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Abstract: Since accurate load forecasting plays an important role in the improvisation of buildings
and as described in EU’s “Green Deal”, financial resources saved through improvisation of the
efficiency of buildings with social importance such as hospitals, will be the funds to support their
mission, the social impact of load forecasting is significant. In the present paper, eight different
machine learning predictors will be examined for the short-term load forecasting of a hospital’s
facility building. The challenge is to qualify the most suitable predictors for the abovementioned
task, which is beneficial for an in-depth study on accurate predictors’ applications in Intelligent
Energy Management Systems (IEMS). Three Artificial Neural Networks using a backpropagation
algorithm, three Artificial Neural Networks using metaheuristic optimization algorithms for training,
an Adaptive Neuro-Fuzzy Inference System (ANFIS), and a Long-Short Term Memory (LSTM)
network were tested using timeseries generated from a simulated healthcare facility. ANFIS and
backpropagation-based trained models outperformed all other models since they both deal well
with complex nonlinear problems. LSTM also performed adequately. The models trained with
metaheuristic algorithms demonstrated poor performance.

Keywords: artificial neural networks; adaptive neuro-fuzzy adaptive inference system; long
short-term memory networks; backpropagation algorithms; metaheuristic algorithms; machine
learning; load forecasting

1. Introduction
1.1. General Context and Importance of the Present Study

Buildings play an essential part in human lives, and people spend large parts of their
daily life in a building environment. The building sector is associated with nearly 40%
of the EU’s total energy consumption, in addition to 36% of greenhouse gas emissions in
the EU [1].

Therefore, the EU has established a set of targets to be achieved concerning the
improvement of energy efficiency in buildings, such as those described in the EU 31/2010
and 27/2012 directives with their revision in 2018. Among other measures, there are certain
actions to be taken to reach near zero energy and positive energy buildings goal. Through
the Horizon 2020 program, the EU invested in technologies capable of improving the energy
efficiency of buildings.

Due to their social relevance, size, and operational characteristics, health facilities can be
considered a special case [2,3]. They have the highest energy consumption per unit of floor
area, as they contribute 10% of the total energy use and they are responsible for 5% of the
CO2 emissions [4]. In England, the carbon footprint of the National Health System (NHS) and
relevant services represented 40% of the greenhouse gas emissions among the public sector
buildings. Such a negative influence on public health is quite contradictory to the health
sector [5]. High energy consumptions of the hospitals are due to extremely high demands
of heating and cooling, ventilation, the substantial demand for hot water and electricity, and
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the fast advances in the diagnostic techniques that require continuous remodeling of the
existing spaces in operative healthcare facilities, involving both architectural-distributive
aspects and building plant systems [6].

Electricity load forecasting is an important aspect of the improvisation of buildings
for several reasons; it is well known that accurate prediction (Albeit the terms “Forecast”
and “Prediction” have conceptual differences, in the present study are used as interchange-
able terms) of energy consumption has a positive impact on the operational costs [7].
Additionally, when referring to healthcare buildings, load forecasting is essential to an
Intelligent Energy Management System (IEMS), which allows all the related subsystems to
operate effectively and harmoniously while at the same time ensuring the operation of
the hospital under extreme conditions while at the same time reduces costs [3], using the
saving funds to improve the hospital’s services, as described in EU’s “Green Deal” [8]:
“Focus should also be put on renovating schools and hospitals, as the money saved through building
efficiency will be money available to support education and public health”.

In the present paper, different machine learning predictors will be examined for the short-term
load forecasting of a healthcare building in San Diego, California. Short-Term Load Forecast (STLF)
usually predicts the electricity consumption from some minutes up to a week ahead and plays
a vital role in the proper management of buildings and facilities. This is due to the fact that
accurate forecasts can be beneficial in carrying out many decisions, such as peak load
mitigation, optimal energy scheduling, and demand side management [9]. Moreover, the
unbalance control of the network during the interchange between the site and the main grid
is of great importance in microgrid configurations [10,11] and with an economic interest
since energy management on buildings can be bounded with different pricing options [12],
which is largely expected in power systems in the future [13]. Load forecasting is a rather
challenging task since consumption depends on many stochastic and nonlinear factors that
affect the system’s behavior, such as weather conditions, social and economic changes, and
many other parameters.

1.2. Research Papers: Contribution and Limitation to Data-Driven Methods

There are three main approaches developed in the last two decades: physical, data-
driven, and hybrid methods [14].

The physical approach [15] employs thermodynamic rules to calculate the heat and
mass balance inside a building. It is a “white-box” method since the governing physical
laws of the system are known. A major limitation of this approach is that all building
characteristics must be well known and that their physical mechanisms can be described
with high accuracy [16].

