%. The result illustrates that the shading ratio, which is determined by the number
of PV modules per m2, is a significant factor to determine the production quantity of
both crops and electricity. Moreover, the proposed crop yields model in Equation (17)
is evaluated with field study data of five crops, such as sesame, mung bean, red bean,
soybean, and corn. According to Table 6, the R2 value between the measured yields and
the observed yields of the five crops is 96.36% so that the model can accurately explain the
yield loss due to the shading ratio (Rshade).
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In Section 4.2, the proposed model is applied to the estimation of electricity generation
for the 98.8 kW PV power plant and the 3 MW PV power plant in Yeongam-gun, Jeollanam-
do, South Korea. In both cases, the R2 value between the measured amount of electricity
and the estimated amount of electricity is higher than 74.64%. Since both existing PV power-
plant facilities are only used for electricity production with high shading ratios between
42.25% and 59.69%, they are not appropriate for cultivating crops under PV modules. In
Table 9, the 98.8 kW PV power plant is characterized by a significant reduction in crop
production from 28% to 42%, and the crop production reduction ratios for the 3 MW PV
power plant range from 39% to 59%. This result implies why the existing PV power plants
cannot be used for crop production. In fact, it is possible that these facilities can create
desolated lands. Therefore, for the countries (e.g., South Korea, Japan, Fiji, New Zealand)
with the land shortage and food security problems for renewable energy production using
large-scale PV power plants, APV systems can be the alternative. Moreover, considering
that crop production is closely related to a structure of PV modules, the proposed model
which accurately estimates both crop production and electricity generation simultaneously
should be utilized for the construction of APV systems.

6. Conclusions

This study proposes a physical-based model used to forecast the amount of electricity
generated and the crop production in the APV system. The major advantage of the proposed
model is its analytical capability. Once the physical-based model estimates extraterrestrial
global solar radiation at a certain location, the proposed polynomial model allows the
calculation of solar radiation in the subject area so that the amount of electricity generated
as well as the crop production in the APV system can be accurately forecasted. The
proposed models are calibrated based on data from real APV field experience at Jeollanam-
do Agricultural Research and Extension Services in South Korea. The electricity estimation
model has a R2 of 80.17%, and the crop yield estimation model has a R2 of 96.36%. Thus,
the proposed models accurately explain the variability in the electricity generation and
crop production. Moreover, the models are applied to estimate the performance of existing
PV power plants in Yeongam-gun, Jeollanam-do, South Korea. The electricity generation
quantities of the 98.8 kW PV power plant and the 3MW PV power plant are estimated with
R2 of 74.64% and 74.84%, respectively. Both of the power plants significantly decrease crop
production with reduction ratios between 42% and 59%. It implies that the use of existing
PV power plants as APV systems is inappropriate. In addition, the experiments illustrate
that the proposed models can be used for the productivity of not only the APV system but
also a PV power plant. This will contribute to enhancing crop production in both APV and
PV systems.

In future research, the proposed models will be applied to design large-scale APV
systems at different locations. In addition, by validating with more data collected from
multiple APV systems in various countries, the proposed models will be improved and
reliable. Other PV systems with different structures (e.g., PV systems with an automatic
tilting function of solar panels) can be also considered in validation of the proposed model.
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