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Abstract: Air pollution has a major impact on human health, especially in cities, and elevated
concentrations of PMx are responsible for a large number of premature deaths each year. Therefore,
the amount of PM10 in the air is monitored and forecasts are made to predict the air quality. In
Poland, mainly deterministic models are used to predict air pollution. Accordingly, research efforts
are being made to develop other models to forecast the ambient PM10 levels. The aim of the study
was to compare the machine learning models for predicting PM10 levels in the air in the city of
Lublin. The following machine learning models were used: Linear regression (LR), K-Nearest
Neighbors Regression (KNNR), Support Vector Machine (SVM), Regression Trees (RT), Gaussian
Process Regression Models (GPR), Artificial Neural Network (ANN) and Long Short-Term Memory
network (LSTM). The collected data for three consecutive years (January 2017 to December 2019)
were used to develop the models. In total, 19 parameters, covering meteorological variables and
concentrations of several chemical species, were explored as potential predictors of PM10. The data
used to build the models did not take into account the seasons. The algorithms achieved the following
R2 values: 0.8 for LR, 0.79 for KNNR, 0.82 for SVM, 0.77 for RT, 0.89, 0.90 for ANN and 0.81 for LSTM.
Research has shown that the selection of a machine learning model has a large impact on the quality
of the results. In this research, the ANN model performed slightly better than other models. Then,
an ANN was used to train a network with five output neurons to predict the approximate level of
PM10 at different time points (PM level at a given time, after 1 h, after 6 h, after 12 h and after 24 h).
The results showed that the developed and tuned ANN model is appropriate (R = 0.89). The model
created in this way can be used to determine the risk of exceeding the PM10 alert level and to inform
about the air quality in the region.

Keywords: air pollution; ANN; PM10 forecasting; air quality modeling

1. Introduction

Air pollution is a global problem. In Europe, ambient air quality remains poor in many
areas, particularly in urban ones [1]. Growing industrialization contributes to an increase
in air pollutants, such as sulfur dioxide (SO2), particulate matter (PM10), carbon dioxide
(CO2), ozone (O3), nitrogen oxide (IV) (NO2), nitrogen oxygen (NOx), carbon monoxide
(II) (CO), benzene (C6H6), etc. Due to the increase in industrialization, air pollutants are
on the rise, negatively affecting human health and nature, causing danger to human life.
Automobile transportation and fuel combustion in the residential and commercial sectors
are also responsible for the increase in air pollution. In addition to air pollution from
anthropogenic sources, there are those from natural sources, such as grass pollination,
soil erosion and rock weathering [2–4]. Therefore, air pollution is closely monitored and
analyzed at measuring stations. The stations are located in regional zones, designated
according to the aerodynamic condition. The location criteria and requirements for the
quality of measurements and other methods of assessing air quality are specified in the
Regulation of the Minister of Climate and Environment of 11 December 2020 on assessing
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levels of substances in the air (Journal of Laws 2020, item 2279 [5]. Reference measurements
can be divided into gravimetric manual measurements (PN-EN 12,341 standard) and
automatic measurements (PN-EN 16,450 standard) [6–8].

Out of these pollutants, PM particles are the most abundant and varied, playing
a major role in assessing the impact on health and the environment. According to the
Air Quality Framework Directive, the PM10 definition is as follows: “PM10 shall mean
particulate matter which passes through a size-selective inlet with a 50% efficiency cut-off
at 10 µm aerodynamic diameter” [9]. PM10 particles include sulfur, heavy metals, highly
toxic chemical organic compounds, such as dioxins and polycyclic aromatic hydrocarbons
(e.g., benzo-a-pyrene), and allergens, including pollen and fungal spores, among others.
The main sources of particulate matter are the cement, fertilizer, ceramic, chemical, wood
and energy industries, as well as transportation and municipal sources: from households,
landfilling and waste disposal [8,10–13]. In addition, the chemical composition of PM10
particles depends on the source of origin, which makes it difficult to protect human health.
For this reason, a maximum acceptable level was defined in the national air quality objective
system. Directive 2008/50/EC of the European Parliament and of the Council of 21 May
2008 on air quality and cleaner air for Europe imposes two standards when it comes to
the maximum permissible concentrations of PM10 [14]. The first relates to annual average
concentrations. The maximum permissible annual average concentration of PM10 in the
air is 40 µg/m3. A standard for the 24-h average concentration was also established at
50 µg/m3; additionally, it was noted that the standard for the daily average concentration
can be exceeded for a maximum of 35 days per year. However, it should be remembered
that the World Health Organization guidelines are stricter. According to the WHO, the
average annual concentration of PM10 should not exceed 20 µg/m3 [15]. Therefore, all
countries are required not to exceed the permissible concentrations of PM10.