Data-driven approaches provide the ability to learn from data [17], using machine
learning algorithms to evaluate and estimate/predict the building’s energy consump-
tion [18]. Since the physical characteristics are ignored, these methods are called “black-box”
methods. Black-box methods’ major limitation is that they need large amounts of data.
Moreover, the results obtained by these approaches are difficult to interpret in physi-
cal terms [16].

Hybrid approaches use combinations of the two abovementioned methods to over-
come their limitations and exploit the advantages they have. These hybrid methods are
called “grey-box” methods [19].

Data-driven models include linear regression, Artificial Neural Networks (ANNs), Sup-
port Vector Machines (SVMs), Long-Short Term Memory (LSTM) algorithm, and ensemble
techniques [20]. ANNs are the most employed methods because of their straightforward im-
plementation and their high performance [13,21,22]. In [1], the authors tested various ANN
models for a day- and an hour-ahead prediction, selecting as inputs features climate data
(dew and dry-bulb temperature, humidity), previous power demand data, and the calendar
data (week pointer, day pointer, hour pointer, and quarter-hour pointer) and two training al-
gorithms (Levenberg-Marquardt and Bayesian Regularization). For one-hour-ahead prediction,
MAPE is in the range of 1.78–2.24%. The authors of [23] studied an LSTM-based model for
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one-hour resolution, comparing it with other models such as Multi-Layer Perceptron (MLP)
neural networks, Random Forest (RF), and SVMs, showing that the LSTM model is the best,
achieving a MAPE of 5.28% over a week’s hourly predictions. The authors of [24] developed
an Adaptive Neuro-Fuzzy Inference System (ANFIS) model using weather and load data as
inputs and achieving an R-value of 0.98059 for the testing data for an hour ahead of energy
forecasting. Classical algorithms such as backpropagation and Levenberg–Marquardt (LM)
have various limitations: They easily get trapped in local optima, and they also are highly
dependent on initialization, resulting in a lack of predicting better outcomes for new input
patterns. Gradient-descent approaches also exhibit slow convergence because, for stable
learning, small learning rates are desirable. Since stochastic approaches such as metaheuris-
tic algorithms rely heavily on randomness for the results, they can adapt better to new input
patterns. They can also avoid local optima. Of course, some drawbacks may arise, such
as their slow convergence compared to the classical algorithms [25]. Hybrid models that
combine evolutionary algorithms and ANNs were proposed by [26,27], who investigated
methods that involve Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) for the
training of ANNs.

Although several methods of buildings’ load forecasting have been reported in the
literature over the last decade [15], only a small number of them refer to hospitals and
healthcare facilities. The authors of [28] analyzed different machine learning techniques to
predict the daily consumption of a hospital in Spain, achieving an average daily error of
3.8%. The authors of [2] analyzed the dynamics of short- and middle-term predictions by
implementing unsupervised, supervised, and ensemble methods, and the proposed models
are evaluated by means of a year’s dataset with satisfactory results for the one of the two
examined healthcare buildings. The building’s results “revealed an abrupt change in the average
prediction error, which helped the authors to identify changes in the energy consumption patterns
implemented by the managers of the building under study” [3], using a multi-layer perceptron
ANN based on a backpropagation algorithm for forecasting day ahead load consumption of
a large hospital, with satisfactory results (MAPE close to 7%), using as inputs the previous
day consumption, the previous week consumption, the mean consumption of the previous
day, the weekday, a workday/holiday indicator, the timestamp, and the temperature [4],
compared the precision of eight machine learning models trained with daily and weekly
datasets from a general hospital in Shanghai. The results indicated that for daily load
prediction, RF, XGBoost, and SVR are the most accurate and single learning models, with a
MAPE on the test dataset of 9.64%, 9.81%, and 10.67%, respectively.

The present study focuses on electricity consumption short-term (one-hour-ahead)
forecasting of a healthcare building with data-driven models such as Artificial Neural Net-
works (ANNs), Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and Long Short-Term
Memory (LSTM) networks. Since the existing literature is relatively small, and the models
available are numerous, the primary target of this research paper is to propose a simple
and accurate model for this critical infrastructure, contributing to ongoing global research.

2. Models and Methods
2.1. Forecasting Models

This study exhaustively tested 6 ANNs, an ANFIS, and an LSTM network, using
timeseries generated from a simulated healthcare facility.

2.1.1. Artificial Neural Networks

Artificial Neural Networks can be considered as models of reasoning that imitate the
function of the human brain. Like the brain is consisted of many biological neurons,
an Artificial Neural Network (ANN) is consisted of several simple, highly interconnected
processors, which are also called neurons. The neurons are connected by links, and every
single link has an associated weight, which expresses the strength of each neuron input. The
learning process of a neural network is carried through repeated adjustments of its weights
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until a goal is met; on most occasions, the goal is to achieve an MSE (Mean Square Error)
lower than a predefined value within a certain number of iterations-called epochs.

