energies

Article

Numerical Analysis of Aeroacoustic Characteristics around a
Cylinder under Constant Amplitude Oscillation

Peixun Yu 1, Jiakuan Xu 1'*, Heye Xiao 2
Yy

check for
updates

Citation: Yu, P; Xu, J.; Xiao, H.; Bai, J.
Numerical Analysis of Aeroacoustic
Characteristics around a Cylinder
under Constant Amplitude
Oscillation. Energies 2022, 15, 6507.
https://doi.org/10.3390/en15186507

Academic Editors: Giuseppe

Pascazio and Robert Castilla

Received: 6 June 2022
Accepted: 18 August 2022
Published: 6 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Junqgiang Bai 2

School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China
Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710129, China
*  Correspondence: jk.xu@nwpu.edu.cn; Tel.: +86-029-88492176

2

Abstract: The present study numerically investigated a cylinder under oscillating motions at a low
Reynolds number. The effects of two oscillation frequencies and amplitudes on the lift drag coefficient,
near-field surface pressure fluctuation, and far-field noise were studied. The models were examined
at a Mach number of 0.05, corresponding to a Reynolds number of 1.0 x 10°. In this paper, the
incompressible Navier-Stokes equations (INSE) and linearized perturbed compressible equations
(LPCE) were coupled to form a hybrid noise prediction method, which was used to solve the flow
field and acoustic radiation field. Based on the simulation results of the acoustic radiation field, the
frequency characteristics of the acoustic waves were analyzed by the dynamic modal decomposition
(DMD) method. It was observed that when the oscillation amplitude was the same, the variation
amplitude and mean value of the lift-drag coefficient increased with the increase in the oscillation
frequency. Under the same small oscillation frequency, the oscillation amplitude had little effect on
the lift-drag coefficient. However, for the same large oscillation frequency, the variation amplitude
of the lift-drag coefficient increased as the oscillation amplitude increased. In addition, both the
amplitude and frequency had a significant effect on the directionality of the noise and the intensity of
the sound waves. The main energy of the sound field was mainly concentrated on the first and second
narrowband frequencies by using the DMD method to analyze the sound pressure level spectrum.

Keywords: oscillating motions; low Reynolds number; linearized perturbed compressible equations;
aerodynamic; aeroacoustic; dynamic mode decomposition method

1. Introduction

In recent years, with the wide application of micro air vehicles (MAVs) in military and
civil fields such as reconnaissance, monitoring, communication, etc., aerodynamics and
aeroacoustics at low Reynolds numbers (Re = 103~10°) have become one of the research
hotspots. The maneuvering flight of a MAV usually experiences unstable states such as
pitching and heaving oscillation. As a simplified model of MAYV, the flows of the cylinder
or airfoil offer an opportunity to study the basic underlying physics of flow phenomena.
Research [1,2] has found that under the same incoming flow conditions, the flow field
structure and aerodynamic noise characteristics induced by the oscillating bluff body are
quite different from those induced by the static bluff body.

At present, many wind tunnel experiments and numerical simulations have been
carried out on the aerodynamic characteristics of the oscillating bluff body. For instance,
Kumar et al. [3] experimentally studied the phenomenon of vortex shedding in a rotationally
oscillating cylinder at a Reynolds number of 185. It was found that the phenomenon of
lock-on occurs in a forcing frequency range, which depends not only on the amplitude
of oscillation but also on the downstream location from the cylinder. Soumarup et al. [4]
also carried out experimental studies on oscillating cylinders at low Reynolds numbers
(Re = 190 and Re = 250) and reached similar conclusions to Kumar et al. In addition,
Amiralaei et al. [5] conducted relevant experiments on oscillating airfoil tests in the range
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of 555~5000 Reynolds numbers. The results showed that motion parameters such as the
decreasing frequency and amplitude of oscillation have a great influence on the strength of
the vortex structure near the airfoil, and thus affect the aerodynamic characteristics. Most
of the aerodynamic experiments on oscillating cylinders or airfoils have been conducted
at low Reynolds numbers (Re = 102~103), and the flow field characteristics of medium
Reynolds numbers (Re = 10*~10°) have been studied by numerical simulation. For
example, Tuncer and Platzer [6] carried out a numerical simulation of the oscillating airfoil
under Reynolds numbers of 10,000 and 100,000 and analyzed the wake vortex structure
formation, separation characteristics, average aerodynamic force, and propulsion efficiency
under different flapping amplitude and frequency. Miyanawala et al. [7], Nagarajan et al. [8],
and others have also carried out relevant numerical simulations.