Poland is a country with poor air quality. WHO reports that among the 50 cities of the
European Union, as many as 33 are located in Poland. Despite the observed reduction in
emissions of particulate matter precursors (especially sulfur dioxide) and measures taken
to reduce concentrations of particulate matter in the air, high concentrations of PM10 and
PM2.5 particulate matter remain the most significant air quality problem in Poland. In
Poland, exceedances of the permissible values of PM10 particulate matter concentrations
generally occur in winter. These exceedances are primarily related to particulate matter
emissions from individual heating of buildings (45%) and transportation (5%). Next are
emissions from industrial plants, heating plants, power plants (12%) and unfavorable
meteorological conditions [16]. In the 2019 air quality assessment for PM10, of the 46 zones
subject to assessment based on 24-h concentrations, only 12 zones recorded concentration
levels that did not exceed permissible values. The remaining zones (34) show that the
concentration levels are above the permissible level [17].

Cities in Poland, including the largest agglomerations, show very high diversity in
terms of air quality [11]. Połednik (2022) analyzed the air pollutant emissions in the last
four years (2018–2021) in the Upper Silesian Region, which has one of the worst air qualities
in Poland and in Europe in general, and the emissions in the Lublin Region in eastern
Poland, which is considered a clean region. The obtained results indicated that in both
agglomerations, the exposure to air pollutants was on similar levels, which were several
times higher than in the remaining parts of the considered regions and the average values
for Poland in general [1]. In 2018, in the Lublin Agglomeration zone, the PM10 content
ranged from 27.6 to 33.7 µg/m3 at all measurement sites. The largest fraction of PM10,
in total suspended particulate (TSP) in the Lublin Voivodeship, is found in the municipal
and residential sectors. A significant portion of the PM10 emissions from road transport
comes from processes other than fuel combustion, which include abrasion of vehicle tires
and brakes as well as abrasion of road surfaces. According to the 2018 Annual Assessment
of Air Quality in the Lublin Voivodeship, the Lublin Agglomeration zone was classified
as Class C, in terms of PM10 suspended particulate matter concentrations. This forced
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the provincial authorities to develop an Air Protection Program as well as identify the
corrective measures that will lead to an improvement in air quality status [18].

For this reason, the PM10 levels are continuously monitored and models for forecasting
as well as estimating the PM10 concentrations are created based on continuous and periodic
PM10 measurement results from monitoring stations. The obligation to perform short-term
forecasts of air pollution is related to the need to determine the risk of exceeding the
alert, permissible or target level of substances in the air for the purpose of informing the
public as well as the local provincial crisis management centers and provincial boards in
accordance with Article 94 (paragraph 1b) and (paragraph 1c) of the Law on Environmental
Protection [19]. Simultaneously, this obligation constitutes the implementation of one of the
main objectives of Directive 2008/50/EC of the European Parliament and of the Council [14].
The purpose of the task is to provide the information on the forecast concentrations of
air pollutants. This information is necessary to warn the public about the risk of high,
health-threatening concentrations of pollutants, as well as to trigger the actions provided
for short-term action plans, in accordance with the requirements of the aforementioned
directive. The European Union directives on air quality do not specify specific models,
simply defining targets and accuracy requirements. It should be mentioned that in most
European countries, a wide range of air quality models are employed, not only deterministic
ones [20]. In Poland, the following deterministic models have been mainly used for air
quality forecast modeling for several decades: non-diffusive box model, diffusive Gauss
(plume or cloud) model and diffusive CTM (Chemical Transport Model) models. In all these
models, the input is an emission map and meteorological data. Modeling is performed in
a computational grid, so it is necessary to generalize the various physical features of the
area to the mesh size of the models. When the resolution of the calculation is too low, this
generalization can be a source of error [21].