All the neural networks that are investigated in the current paper have 24 inputs
representing the consumption of the past 24 h (x1 to x24), one hidden layer with hyperbolic
tangent transfer functions (f ), and one linear transfer function output layer (y), which gives
the hour-ahead prediction. Win and Wout are the weights matrices of the input and output
accordingly. According to the “rule of thumb” [29], the hidden layer has 6 neurons:

nh =
√

no + ni + l (1)

where nh represents the number of the hidden layer neurons, ni is the number of inputs,
and no is the number of outputs; l represents an integer between 1 and 10. Here, l equals
one. The neural network’s structure [30] is depicted in Figure 1. Loadt−1–Loadt−24 represent
the inputs (the load of every hour of the past 24 h), and Loadt represents the prediction for
the next hour’s consumption.
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Among the studied neural networks, three use a backpropagation algorithm, such as
Levenberg Marquardt (LM), Scaled Conjugate Gradient (SCG) backpropagation, and gradient
descent with momentum and adaptive learning rate (GDX) backpropagation:

1. Levenberg–Marquardt algorithm is an iterative method that finds the minimum of a
multivariate function expressed in terms of sum of squares of nonlinear real-valued
functions and has become a standard technique for nonlinear least squares problems.
It can be described as a combination of the steepest descent and the Gauss–Newton
method [31]. LM algorithm is claimed to be the fastest method for training moderate-
sized feedforward neural networks [32]. For the present study, the LM-ANN model
has the following parameters:

• Minimum performance gradient: 10−7;
• Initial µ: 0.001;
• µ decrease factor: 0.1;
• µ increase factor: 10;
• Maximum µ: 110;
• Training goal: 0.01;



Energies 2022, 15, 6453 5 of 25

• Performance metric: MSE.

2. The Scaled Conjugate Gradient algorithm, introduced by Møller [33], is a combination
of the LM algorithm and the Conjugate Gradient (CG) approach. SCG is considerably
faster than standard backpropagation and other conjugate gradient methods. For the
present study, the SCG-ANN model has the following parameters:

• Minimum performance gradient: 10−6;
• µ adjustment parameter: 0.005;
• sigma (σ): 5 × 10−5;
• lamda (λ): 5 × 10−7;
• Training goal: 0.01;
• Performance metric: MSE.

3. Adaptive Learning Rate with Momentum. In the standard steepest descent algorithm,
the Learning Rate (LR) is fixed during training. For the present study, the GDX-ANN
model has the following parameters:

• Learning rate: 0.01;
• LR increase rate: 1.05;
• LR decrease rate: 0.7;
• Momentum constant: 0.9;
• Training goal: 0.01;
• Performance metric: MSE.

Three neural networks have been trained using metaheuristic algorithms: Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), and Big Bang-Big Crunch (BB-BC):

1. Genetic Algorithms consist of a category of stochastic search algorithms inspired by
Darwin’s theory of natural evolution. The main idea is that a problem can be solved
using a set of candidate solutions represented as binary strings by applying the
following method:

i. Creation of random initial population (chromosomes).
ii. Creation of a series of new populations. At every iteration, the individuals

in the current generation are the parents of the next population, called the
offspring. The mating of the individuals is performed by the algorithm and
includes the following steps:

a. Every member of the existing population is evaluated as a solution for
its fitness.

b. The parents are selected based on their fitness.
c. Some of the individuals who achieve the best fitness are passed on to

the next generation as elite.
d. The parents produce children either by mutation of a single parent or

by mating a pair of parents, which is called crossover.
e. The children and the elite replace the current population with the

next generation.

iii When one of the stopping criteria is met, the algorithm stops.

The concept behind the application of GAs in artificial neural network training is that
a general-purpose optimization tool should be applicable to train a neural network for
which an evaluation function can be derived [34]. This approach offers an alternative to
backpropagation because it outperforms the latter in the following issues [35]: the scaling
problem, where the performance of backpropagation appears to be poor when the problem
complexity increases; and the inability to handle discontinuous optimality criteria or node
transfer functions. GAs overcome these problems. For the present study, the GA-ANN
model has the following parameters:

• Maximum generations: 1000;
• Population size: 100;
• Training goal: 0.01;
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• Performance metric: MSE.

2. Particle Swarm Optimization is a metaheuristic algorithm first introduced by [36] to
simulate social behavior. The PSO algorithm is known to outperform backpropagation
training in terms of speed and is independent of the bias value [37] but seems to be
inferior to the GA in terms of accuracy [38]. For the present study, the PSO-ANN
model has the following parameters:

• Maximum number of iterations: 1000;
• Population size: 100;
• Damping ratio: 0.99;
• Personal learning coefficient c1: 1.5;
• Global learning coefficient c2: 2;
• Training goal: 0.01;
• Performance metric: MSE.