The acoustic problem of the oscillating blunt body has been a research hotspot in
recent years, and many scholars have carried out related acoustic experiments. For instance,
an experimental investigation on the acoustic far field of a thin elastic airfoil, immersed in a
low-Mach non-uniform stream flow, was examined by Manela [9]. The results showed that
the structure elasticity and pitching frequency are relevant to the sound intensity of a pitch-
ing airfoil. The trailing-edge noise from a pitching airfoil at a low Reynolds number was
conducted by Zhou et al. [10]. It was revealed that a high-level narrow-band noise hump
occurred at a specific angle of attack in a pitching cycle. In one pitching period, the moment
when the narrow-band noise hump occurs is independent of the pitching amplitude and is
delayed as the pitching frequency increases. Subsequently, Zhou T. et al. [11] conducted an
experimental study on the far-field noise and near-field flow characteristics of the heaving
NACAQ012 airfoil in the anechoic wind tunnel. The corresponding conclusions were also
verified in the experiments of Zhang B. [12], Mayer Y. [13], Siegel [14], and Zajamsek [15]
et al. Although many conclusions can be obtained from the acoustic experiments of the
oscillating blunt body;, it is difficult to intuitively obtain the acoustic characteristics of
the whole space field and sound wave propagation process, which is unfavorable for the
mechanism analysis of noise. In the numerical simulation of aeroacoustics of the oscillat-
ing bluff body, scholars at home and abroad have also produced some excellent research
results. Taking a transversely oscillating cylinder in a uniform flow as a model, Zheng
etal. [16] investigated the effects of oscillation frequency on lift, drag, and far-field pressure
fluctuations. The far-field pressure is calculated by the formula based on the Curleintegral
method. The trailing-edge noise of a flat plate at a free stream Mach number of 0.6 and a
Reynolds number of 12,000 based on the boundary layer thickness at the inflow boundary
was investigated by Seong [17] using large-eddy simulations (LES) and solutions of the
acoustic perturbation equations [18]. Guo et al. [19] applied a computational fluid dynam-
ics (CFD) solver and Lighthill’s acoustic analogy to analyze the flow field and induced
the sound field characteristics of the oscillating airfoil, respectively. However, few have
summarized the influence of different frequencies and amplitudes on the aerodynamic
and acoustic characteristics in these conclusions. In addition, computational aeroacoustic
(CAA) numerical simulation methods are mostly based on acoustic analogy methods, so
it is difficult to directly observe the spatial noise intensity distribution and sound wave
propagation process.

Therefore, it is both interesting and timely to investigate the aerodynamic and aeroa-
coustic behaviors of an oscillating bluff body at different oscillation frequencies and ampli-
tudes by using the high-precision hybrid INSE/LPCE method. The framework of the article
is mainly divided into the following six sections. The introduction reviews the research
progress in aerodynamics and aeroacoustics of oscillating airfoils or cylinders by scholars
both at home and abroad. Section 2 mainly introduces the theory and implementation
strategy of the hybrid CFD/CAA method. In Section 3, taking an oscillating cylinder as an
object, the reliability of the numerical method is verified by comparing the calculated results
with the experimental data. In Section 4, the calculation conditions of oscillating cylinders
with different frequencies and the setting of the calculation grid are given. Section 5 mainly
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analyzes the aerodynamic and aeroacoustics characteristics of oscillating cylinders, reveals
the noise generation mechanism, and summarizes the relevant conclusions.

2. Numerical Method
2.1. Governing Equations for Hybrid CAA Method
2.1.1. CFD Solver

To provide a reliable aerodynamic noise source for oscillating cylinders, we adopted
an open-source incompressible/compressible CFD code “cfl3d” on the website (http:/ /cfl3
d.larc.nasa.gov, accessed on 4 September 2021). For the CFD calculation of incompressible
fluid, the Weiss—Smith preprocessing method is used to modify the computational stability
of Navier-Stokes equations. In a curvilinear coordinate system, its non-dimensionless
two-dimensional form is shown in the following expression:

d/Q d [1 Jd [1 B
%%J&)+3€L@Q+G@ﬂ+&J1@m+Gwﬂ—0 (1)
in which
Q 0 0 pr
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p,u,v,p, and T are the density, velocity component, pressure, and temperature of the fluid.
Q) is given by
1 Pr
QO=(-——— 3
<Ur2 PCP> ®

where pr = dp/dT| ps Cp is the specific heat at constant pressure. U, is a reference velocity.
The specific definition of variable U, can be found in [20].