Extensive and complicated deterministic models for calculating air quality forecasts
have prompted the search for faster forecasting models and the use of numerical models
for air quality forecasting [22].

On the basis of a literature analysis, it can be concluded that the numerical models
being developed for forecasting local levels of particulate matter in the air have the ability to
relate complex relationships between input and output variables based on the measurement
data from monitoring stations and have good forecasting quality [23,24]. For example,
Arhami et al. (2013) [25] developed an ANN model for forecasting hourly criteria of
pollutants (NOx, NO2, NO, O3 and PM10) in Tehran using only meteorological data as
input variables, i.e., wind direction, wind speed, relative humidity and air temperature. The
results showed that appropriate ANN models can be used as reliable metamodels for the
prediction of hourly air pollutants in urban environments. High correlations were obtained
with R2 of more than 0.82 between the modeled and observed hourly pollutant levels for
CO, NOx, NO2, NO and PM10. However, the predicted O3 levels were less accurate [25].
Suleiman et al. (2019) presented a method for evaluating the effectiveness of roadside
PM10 and PM 2.5 reduction scenarios using: Artificial Neural Network (ANN), Boosted
Regression Trees (BRT) and Support Vector Machines (SVM). All models performed very
well in predicting the concentrations of PM10 with around 95% of their predictions, falling
within the factor of two of the observed concentrations at the roadsides. The results show
that the BRT and SVM models for PM10 predictions performed slightly better than the ANN
models, as indicated by the smaller RMSE values (7.99 and 7.72) [26]. Mehdipour et al.
(2018) applied three different artificial intelligence models: Bayesian network (BN), support
vector machines (SVM) and decision tree (DT) to predict PM in Tehran. The model input
parameters were temperature, rainfall, wind speed, nebulosity, relative humidity, insolation,
O3, PM10, SO2, NO2 and CO. The SVM model showed the highest correlation coefficient for
the modeled data and observed data was 0.9414, compared to the other models tested, i.e.,
DT and BN, for which the correlation coefficients were 0.92046 and 0.8927, respectively [27].

Krishan et al. (2019) used meteorological data, transportation emissions and traffic
data as input to model hourly concentrations of air quality indicators: concentrations of
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O3, PM10, NOx and CO in Delhi, India using Long Short-Term Memory network (LSTM).
Performance evaluation of LSTM algorithms for hourly concentration prediction was
carried out during 2008–2010, and it was found that LSTM models efficiently deal with the
complexities and is immensely effective in ambient air quality forecasting LSTM models
performed quite well for all the four variables, achieving high correlation coefficients
(0.92–0.98) [28].

Artificial intelligence models show good forecasting quality for air quality indica-
tors [28,29]. This is because these models are capable of handling multidimensional input
data, and do not require data preprocessing for input parameters. The advantage of the
afore-mentioned models (ANN, SVM, etc.) is that they have a higher ability to predict
the air quality parameters than in deterministic, empirical methods and linear regression
models. In turn, the disadvantage is that these models give a prediction of concentrations
only for measurement points and assume invariability of emissions over a certain time
scale. Therefore, combining and analyzing different models can provide the results with
lower error variance compared to single models [29,30].