The PSO algorithm used for the optimization of the neural network is presented in
detail in [39].

3. The Big Bang-Big Crunch algorithm is a simple and novel metaheuristic algorithm
developed by [40] and inspired by the Big Bang theory about the beginning of the uni-
verse. According to this theory, the particles-which represent the candidate solutions-
are initially spread uniformly over the search space. In the Big Crunch phase of the
algorithm, a convergence operator is determined, and the particles converge to a
specific point. In the Big Bang phase that follows, the particles will be drawn in an
orderly way. These two phases are repeated until a stopping criterion is met. The aim
is to lead the particles to a global optimum. The convergence operator can be either
the weighted average of the positions of the candidate solutions or the position of the
best candidate solution. The convergence operator, called the Center of Mass (CM), is
calculated by Equation (2):

CM(i) =
nP

∑
j=1

P(j, i)/PFit(j)

∑nP
j=1(1/PFit(j)), i = 1, 2, . . . , nv

(2)

where nP represents the population of the particles, P is the matrix of the candidate
solutions, PFit is the vector of the penalty function, nv the number of design variables
and bestP is the particle with the best fit.

On the Big Bang phase, the particles are updated according to Equation (3):

newP = (CM or bestP) +
rand× (Ub− Lb)

nIT
(3)

where rand is a random number drawn from the uniform distribution in (0, 1), nIT represents
the number of iterations, and Ub and Lb are the upper and lower bounds of the search
space, respectively. In [41] BB-BC algorithm is introduced for the parameter optimization
of the Type-2 fuzzy neural network. For the present study, the BB-BC-ANN model had the
following parameters:

• Maximum number of iterations: 1000;
• Population size: 100;
• Training goal: 0.01;
• Performance metric: MSE.

The training of an ANN using metaheuristic algorithms is schematically depicted
in Figure 2.
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Figure 2. ANN’s training using a metaheuristic algorithm.

2.1.2. Adaptive Neuro-Fuzzy Inference System

ANFIS proposed by Jang [42] has a similar to ANNs structure, with 24 inputs and one
output (past 24-h load data as inputs and the next hour’s prediction as output). Figure 3
illustrates the structure of the ANFIS used in the present study.
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ANFIS is a neural network functionally equivalent to a Sugeno fuzzy inference system.
Sugeno’s fuzzy model generates fuzzy rules from an input–output data set. The Sugeno
fuzzy rule has the following form:

IF Loadt−1 is A1
AND Loadt−2 is A2
AND Loadt−24 is Am
THEN Loadt = f(Loadt−1, Loadt−2, . . . , Loadt−24)

where Loadt−1, Loadt−2, . . . , Loadt−24 are the input variables; A1, A2, . . . , Am are the
fuzzy sets; and Loadt is either a constant or a linear function of the inputs. If Loadt is a
constant, the Sugeno fuzzy system is called a zero-order Sugeno fuzzy model, and the result of
a rule is a singleton. When Loadt is a first-order polynomial of the form:

Loadt = (k0 + k1Loadt−1 + k2Loadt−2 + . . . + k24Loadt−24) (4)

The model is called the first-order Sugeno fuzzy model.
Solving a problem using an ANFIS has the advantage that it is not necessary to have

any prior knowledge of the rule parameters since the system learns these parameters by
itself. Compared to ANNs, ANFIS seem to show a good performance on complex, nonlinear,
and multivariate problems with very accurate results due to their remarkable generalization
ability, while ANNs’ performance is strongly dependent on their architecture-which is not
a problem for ANFIS [43]. For the present study, the ANFIS had the following parameters:

• Clustering technique: Fuzzy C-Means clustering;
• Number of clusters: 10;
• Exponent: 2;
• Maximum number of epochs: 1000;
• Training goal: 0.01;
• Performance metric: MSE.

The ANFIS model used for the timeseries prediction is based on the model presented in [44].

2.1.3. Long Short-Term Memory Networks

LSTM networks belong to the category of recurrent neural networks specially designed
to learn long-term dependencies between timesteps of sequences of data. They consist of
a sequence input layer and an LSTM layer. The sequence input layer inputs sequential
data into the network, while the LSTM layer learns the long-term dependencies between
data timesteps. Figure 4 demonstrates the flow of an electrical Load time series of length
S, which flows through an LSTM layer is given, where ht and ct denote the hidden state
(the output) and the cell state at time step t, respectively.
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Figure 4. Time series flow through LSTM layer.