A coordinate transformation between Cartesian and curvilinear coordinates is applied
in the calculation. The variable | represents the Jacobian of the transformation:

(&, 1,t)

I=Sry )
where Q = [p,u,v, T| T Fand G are flux terms in two directions of the Cartesian coordinate
system. The convection terms are discretized by Roe’s upwind-difference scheme. A second-
order accurate Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) was
employed to determine the interpolation accuracy of the state-variable on the cell interfaces.
The shear stress and heat transfer terms were discretized by the central difference scheme.

To update the flow variables on the grid nodes caused by the rotation of the cylinder,
a hybrid mesh deformation method combining radial basis function (RBF) and transfinite
interpolation (TFI) was adopted. The RBF method can obtain a high-quality deformable
mesh, but the standard form of RBF has some problems such as a high order of the
interpolation matrix, low computational efficiency, and poor robustness. The TFI method
can reconstruct new face and volume meshes based on the distribution of edges. The
algorithm has high computational efficiency and mesh quality, but the TFI cannot update
the edges after deformation. The hybrid method RBF-TFI uses RBF to update the edge
of the block after the motion of the wall, and then uses the TFI method to reconstruct the
space surface mesh and volume mesh. In the RBF-TFI hybrid method, the displacement of
mesh points on the wall surface is used to update the surface mesh directly, which ensures
the surface deformation accurately. Therefore, RBF can select a small number of radial basis
points, which can greatly improve the efficiency and robustness of mesh deformation.

The specific grid update process of the hybrid method RBF-TFI is shown in Figure 1. To
ensure the consistency of the intersection position of the object surface and the spatial edge
line, the point connecting the spatial edge line and the object surface should be selected as
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the radial basis point. The corner selection algorithm first selects the corners of the attribute
surface grid, then calls the lookup module to remove the repeated corners, and selects other
surface grid points as the remaining radial basis points through the greedy algorithm.

Original Mesh

Select base
oint

Surface motion

Surface mesh Interpolation

! ) Irreversible
deformation matrix

Matrix
imversion

Invertible
Surface edge ‘ﬁ Space edge
f Update the [ Interpolation using RBF ]
surface mesh method
e

-~

Generation of deformed mesh by TFI method ]

\,

Figure 1. The grid updating procedure of the RBF-TFI method.

Radial basis function interpolation can be expressed as:

N

r(Y) =) Bip(IlY = Yill) ®)

i=1

where 7 is the displacement of the grid node; Y is the coordinate vector of the grid node; j;
is the interpolation coefficient; ¢ is the basis function. ||Y —Y;|| is the distance between two
grid nodes, expressed as

1Y =Yl =/ (x = )% + (y — :)? 6)

Given the displacement r of N interpolation base points Y, N linear equations about
interpolation coefficient B; can be constructed by using Equation (6)

bu P12 - Ppin| [ B f
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where,
¢ij = o(Yi = Y;)) ®)

The interpolation coefficient §; can be obtained by solving Equation (8), and then the
displacement r(Y) of any position Y can be obtained by using Equation (6).

Regarding the TFI method, the TFI method proposed by Soni et al., was adopted,
which can better deal with the mesh construction under complex shapes. The detailed
theoretical introduction of this method can be found in [21].
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2.1.2. CAA Solver

The sound field was calculated by LPCE. For the origin of the LPCE, readers can refer
to the detailed derivation in [22]. Once a quasi-periodic stage of the aerodynamic field is
attained, the perturbed quantities are then computed by LPCE, written as:

B+ @ V) (V) =0
%+V(ﬁ-uﬂ)+v(% -0 7 )
T+ @ V) p(Vw) ¢ (o V)P =

The left side of the LPCE represents the propagation and reflection of sound waves in
an unsteady, inhomogeneous flow while the right side only contains the acoustic source
term, which came from the CFD calculation. Here, p and u are the time-averaged density
and velocity vectors, respectively. u? = (1”,v”) is the pulsation velocity vector in acoustic
mode. For the low flow field, Dp/Dt = dp/0t + (u- V)p can be considered as the only
noise source term.