This research focuses on verifying the applicability of numerical models for PM10
forecasting from measurement database data. The measurement data from the Radawiec
station, located in Lublin, a city in eastern Poland, was used for the study. There is a lack
of articles in the literature on air quality prognostication in eastern Poland, so the city of
Lublin was chosen for air quality forecasting [31,32]. The lack of air quality models in
Lublin is most likely due to the fact that Lublin is a city with good and even very good
air quality.

The new approach proposed in this article is to create models using measured air
pollution–meteorological and chemical data—without considering the seasons. In Poland,
most of the machine learning models created so far are based only on meteorological data
and consider only the winter season [31]. In the present paper, the data from air quality
monitoring stations were used to predict the PM10 levels.

The following meteorological data from air quality monitoring stations were used as
inputs to build models: temperature (T), relative humidity (RH), wind speed (WS), wind
direction (WD) and chemical air pollution: SO2, PM10, NO2, NOx, CO, O3 and C6H6 as
well as the effect of measurement hour (h) and month (M).

The first stage of the research was to analyze selected machine learning methods
(Linear regression (LR), K-Nearest Neighbors Regression (KNNR), Support Vector Machine
(SVM), Regression Trees (RT), Gaussian Process Regression Models (GPR), Artificial Neural
Network (ANN) and Long Short-Term Memory network (LSTM)). The results of these
models were analyzed to find the best fit for predicting the PM10 levels. The quality of
these models was compared and evaluated, taking into account the Mean Squared Error
(MSE), determination coefficient (R2) and the regression coefficient (R). The best model
was then selected and this method was used to model the approximate level of PM10 at
different time points (at a given time, after 1 h, after 6 h, after 12 h and after 24 h). A novelty
is the modeling of a network with five outputs to simultaneously predict the approximate
level of PM10 at these time points.

Forecasting at different time points is important in terms of determining the risk of
exceeding PM10 alert and air quality information levels in a given region. Such models can
provide an alternative to those currently in use.

This paper consists of five sections. The first section, the Introduction, contains a
description of the problems for forecasting air pollution. The second section, entitled
Materials and Methods, describes the procedure for acquiring measurement data by means
of the machine learning models used in the research. The third section includes the research
results obtained by using LR, KNNR, SVM, RT, GPR, ANN and LSTM. The fourth section
described the ANN model for predicting PM10 at different time points. The fifth section is
a discussion, taking into account the most important aspects of the analyses carried out in
this area and the results obtained. The final section provides a summary and conclusions
as well as the information on future research.
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2. Materials and Methods
2.1. The Dataset

Results from the measurement station included in the National Environmental Moni-
toring network, recorded in the period between 2017 and 2019, were taken into account and
the Air Quality Portal of the Chief Inspectorate for Environmental Protection was the source
of data used for modeling. The dataset contains both meteorological and air pollution data
read hourly in the Radawiec commune in the Lublin Voivodeship, Poland (51.21304 N,
22.385393 E), in 2017–2019. The analysis took into account data from an urban background
station (located within agglomeration boundaries). Reference measurements were made
automatically in accordance with the PN-EN 16,450 standard. The meteorological data
included: temperature (T), relative humidity (RH), wind speed (WS) and wind direction
(WD), whereas the air pollution data involved: SO2, PM10, NO2, NOx, CO, O3 and C6H6.
The entire dataset, after removing missing data, contained a total of 23,300 hourly read-
ings. In addition, the effect of measurement hour (h) and month (M) was also included in
the conducted research, as they can have a large impact on the level of month and hour,
and together with the wind direction, they are circular in nature. For this reason, a new
two-dimensional variable was introduced for each of them, being its sine and cosine: sin_h,
cos_h, sin_M cos_M, sin_WD, cos_WD. The descriptive statistics of the measured data are
presented in Table 1.

Table 1. Descriptive statistics of the data.