The initial state and the first timestep of the timeseries are used from the first LSTM
block to calculate the first output and to update the cell’s state. When in timestep t, the
block computes the output and updates the cell state ct by using the current state of the
network, which is (ct−1, ht−1). The hidden state and the cell state form the layer’s state. At



Energies 2022, 15, 6453 10 of 25

timestep t, the hidden state contains this timestep’s output of the LSTM layer. Information
learned from previous timesteps is stored in the cell’s state, and the layer adds or removes
information at every timestep using gates to control these changes. Figure 5 shows the
functions of a gate.
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For the present study, the LSTM network had the following parameters:

• Gradient threshold: 1;
• Initial learning rate: 0.005;
• LR drop factor: 0.2;
• Performance metric: MSE.

The signal flow diagram of an LSTM network is shown below in Figure 6 [45].
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2.2. Reference Building Model Description

The data are retrieved from the energy consumption simulation of a healthcare facility
in San Diego, CA, USA, with ENERGYPLUS Version 9.0.1 software [39]. The building is a
reference building developed by the US Deparment of Energy, and the general building’s
specifications are given in Table 1.

Table 1. Benchmark building’s general specifications.

Comments

Vintage New Construction

Location Zone 3C: San Diego, CA, USA
(warm, marine)

Selected climate based on
ASHRAE Standard 169-2013

Available fuel types Gas, electricity

Building type
(Principal building function) Healthcare

Building prototype Hospital

Total floor area
including basement 22,436.18 m2 241,410 sq.feet

Number of floors 5 plus basement

Coordinates Latitude [deg] 32.58,
Longitude [deg]−117.0

Elevation 159 m

Figure 7 depicts the shape of the building under study.
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2.3. Obtained Data

The simulated period is from 1 January 2014, 01:00 to 1 January 2020, 01:00 (52,584 hourly
timesteps). The sample has been divided into training and test sets, which are randomly
selected, with 80% of the samples used for the training set (42,048 data points) and the rest
20% of the samples for the test set (10,512 data points). All neural networks (LM-ANN,
SCG-ANN, GDX-ANN, GA-ANN, PSO-ANN, and BB-BC-ANN) and ANFIS had 24 inputs
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representing the hourly loads for the past 24 h, and one output, the load prediction for the
next hour. The training set consists of 24 × 42,048 input samples and 42,048 targets, and
the test set of 24 × 10,512 inputs and their associated targets. LSTM training set consists
of 1 × 42,048 input samples and the according targets, and the test set consists of 10,512
data samples.

The models are created, trained, and tested using MATLAB R2020b software. Figure 8
demonstrates the training and test sets.
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2.4. Evaluation Metrics

Mean Square Error used as the performance function during the training of the models:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where y and ŷ denote the observed and the predicted values, respectively, and n the number
of observations. A model with less MSE leads to more precise predictions.

The correlation between the predicted and the observed values is measured by the
correlation coefficient R (also known as Pearson’s correlation coefficient):

R =
n·∑ yi ŷi − (∑ yi)·(∑ ŷi)√[

n·(∑ yi
2)− (∑ yi)

2
]
·
[
n·
(
∑ ŷi

2)− (∑ ŷi)
2
] (6)

An R-value approximate to 1 indicates a strong correlation between the observed and
the predicted variables, stating that the model is a good fit.

The coefficient of determination (R2, indicates the extent to which the energy load is
predictable, showing how well the model fits the observed data:

R2 = 1− ∑(yi − ŷi)
2

∑(yi − yi)
2 (7)
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As a helpful metric to evaluate the models, Mean Absolute Percentage Error (MAPE) is
chosen because of its ability to be scale independent, and thus, it can be used as a metric
for comparison between different models:

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (8)

Moreover, expressing the models’ accuracy in percentages helps the reader to obtain a
better insight into the models since it is easily interpretable.

Additionally, the models’ precision can be estimated using the confidence interval (CI).
Assuming that the number of samples is large enough, even if their distribution is not
normal, according to the central limit theorem, the confidence interval is [46]:

CI =
(

MAPE− z∗· s√
n

, MAPE + z∗· s√
n

)
(9)

Confidence intervals allow us to make statements concerning the likely range that
a population parameter (in a certain case, the MAPE value) lies within. To obtain the
confidence interval, a confidence level must be defined [47]. A 95% confidence level means
that there is a 95% possibility for the absolute percentage error of measurement to lie
between the confidence interval bounds. z* represents the number of standard deviations
for a given confidence level. For 95% confidence level, the z* (or critical z-score) is 1.96. Note
that in Table 2, the MAPE confidence intervals were computed using the standard deviation
of the absolute percentage errors for each prediction–observation pair.

Table 2. Results of the training process.