When the traditional CFD numerical discretization scheme is used to simulate the
CAA problem, it may cause huge numerical errors, thus causing unnecessary numerical
noise and even covering up the real sound field. The time and spatial discretization used
in CAA equations must be coordinated to meet the requirements of high precision, low
dissipation, and low dispersion. In addition, the far-field boundary condition should
have a smaller acoustic reflection. For the spatial discretization of LPCE, the fourth-order
DRP-WENO scheme [23] with low dispersion and low dissipation was adopted in this
paper, and the fourth-order HALE-RK64 scheme [24] was adopted in time advance, and
the perfect match layer boundary condition [23] was used in the far-field region. Regarding
the verification of the numerical method used by LPCEs, we carried out relevant research
works [23-25] in the literature, and will not repeat it here.

2.2. Computational Framework of Oscillatory Motion Noise

To study and analyze the aerodynamic and aeroacoustic performance of oscillating
cylinders, a high-precision hybrid CFD/CAA prediction method was established, as shown
in Figure 2. First, according to the characteristics of the CFD and CAA simulation, two sets
of grids, named CFD grid and CAA grid, were prepared before solving the aerodynamic
noise. Second, the time-averaged and turbulent variables on the CFD grid were obtained
by solving the incompressible NS equations. Third, the time average flow information
and turbulent information on the CFD grid were transferred to the CAA grid by using
the self-developed “DataMap” code. The code is based on a k-Dimensional (KD) tree
search algorithm and shapes function interpolation algorithm. Finally, the time average
and turbulence information are provided to LPCEs to obtain the radiation sound field of
the oscillating cylinder.
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Figure 2. The framework of the CFD/CAA hybrid method.

3. Reliability Test of Numerical Method
3.1. Aerodynamic Characteristics of an Oscillating Airfoil

In this section, the oscillating motion of the NACAQ012 airfoil developed by Heathcote
et al., was selected as the research object to validate the rationality of the CFD solution [26].
The oscillation amplitude of the airfoil was 0.175, the reduced frequency was in the range
of 0.0 to 6.3, and the Reynolds number was 20,000. Figure 3 shows the comparison of the
time-averaged thrust and power coefficient results by Heathcote et al. [26] with the CFD
simulation results as a function of the Strouhal number Sr. The flow was assumed to be
fully laminar at the Reynolds number (Re = 20,000) for the CFD solver, and the results are
shown in the figure with “NS_Code”. The expressions of the average tension coefficient
and power coefficient in the figure are as follows:

Cr= —% tt+T CD(t)dt

Cr = 4T [CL®i() + Cu(Db(n)] ar o

where Cp, Cy, and Cy, are the drag, lift, and moment coefficients, respectively. T is a period
time of the force coefficient. i/(t) and 6(t) are the heaving velocity and pitching velocity,
respectively.

It is clear from the figure that the mean thrust coefficient and power coefficient calcu-
lated by the CFD solver were very consistent with the experimental results, although there
was a small deviation near Sr = 0.4.
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Figure 3. The mean thrust coefficient, mean power coefficient as a function of Strouhal number; pure
plunging motion (h = 0.175). (a) Mean thrust coefficient. (b) Mean power coefficient.

3.2. Dipole Sound Generation from an Oscillating Cylinder

To verify the effectiveness of the numerical method in the moving coordinate system,
the dipole sound propagation from an oscillating cylinder was studied. As depicted in
Figure 4, a cylinder located at the center of the computational domain oscillates with
the defined periodic frequency. The radius of the whole computational domain was set
to L =500D, where D is the diameter of the cylinder. Here, the O-type grid was used,
and 501 x 281 grid points were arranged in the radial and circumferential directions,
respectively. The equation of motion of the cylinder is as follows:

h = dhsin(27tK;t) (11)

where /1 is the amplitude of oscillation and was set to 0.01 and K, is the oscillation frequency,
which was set to 0.05.

Buffer Zone

e

L=500D

dh

Quiesent Fluid

Figure 4. Dipole sound by a vertically oscillating circular cylinder [27].