Minimum Maximum Mean Standard Deviation Skewness Kurtosis

SO2 0 56.9 4.93 3.47 3.13 20.13
PM10 0.5 496 30.95 25.94 4.79 46.67
NO2 0 128.2 21.07 15.21 1.77 4.23
NOx 0 766.7 32.21 39.79 6.52 70.76
CO 0 5.32 0.36 0.3 4.76 41.40
O3 0 169.6 48.88 28.31 0.41 −0.30

C6H6 0.05 25.3 1.69 1.5 4.52 42.40
T −15.34 36.84 10.22 9.37 0.10 −0.85

RH 21 100 72.39 18.51 −0.44 −0.95
WS 0 20.67 5.21 2.87 1.19 1.75
WD 0.65 360 196.66 94.99 −0.28 −0.99

2.2. Methods

To predict the approximate level of PM10, several machine learning methods have
been tested: Linear regression (LR), K-Nearest Neighbors Regression (KNNR), Support
Vector Machine (SVM), Regression Trees (RT) and Gaussian Process Regression Models
(GPR). Linear regression was also used as a tool to investigate the selection of input pa-
rameters for the Artificial Neural Network (ANN) and Long Short-Term Memory network
(LSTM) model.

Many algorithmic methods have been preliminarily analyzed. Ultimately, the follow-
ing models based on machine learning were selected: LR, KNNR, SVM, RT and GPR, as
well as neural networks—shallow, with one hidden layer (ANN), and deep, consisting
of multiple hidden layers (LSTM). Among regression models, LRs are popular and are
used first, but the highly restricted form of these models means that they often have low
predictive accuracy. Therefore, more flexible models, such as RTs or SVMs, KNNs or GPRs
are developed. RTs are easy to interpret and allow for fast fitting and prediction and
low memory consumption; moreover, linear SVMs are easy to interpret but can have low
predictive accuracy, while non-linear SVMs are more difficult to interpret but can be more
accurate, such as KNN. Among these methods, GPR is characterized by high accuracy.
All of the aforementioned methods use supervised learning, since the input and output
parameters of the phenomenon being modeled are known.

The best-performing model was used to predict the PM10 level at different time points
(at a given time, after 1 h, after 6 h, after 12 h and after 24 h). The creation of an ANN
model with five output neurons for predicting ambient PM10 concentrations is essential
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for effective air quality management and the development of air quality-related policies.
The model created in this way can find application in public warning systems, indicating
the situations that could potentially cause direct threats to human health in as many as five
time periods. The modeling process was performed in Matlab R2022a (The MathWorks,
Inc., Natick, MA, USA) [33] and R 4.1.2 (R Foundation for Statistical Computing, Vienna,
Austria) [34] environments. Modeling was performed on a computer with the following
parameters: AMD Ryzen™ 7 5800H (8 cores, 16 threads, 3.20–4.40 GHz, 20 MB cache),
16 GB RAM, NVIDIA GeForce RTX 3060 graphics card and AMD Radeon™ Graphics,
graphics card memory—6 GB GDDR6. The study was conducted in major steps, as shown
in Figure 1.

Figure 1. Scheme of the methodology used to conduct the research.

The training set was 70% of the dataset, and the test set constituted the remaining
30%. Measures of goodness of fit of the model used in this study were Mean Squared Error
(MSE) and determination coefficient (R2). The Mean Squared Error is defined by:

MSE =
1
n

n

∑
n=1

(ŷi − yi)
2

where yi is the actual value of the PM10 level and ŷi denotes the value of the PM10 level
for the i-th observation obtained from the model. The determination coefficient is given by
the formula:

R2 =
∑n

n=1(ŷi − yi)
2

∑n
n=1(yi − yi)

2 ,

while the regression coefficient R measures the correlation between outputs and inputs and
was calculated according to the formula:

R
(
y′, y∗

)
=

cov(y′, y∗)
σy′σy∗

R ε < 0, 1 >

where σy ′ is the standard deviation of the reference values and σy* is the standard deviation
of the predicted values. The mean absolute error (MAE) indicator was also used to compare
the models, which is calculated as:

MAE =
1
n

n

∑
n=1
|ŷi − yi|,
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where |ŷi − yi| are the absolute errors. The root mean square error (RMSE)I is calculated
according to the formula:

RMSE =

√
1
n

n

∑
n=1

(ŷi − yi)
2.