Predictor MSE R R2 MAPE % MAPE with 95% CI MBE

LM-ANN 539.90 0.99423 0.9885 2.62 2.59–2.65 −7.8828 × 10−10

SCG-ANN 623.57 0.99333 0.9867 2.83 2.80–2.87 0.0098745
GDX-ANN 510.73 0.99454 0.9891 2.46 2.43–2.50 3.1315 × 10−5

GA-ANN 2871.6 0.96895 0.9389 6.85 6.79–6.91 2.3268
PSO-ANN 1234.6 0.98675 0.9737 4.19 4.14–4.23 0.089787

BB-BC-ANN 1682.0 0.9819 0.9641 5.27 5.22–5.32 0.15657
ANFIS 442.98 0.99526 0.9905 2.10 2.07–2.13 −0.0011551
LSTM 680.84 0.99271 0.9855 3.07 3.04–3.11 0.020457

Finally, MBE (Mean Bias Error) is also employed as a metric of the forecasting algo-
rithm’s tendency to over- or underpredict:

MBE =
1
n

n

∑
i=1

ŷi − yi (10)

3. Results
3.1. Training Phase

The models are trained, and the results of the training process are shown in Table 2.
At a glance, ANFIS, GDX-ANN, LM-ANN, SCG-ANN, and LSTM predictors perform

better than the ANNs trained with a metaheuristic algorithm, achieving significantly better
results in all performance metrics during training. PSO-ANN and BB-BC-ANN metrics
group these predictors as “moderate”, and, finally, GA-ANN predictor performance can be
labeled as “poor”. ANFIS has the best performance in terms of MSE, R, and R2. Confidence
intervals are slightly narrower in ANFIS and LM-ANN models than in the CIs of the
SCG-ANN, GDX-ANN, and LSTM. Metaheuristic-algorithm-trained models have broader
CIs, showing that the models’ precision is lower than the others. LM-ANN and ANFIS
have small (especially LM-ANN’s MBE can practically be considered zero) but negative
MBEs, indicating the models’ tendency to underpredict. GDX-ANN has also MBE close to
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zero—but positive—and all other predictors have various MBE positive values, showing
their tendency to overpredict.

3.1.1. Performance during Training

Figure 9 shows the graphs of MSE versus Epochs, Generations, or Iterations for
each predictor.
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All predictors reached their best performance at the maximum number of epochs/iterations
except LM-ANN, which reached the best performance at 960 epochs, and ANFIS, which
reached its best at 999 epochs. During training, the MSE of the LM-ANN predictor starts
from very high values of 106~105 and converges to MSE values near to best before epoch 100.
Practically, the MSE slightly changes after that point. SCG-ANN predictor’s MSE also
starts from values larger than 105 and declines exponentially to its best at epoch 1000,
which is the stopping criterion. GDX-ANN predictor also starts training with a large
MSE near 105 and then rapidly converges. However, MSE presents minor changes from
iteration 70 and up. PSO-ANN starts from high MSE values and decreases exponentially at
a very slow rate, while MSE from epoch 600 and up does not seem to change dramatically.
BB-BC-ANN predictor falls rapidly from high MSE values and then converges slowly to its
best performance until the stopping criterion of 1000 epochs is met. ANFIS MSE starts from
614, falls to 450 at the first 600 epochs, and declines at a very slow rate until the stopping
criterion of 1000 epochs is met, forming an inversed S-shaped graph. LSTM starts with a
large MSE which bounces heavily on the first 130 epochs while decreasing at the same time
and decreases slowly to its best value afterward until the stopping criterion of maximum
epochs is met.

3.1.2. Error Distribution for Training Phase

From the error distribution plots in Figure 10, the distribution of errors for LM-ANN
seems to be strongly leptokurtic with a kurtosis of 11.64, exhibiting a “spike” close to
zero. The skewness of −0.72 indicates a weak error distribution concentration to the right.
SCG-ANN error distribution also has a similar form to LM-ANN error distribution with a
kurtosis of 10.71 and a skewness of −0.63. GDX-ANN also demonstrates a large kurtosis
of 14.56 and a positive skewness of −1.06. GA-ANN predictor has a kurtosis of 5.06 and
skewness of 0.65. PSO-ANN error distribution demonstrates a kurtosis of 7.38 and a
skewness of −0.2. BB-BC-ANN error distribution has a kurtosis of 5.6 and a skewness
of 0.4. ANFIS error distribution is also strongly leptokurtic with a kurtosis of 17.04 and a
skewness of −0.91.
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Lastly, LSTM network error distribution also demonstrates a kurtosis of 10.45 and a
skewness of −0.45. One can observe that kurtosis and skewness of error distribution may
be indicative of a predictor’s accuracy, which is rational since kurtosis and skewness are
dependent on the distribution of errors which in certain case is not normal.