A quiescent air was used as an initial condition and the maximum translational
velocity of an oscillating cylinder was 0.03. The Reynolds based on the cylinder diameter
and maximum translational velocity was set to 1780. The INSE/LPCE hybrid method was
used for sound field prediction.
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The spatial distribution of flow pulsating velocity, normal pulsating velocity, and
pulsating pressure is shown in Figure 5. Among them, the same scale was used for
the distribution of flow pulsating velocity and normal pulsating velocity. The intensity
of normal pulsating velocity was higher than that of the flow pulsating velocity. The
distribution of the fluctuating pressure presents dipole characteristics. Figure 6 shows the
comparison between the numerical prediction and the analytical solution of the pulsating
pressure on the x = 0 line. The analytical solution (for detailed derivation, see [27]) is
as follows

SKZ*DZU 271K 27K '
plx,t) = ”rzfzcosq)[h( 7TE rX) +iN1( 7TE rX>:|82mKrt (12)

where K; is the oscillation frequency; ¢ is the speed of sound; and D is the diameter of the
cylinder. U = 271K, x dh is the maximum velocity at the cylinder surface. ¢ is defined as
an angle measured from the plane of vibration. J; denotes the Bessel function first kind
order one, and Neuman function N is a Bessel function second kind.

Figure 5. The spatial distribution of the disturbance variables. (a) Flow pulsating velocity. (b) Normal
pulsating velocity. (c) Pulsating pressure.
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Figure 6. The instantaneous pressure fluctuations along the x = 0 line.

The INSE/LPCE result is in excellent agreement with the analytical solution except at
y close to 0, in which any viscous effects were not taken into account.

4. Calculation Settings

In this section, we studied the aerodynamic and aeroacoustic characteristics of a single
cylinder with a diameter of 2 m. The schematic diagram of the oscillating cylinder is shown
in Figure 7. The axis of rotation of a cylinder is at the center of the cylinder. The calculation
conditions were as follows: the incoming Mach number was 0.05, Reynolds number per



Energies 2022, 15, 6507

9 of 21

unit length based on cylinder diameter was 1.0 x 10°. The cylinder oscillatory motion can
be expressed as:

=~ T t
9 = 90 + Gmax @ sim (27TK1/ Lrgf) (13)

where gmax denotes the oscillation amplitude; 6 is the base angle of attack. The units of

variables gmax and ) are degrees. K; is the oscillation frequency; t is the oscillation time;
Ly is the reference length, which is equal to 1.

Incoming flow Oscillation

Axis of rotation

Figure 7. The schematic diagram of the rotational oscillation cylinder.

To examine the effects of both oscillation frequency and amplitude on the aerodynamic
and aeroacoustic characteristics of an oscillating cylinder, four groups of motion parameters
are given, as shown in Table 1.

Table 1. The calculation conditions of the motion parameters.

Computational ~

Configuration Mach Number 0o (deg) Bmax (deg) K, (Hz) Lyef (m)
Casel 0.05 0.0 10 0.15 1.0
Case2 0.05 0.0 10 0.075 1.0
Case3 0.05 0.0 5 0.15 1.0
Case4 0.05 0.0 5 0.075 1.0

Before determining the CFD grid topology and the number of grid points, we divided
five CFD grids of different sizes, and the grid sizes were about 50,000, 100,000, 200,000,
300,000, and 400,000. Here, we used the motion parameters in Casel as the calculation
conditions to carry out the CFD grid independence analysis. For the CFD flow field of an
oscillating cylinder, the calculation strategy is as follows. First, the Reynolds average INS
equations were used to calculate the steady flow field, which was regarded as the initial
flow field. Then, the transient flow field of the cylinder oscillation was solved by the CFD
method based on dynamic grid technology, in which the dimensionless time step was 0.03.
Table 2 shows the average value of the drag coefficient and the disturbance amplitude of
the drag coefficient under grids of different scales, which are defined as follows:

_ Ey
Cl(t) = 0.5X Pjnex V2 X A
Cd(t) = ks

T 05X X V2 XA

inf

Cdae = + [T Cd(t)dt
Clave = L [IFT CI(t)dt

Cd Amp = max(Cd(t)) — min(Cd(t)), teltt+T]
Clamp = max(CI(t)) — min(CI(t)), tett+T]

(14)

where Fy is the lift; Fy is the drag; ;¢ is the reference density at infinity; Vi, is the velocity
of the incoming flow at infinity; and A is the reference area, where the value is selected as
1 m?2.
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Table 2. The calculation conditions of the motion parameters.