The higher the regression coefficient R and R2 and the lower MSE, RMSE and MAE,
the better the quality of the generated models [35].

The first step was linear regression. The simplest model has the following form:

Y = b0 + b1X1 + b2X2 + . . . + bkXk + ε, (1)

where X1, X2, . . . , Xn are independent variables (predictors), Y denotes dependent variable,
i.e., the PM10 level in the considered case, b1, b2, . . . , bk are model coefficients and ε is
random component (model residuals). It allows analyzing the influence of independent
variables (meteorological, air pollution variables, etc.), expressed in model parameters,
on the dependent variable i.e., PM10 level. In addition to the basic model, the following
variants of linear regression were examined: model with interactions (basic linear model
with additional interaction terms being products of predictors), pure quadratic (basic linear
model with purely quadratic terms of the predictors) and quadratic (basic linear model
with both interaction and pure quadratic terms). The following model fitting methods were
used: least squares, robust (modified objective function to make model less sensitive to
outliers) and stepwise regression. In the case of Least Squares linear Regression, the quality
of the model was verified by checking the fulfillment of the following assumptions: the
normality of the residual distribution (Shapiro–Wilk test), the residual homoscedasticity
(Breusch–Pagan test), the lack of autocorrelation of the residuals (Durbin–Watson test) and
the existence of outliers (Cook distance, diagnostic plots).

In the next step the mentioned machine learning methods were tested: KNNR, SVM,
Regression Trees, GPR, ANN and LSTM. The parameters used during modeling for these
methods are shown in Table 2.

Table 2. Modeling parameters using the analyzed methods.

Methods Model Parameters

K-Nearest Neighbor
Regression (KNNR)

The dataset was normalized and the Euclidean distance was used to find the closest
neighbors, k = 1, 2, . . . , 10 were tested.

Support Vector Machine (SVM)
Various Kernel functions were employed for training SVM: Gaussian kernel, Linear kernel,

Quadratic kernel, Cubic kernel. Kernel scale, box constraint, epsilon—Automatic,
standardize data: true.

Regression Trees (RT) Minimum leaf size setting was changed while training RT. The analysis was conducted
using Minimum leaf size—4, 12 and 36. Surrogate decision splits—Off.

Gaussian Process
Regression Models (GPR)

GPR was trained using various Kernel functions: Rational Quadratic, Squared Exponential,
Matern 5/2 and Exponential. Hyperparameters: basis function: Zero, Constant and Linear,
use isotropic kernel: true, kernel scale, signal standard deviation and sigma: Automatic,

standardize, optimize numeric parameters: true

Artificial Neural Network (ANN)

Three different algorithms were used to train the network: the Levenberg–Marquardt
algorithm, Bayesian regularization algorithm and Scaled conjugate gradient algorithm.

The number of neurons in the hidden layer (10–300) was selected experimentally. In this
case, the learning set was 70%, whereas the test and validation sets were 15% each.

Networks were built with one hidden layer.

Long Short-Term Memory network (LSTM)

To teach the network, the number of hidden units was experimentally selected in the range
of 500 to 2000. Solver for training network—‘Adam’, dropout layers—0.2, mini-batch

size—changed in the range of 500–1000, option to pad, truncate, or split input sequences,
specified as longest. The learning set for this network was 70%, and the test and validation

sets were 15% each.
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3. Results
3.1. Models Obtained Using Machine Learning Methods

Table 3 presents model quality parameters obtained using the following models: LR,
KNNR, SVM, RT and GPR. Linear regression was also a tool to investigate the selection of
input parameters for ANN and LSTM.

Table 3. Quality parameters of the models obtained using machine learning methods.