3.1.3. Regression Plots for the Training Phase

From the plots in Figure 11, the predictions and their respective observations are
almost perfectly matched in the cases of ANFIS, GDX-ANN, LM-ANN, SCG-ANN, and
LSTM models, as expected from Table 2, and their R-values are close to 1. PSO-ANN and
BB-BC-ANN present moderate fitness, while GA-ANN fitness can be described as “poor”,
with the lowest R-value of 0.96895. Examining Figures 10 and 11, it can be concluded that
the more samples are close to zero, the more the R-value closes to one.
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3.2. Testing Phase

The models are tested, and the results of the testing process are shown in Table 3.

Table 3. Testing results.

Predictor MSE R R2 MAPE % MAPE with 95% CI MBE

LM-ANN 613.95 0.99339 0.9868 2.78 2.71–2.85 −0.09
SCG-ANN 711.77 0.99234 0.9847 3.02 2.94–3.10 −0.35154
GDX-ANN 599.48 0.99355 0.9871 2.66 2.59–2.74 −0.27765
GA-ANN 3064.0 0.96664 0.9344 7.1 6.98–7.22 2.2024
PSO-ANN 1320.7 0.98581 0.9718 4.36 4.26–4.46 −0.035637

BB-BC-ANN 1825.0 0.98037 0.9611 5.52 5.42–5.62 0.41037
ANFIS 537.71 0.99422 0.9885 2.27 2.20–2.34 0.062046
LSTM 787.18 0.99152 0.9831 3.25 3.17–3.32 0.033282

Again, ANFIS, GDX-ANN, LM-ANN, SCG-ANN, and LSTM predictors perform better
than the ANNs trained with a metaheuristic algorithm, achieving significantly better results
in all performance metrics during testing. PSO-ANN and BB-BC-ANN metrics group these
predictors as “moderate”, and, finally, GA-ANN predictor performance can be labeled as
“poor”. ANFIS has the best performance in terms of MSE, R, R2, and MAPE. ANFIS also
has the best precision according to the confidence interval showing that the 95% of the
predictions fall in the range of 2.2~2.34% of percentage error. LM-ANN demonstrates
an MBE much bigger than the training phase’s MBE. MBE also shows that in the case of
GA-ANN, the model has a strong tendency to overpredict, while ANFIS has positive MBE,
in contrast to the training phase. SCG-ANN, GDX-ANN, and PSO-ANN demonstrated
negative MBE, also in contrast with the training phase.

3.2.1. Error Distribution for Testing Phase

From Figure 12, the distribution of errors for LM-ANN seems to be strongly leptokurtic
with a kurtosis of 11.67, exhibiting a “spike” close to zero. The skewness of −0.89 indicates
a weak error distribution concentration to the right. SCG-ANN error distribution also has
a similar form to LM-ANN error distribution with a kurtosis of 11.25 and a skewness of
−0.76. GDX-ANN also demonstrates a large kurtosis of 14.85 and a negative skewness of
−1.19. GA-ANN predictor has a kurtosis of 4.73 and skewness of 0.57. PSO-ANN error
distribution demonstrates a kurtosis of 7.01 and a skewness of −0.26. BB-BC-ANN error
distribution has a kurtosis of 5.17 and a skewness of 0.35. ANFIS error distribution is also
strongly leptokurtic, with a kurtosis of 17.91 and a skewness of −0.71.
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Finally, LSTM network error distribution also demonstrates a kurtosis of 11.07 and a
skewness of −0.64. Since the skewness and kurtosis are not zero for any of our models, the
error distribution of the testing phase is not normal.

3.2.2. Regression Plots for the Testing Phase

From the plots in Figure 13, the predictions and their respective actual values are
almost perfectly matched in the cases of ANFIS, SCG-ANN, LM-ANN, GDX-ANN, and
LSTM models, as expected from the Table 3. R-values are close to 1 for these predictors.
PSO-ANN and BB-BC-ANN present moderate fitness, while GA-ANN fitness can be
described as “poor”, with the lowest R-value of 0.96664.
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3.2.3. MAPE Boxplot of the Predictors

In Figure 14, MAPE boxplots of the predictors are presented. Boxplots are a useful
graphic tool for explanatory data analysis. Again, LM-ANN, SCG-ANN, GDX-ANN, and
ANFIS have similar behavior, while GA-ANN has a bigger median value as well as upper
and lower whiskers. LM-ANN, PSO-ANN, and BB-BC-ANN show a good performance
concerning the outliers, which are significantly fewer than the other models’ outliers.
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In Figure 14, the model’s accuracy is visually represented since the difference between
the upper and the lower quartile, known as the interquartile range (IQR), indicates the
distribution of absolute percentage errors for each predictor. As expected, LM-ANN,
SCG-ANN, GDX-ANN, and ANFIS achieved low distribution of errors and fewer outliers
than the other models. GA-ANN, BB-BC-ANN, and PSO-ANN, likewise, have a large IQR,
indicating the spreading of the errors, so the models are not precise.