Number of Intel Core 17

Grid Nodes Cdype Cdamp CPU Time (h) Processor Processes
50,000 13.74 8.00 35 16
100,000 13.90 8.30 8 16
200,000 14.00 8.38 18 16
300,000 14.25 8.43 27 16
400,000 14.29 8.45 36 16

From Table 2, we can see that when the grid size was above 300,000, the drag coefficient
tended to converge. The topology of the CFD and CAA computation grids finally used in
the paper is shown in Figure 8, in which the CFD grid comprised 308,000 nodes and the
CAA grid was 104,000 nodes. Due to the difference in the physical field between CFD and
CAA, the grid distribution also showed an obvious difference. For the CFD grid, the focus
was more on the grid density near the wall and the separation zone. For the CAA grid,
orthogonality and uniformity are more important. It should be noted that the distribution
of orthogonality and the slenderness ratio of the CAA grid meets the requirement of grid
points for one wavelength.

Damping layer

(b)
Figure 8. The CFD and CAA computation grids. (a) CFD grid. (b) CAA mesh.

5. Results and Discussion
5.1. Aerodynamic Characteristics

Figure 9 shows the variation curves of the angle of attack, lift coefficient, and drag
coefficient with time for different configurations after convergence of the flow field calcula-
tion. Several phenomena can be seen in Figure 9. The curves of the lift coefficient and drag
coefficient showed that there were two obvious periods. The small period corresponded to
the rotation frequency of the cylinder, the other period was independent of the rotation
frequency, and the periods of each configuration were the same. When the rotation fre-
quency was the same, the larger the rotation amplitude, the larger the variation range of
the lift and drag coefficients, and the larger the average value of the drag coefficient. When
the rotation amplitude was the same, the greater the rotation frequency, the greater the
variation range of the lift drag coefficient, and the greater the average value of the drag
coefficient. Compared with Case2 and Case3, the effect of rotation frequency on lift and
drag coefficient was greater than that of the rotation amplitude.
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Figure 9. The curves of the attack angle, dimensionless lift coefficient, and dimensionless drag

coefficient with time.

Table 3 gives the specific value of the change in the lift-drag coefficient of the oscillating
cylinder under each motion state. The values in parentheses in Table 3 represent the
percentages of the lift-drag coefficients of each motion state (Casel, Case2, Case3, and
Case4) to the simulation results of the Casel state. The meanings of Cdyye, Cd Amp Clave,
and Cl gy, in the table can be found in Equation 14. We plotted the data in Table 3 as
Figures 10 and 11. Figure 10 is the change curve of the lift resistance coefficient (Cdave, Cdave,
Cd amp, Clave, and Cl app) with the oscillation frequency under the condition of constant
amplitude oscillation, and Figure 11 is the change curve of the lift resistance coefficient
with the oscillation amplitude under the condition of constant frequency oscillation. By
comparing and analyzing the data in Table 3 and the curves in Figures 10 and 11, it can
be found that when the oscillation amplitude was the same, the changes in the Cd,ye,
Cd Ampr Claye, and CI Amp values increased with the increase in the oscillation frequency.
This phenomenon was more obvious in the large oscillation amplitude. For the same small
oscillation frequency (k; = 0.075), the oscillation amplitude had little effect on the Cd e,
Cd pmp, and Cl g values. However, for the same large oscillation frequency (k» = 0.15), the
Cdgpe, Cd Amps and CI Amp values will increase with the increase in the oscillation amplitude.
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Table 3. The specific value of the change in the lift-drag coefficient of the oscillating cylinder under
each motion state.

States

Casel (Omax = 10,k, = 0.15)
Case2 (fmax = 10,k, = 0.075)

Case3 (0max = 5,k = 0.15)

Case4 (Omax = 5,k = 0.075)

Cduve

14.28 (=100%)
8.05 (=56.3%)
11.62 (=78.5%)
8.23 (=57.6%)

Cl pmp

8.4 (=100%)
1.43 (=16.9%)
3.61 (=42.8%)
1.92 (=22.7%)

Clave

0.21 (=100%)
0.11 (=52.4%)
0.31 (=147%)
0.24 (=114%)

Clamy
28.8 (=100%)
9.6 (=33.3%)
12.4 (=43.1%)
9.32 (=32.4%)
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Figure 10. The variation curve of the lift-drag coefficient with the oscillation frequency under the
same oscillation amplitude. (a) drag coefficient. (b) lift coefficient.
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Figure 11. The variation curve of the lift-drag coefficient with the oscillation amplitude under the
same oscillation frequency. (a) drag coefficient. (b) lift coefficient.