3.2.4. MAPE Results from a Randomly Selected Day

Table 4 shows the MAPE achieved from the predictors over a day’s prediction from
08:00 of 15 April 2019 to 07:00 of 16 April 2019. Again, ANFIS has the best performance,
while GA-ANN has the worst. In Figure 15, the predictions obtained from ANFIS and
GA-ANN against the actual load are shown. ANFIS prediction almost fits perfectly to the
actual load curve, while, on the contrary, GA-ANN’s prediction is poor.
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Table 4. MAPE results for a random day.

Predictor MAPE %

LM-ANN 1.37
SCG-ANN 1.88
GDX-ANN 1.59
GA-ANN 5.53
PSO-ANN 3.06

BB-BC-ANN 4.54
ANFIS 1.23
LSTM 1.88
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3.2.5. GA-ANN Optimization

Since the GA-ANN algorithm’s performance is poor, a brief screening of certain
parameters is necessary, and trials with combinations of different parameters took place
to examine if there is room for improvement. The parameters’ values and the according
performance are given in Table 5.

Table 5. GA-ANN’s parameters and the according performances during training.

Combination Number Population Crossover Rate Mutation Rate Generations MSE MAPE %

1 60 0.9 0.01 1000 2609 6.41
2 70 0.8 0.0034 1000 2785 6.69
3 90 0.7 0.0017 95 10,281 14.04
4 100 0.6 0.0001 81 13,688 15.92

From the results above, the combination which seems to perform better is combina-
tion number 1, which includes 60 individuals as a population, a Crossover rate of 0.9, a
Mutation rate of 0.01 with an MSE of 2609, and a MAPE of 6.41%. Close enough is the
GA-ANN model with combination number 2 parameters with an MSE of 2785 and a
MAPE of 6.69. Combinations number 3 and 4 have large MSE values since they stall at 95
and 81 generations, respectively. Combinations 1 and 2 performances are close to the initial
combination’s performance.
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3.2.6. Reproducibility of the Models

To study the reproducibility of the models, a test of the models is performed for a
healthcare facility located in New York City. The simulated periods are January and June of
2021. MAPEs of the models are presented in Tables 6 and 7.

Table 6. MAPE results for January 2021.

Predictor MAPE %

LM-ANN 17.81
SCG-ANN 17.8
GDX-ANN 16.31
GA-ANN 17.67
PSO-ANN 17.3

BB-BC-ANN 18.07
ANFIS 16.81
LSTM 3.69

Table 7. MAPE results for June 2021.

Predictor MAPE %

LM-ANN 17.81
SCG-ANN 17.8
GDX-ANN 16.31
GA-ANN 17.67
PSO-ANN 17.3

BB-BC-ANN 18.07
ANFIS 16.81
LSTM 3.69

From Tables 6 and 7, it seems that GDX-ANN and ANFIS perform better than the other
predictors. However, the accuracy of the predictors is not so good because the climate zone
of the building is now different. LSTM network achieves a remarkable MAPE, probably
because of its ability to learn long-term dependencies from timeseries data. Additionally,
the predictors have the same MAPE for both January and June.

4. Discussion

In the present research paper, eight different predictors are tested on data obtained
from a simulated healthcare building model. ANFIS outperformed all other predictors
in terms of accuracy and had a better R score than in [6] and in any other metric as
well. However, backpropagation algorithms such Levenberg–Marquardt, Scaled Conjugate
Gradient, and Adaptive Learning Rate with Momentum performed well. Big Bang–Big
Crunch and Particle Swarm Optimization performance can be labeled as “moderate”. Genetic
Algorithms performance is characterized as “poor” and not suitable for neural network
training. LSTM also performed nearly as well as ANFIS and BP algorithms. Moreover,
the LM algorithm converged faster than every other algorithm [7], and future research
may pay attention to this, focusing on techniques that may help algorithms to converge
faster without compromising in accuracy. The matter of time and computing resources is a
subject that needs further investigation in future work.

Furthermore, metaheuristic algorithms strongly rely on their parameter sets, and
optimization techniques for every single of them must be investigated in future work.

Another interesting aspect of the study is the replicability of the models. Since the
resulting MAPEs are significantly higher than the values obtained from the benchmark
building, which is used for the training of the models, future research must focus on
refining them in order to give better results.

Since each predictor’s capabilities in load forecasting are well known and accurate
forecasting is feasible, future research will also focus on combinations of load and price



Energies 2022, 15, 6453 24 of 25

forecasting techniques to develop a decision-making system that may automatically per-
form profitable energy transactions within a smart grid context while ensuring comfortable
conditions for the residents but can additionally keep the facility resilient under extreme
circumstances of load demand.
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