To explain the variation trends of the lift and drag coefficient in Figures 10 and 11, the
variations in the z-vorticity and pressure in different periods are described in Figures 12
and 13, respectively. Figure 12 shows the Z vorticity snapshots of the four configurations in
the period time T = 0.425. Comparing the Z vorticity of Casel, Case2, Case3, and Case4,
we can reach some conclusions. First, it can be preliminarily judged that the large period
of the lift and drag coefficients are related to the frequency of the shedding vortex. To
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further illustrate this result, Figure 13 presents the Z vorticity distribution curves of the four
configurations simultaneously at the y = 0 station. For ease of comparison, the starting points
of the four curves were adjusted to the same location. It can be seen from the figure that the
vorticity frequencies of Casel and Case3, Case2 and Case4 were the same. Second, compared
with Casel and Case2, Case3 and Case4, the distribution range of the Z vorticity was larger
when the rotation frequency was higher at the same rotation amplitude. In addition, when
the frequency was higher, the length of the wake in the leeward region was shorter. Third,
compared with Casel and Case3, Case2 and Case4, the distribution range of the Z vorticity
was larger with the increase in the rotation amplitude at the same rotation frequency.

Taking Case2 as an example, Figure 14 shows the pressure snapshots in a rotation
cycle. From the comparative analysis of the figure, we can draw the following conclusions:
(1) Due to the periodic rotation of the cylinder, the flow variables interact to form positive
and negative intersecting pressure waves; and (2) with the rotation of the cylinder, the
pressure disturbance also changes with the rotation.

Z Vorticity (1/s): -0.005 -0.004 -0.003 -0.002 -0.001 0 0.001 0.002 0.003 0.004 0.005

20
X(m)

(d) Cased

Figure 12. The Z vorticity distribution of the period time T = 0.425.
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Figure 13. The Z vorticity distribution of the y = 0 line at the same time.
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Figure 14. The pressure snapshots in a rotation cycle for Case2.

5.2. Aeroacoustic Characteristics

Figure 15 shows the sound pressure propagation of Case2 over one rotation cycle.
It can be seen that the rotation angle of the cylinder changed from positive ten degrees
to negative ten degrees, and the sound pressure in the space changed counterclockwise,
and vice versa. This is a phenomenon caused by the superposition of the flow rotation
effect and the sound wave propagating around. Figure 16 shows the instantaneous sound
field when the sound wave reaches the far field boundary. It can be seen that under the
condition of low-speed incoming flow, the larger the rotational frequency or amplitude
of the cylinder, the stronger the noise intensity induced by the turbulent flow. For the
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current calculation conditions, the maximum intensity of the sound wave was located
near the normal of the cylinder, and there was obvious sound wave interference at other
positions. For Casel and Case2, the forward noise intensity was significantly greater than
the backward noise intensity.

20 20 20
10 10 10
30 50 5 0
3 £ i
= Ay =
-10 -10 -16
g 001 002 0.03 004 -20g 001 0603 003 004 -20g 601 002 0.03 004 20y 0.1 0.2 003 004
Timefs) Tirne(s) Timefs) Time(s)
Figure 15. The sound wave distribution in a rotating oscillation period (Case2). The green dots
represent different moments in a cycle time.
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Figure 16. Snapshots of the sound pressure filed.
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0.8

To further analyze the frequency characteristics of the sound waves, the dynamic mode
decomposition (DMD) method (the code comes from http://www.ece.umn.edu/users/
mihailo/software, accessed on 8 September 2021.) was used to analyze the contribution
of different frequencies of sound waves for Case2. The snapshot matrix was analyzed by
the DMD method [28]. According to the development of modal coefficients with time, the
contribution of different modes to the acoustic field is sorted, and the first several main
modes are extracted for analysis. The relationship between the amplitude and frequency
of each mode is shown in Figure 17. It can be seen that the modes captured were sorted
according to the amplitude, and the main energy of the sound field was concentrated on
the first and second modes. The main modal eigenvalues are shown in Figure 18. It can
be seen that the selected modes were close to the unit circle, and the first several modes
fell on the unit circle. This means that these modes did not change with the sound field,
and their growth/decay rate was close to 0. Corresponding to Figure 17, we extracted the
cloud images with frequencies of 25, 50, 75, 100, and 125 Hz, as shown in Figure 19. The
distribution of each frequency was quite different in the whole computational domain,
which indicates that these modes can reflect the periodic change of sound waves with time.
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Figure 17. The energy distribution of the different modes.
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Figure 18. The DMD amplitude versus the reduced frequency.
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Figure 19. The sound field corresponding to different frequencies.

Next, 36 monitoring points were arranged in the space to analyze the characteristics of
the sound pressure level (SPL) spectral and the directivity of the overall SPL. The distance
between the monitoring points and the rotating axis of the cylinder was 50 m, as shown
in Figure 20. The overall sound pressure level (OASPL) curve is shown in Figure 21. This
shows that the OASPL values of the four configurations were symmetrically distributed
along the y = 0. For Case4, there were obvious low OASPL values near 0, 100, 180,
and 260 degrees, and high OASPL values near 70 and 290 degrees. Similar to Case4,
Case3 had low OASPL values at 100 and 260 degrees, and high OASPL values at 70 and
290 degrees. Unlike Case4, Case3 had no obvious low OASPL values in the 0~180 angle
regions. Compared with Case4, the OASPL intensity distribution of Casel and Case2 were
more uniform. When one motion parameter in rotation amplitude or rotation frequency
was constant, the difference of OASPL value was more obvious with the increase in the
other parameter.
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Figure 20. An illustration of the monitoring point distribution.
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Figure 21. The overall sound pressure level.

Figure 22 shows the comparison of the sound pressure level spectrum curves of the
monitoring points P1, P2, P3, and P4, where P1 is the harmonic frequencies of Case2
and Case4 states. The Casel and Case3 states were similar, corresponding to the change
frequency in the lift and drag coefficient curves. The first harmonic frequency of the
Case2 and Case4 states was 22 Hz and the second harmonic frequency was 48 Hz; the first
harmonic frequency of the Casel and Case3 states was 50 Hz and the second harmonic
frequency was 100 Hz. The harmonic characteristics of the other monitoring points (P2, P3,
P4) were similar to P1 for all states. To sum up the above description, that is, the frequency
corresponding to the high sound pressure level corresponds to the multiple of the rotation
frequency of the cylinder. In addition, for the four monitoring points, the maximum sound
pressure level under the calculation conditions of Case2 and Case4 (K, = 0.075) states
was mainly concentrated in the vicinity of the second harmonic frequency. However,
for the Casel and Case3 (K, = 0.15) states, the concentrated harmonic frequencies of the
maximum sound pressure level were uncertain, hovering between the first two harmonic
frequencies. This may be due to the mutual interference of the oscillation frequency with
the natural vortex shedding frequency of the cylinder, the effect of changing flow patterns,
and rotational oscillations.
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Figure 22. A comparison of the results of the sound pressure level spectrum curves at four monitor-

ing points.

6. Conclusions

A high accuracy numerical method based on INSE/LPCE was developed to calculate

the unsteady aerodynamic and acoustic characteristics of a rotating oscillating cylinder.
Four groups of different rotation frequencies and amplitudes were studied including the lift
drag coefficient, noise directivity, and spectrum characteristics. The conclusions obtained
in this paper were as follows.

1.

Among the several groups of motion parameters studied, when the oscillation am-
plitude is the same, the variation amplitude of the lift-drag coefficient will increase
with the increase in the oscillation frequency. Moreover, this phenomenon is more
pronounced when the oscillation amplitude is larger. For the same small oscillation
frequency (k, = 0.075), the oscillation amplitude has little effect on the variation in
the lift-drag coefficient. However, for the same large oscillation frequency (k, = 0.15),
the variation amplitude of the lift-drag coefficient will increase with the increase in
the oscillation amplitude.

Under low-velocity incoming flow conditions, the greater the rotational frequency
or amplitude of the cylinder, the greater the noise intensity caused by the turbulent
flow. For the current calculation conditions, the maximum intensity of the sound
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wave was located near the normal of the cylinder, and there was obvious sound
wave interference at other positions. For the state of the large rotation amplitude,
the intensity of the front-pass noise was significantly greater than that of the back-
pass noise. In addition, after the DMD method analysis, it can be concluded that
the main energy of the sound field was concentrated at the first and second-order
narrowband frequencies.

3. There are many flaws in this paper. For example, if the oscillation amplitude and os-
cillation frequency change sufficiently, locking may appear, which has the potential to
greatly affect the behavior of the cylinder in terms of aerodynamics and aeroacoustics.
This will be the focus of our next research work.
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