Model Quality Parameters
Models Obtained Using Machine Learning Methods

LR KNNR SVM RT GPR

R2 0.8 0.79 0.82 0.77 0.89
MSE 135.51 135.24 119.3 156.57 85.36

For the Linear Model, the coefficient of determination (R2) of the basic linear regression
model was equal 0.73, while the mean square error (MSE) was 165.57. Verification of
assumptions showed that the model met no normal distribution of residuals and the lack
of residual homoscedasticity. The stepwise regression method did not result in producing a
better model that met the assumptions. The best results were obtained for Linear Model
with interactions and R2 and MSE were equal to 0.8 and 135.51.

For K-Nearest Neighbor Regression (KNNR), the best result was obtained for k = 2.
In this case, the R2 and MSE values were equal to 0.79 and 135.24, respectively. For the
Support Vector Machine (SVM) the best results were obtained with Cubic kernel (R2 = 0.82
and MSE = 119.3); for Regression Trees with a minimum leaf size—12 (R2 = 0.77 and
MSE = 156.57)—and for Gaussian Process Regression Models (GPR) with Exponential
kernel and basis function: constant (R2 = 0.9 and MSE = 65.36).

In addition, Figure 2 shows the response plot and the predicted response versus the
true response plots for the models presented in Table 3. The response plot plots are for the
LR (Figure 2a), KNNR (Figure 2c), SVM (Figure 2e), RT (Figure 2g) and GPR (Figure 2i)
models, respectively, while the predicted response versus true response plots are for the
LR (Figure 2b), KNNR (Figure 2d), SVM (Figure 2f), RT (Figure 2h) and GPR (Figure 2j)
models, respectively. The response plot shows both the true and predicted responses. The
predicted response versus true response charts can be used to understand how well the
regression model makes predictions for different response values.

3.2. Artificial Neural Network Model

The next stage of the conducted research was to predict the approximate level of
PM10 using ANN models. In this study, the selection of variables was based on linear
regression analysis. All parameters, i.e., temperature (T), relative humidity (RH), wind
speed (WS), wind direction (WD) and air pollution data, including SO2, PM10, NO2, NOx,
CO, O3, C6H6, sin_h, cos_h, sin_M cos_M, sin_WD and cos_WD, were used for neural
network modeling.

The best modeling results were obtained for a network with 220 neurons, using the
Levenberg–Marquardt algorithm, which was obtained in 27 iterations. A schematic of the
network is shown in Figure 3. Other data, including performance validation and the rate of
error decrease (gradient) and Mu, are presented in Table 4. In general, during modeling,
the error decreases after successive learning periods, but may begin to increase in the
validation dataset when the network begins to over-fit the learning data. Learning stops
after six consecutive increases in validation error (or no decrease in error), and the best
results are obtained from the iteration with the lowest validation error. The best validation
performance was obtained for iteration 21, as shown in Figure 4, while Figure 5 shows the
early stopping strategy.
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Figure 2. Cont.
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Figure 2. Response plot graphs for the models (a) LR, (c) KNNR, (e) SVM, (g) RT and (i) GPR, and
the predicted response versus true response graphs for the models (b) LR, (d) KNNR, (f) SVM, (h) RT
and (j) GPR, respectively.

Figure 3. The ANN structure.
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Table 4. Network training conditions.

Unit Initial Value Stopped Value Target Value

Epoch 0 27 1000
Elapsed Time - 00:06:49 -
Performance 2.63 × 106 44.9 0

Gradient 8.39 × 106 84 1 × 10−7

Mu 0.001 0.01 1 × 1010

Validation Checks 0 6 6

Figure 4. ANN teaching performance.

Figure 5. Early stopping strategy for the ANN model.

Table 5 shows the network learning results (MSE, R2 and Regression R value) by
learning, validation and test subsets. In addition, regression statistics are shown in Figure 6,
for which the regression (R) value for the learning data is 0.96, and 0.94 for the validation
data and 0.92 for the test data. The overall regression was 0.95, which represents the degree
of overlap between the measurement points and the fit line with the ideal prediction line
Y = T.
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Table 5. ANN regression statistics and MSE.

Observations MSE R R2

Training 16,310 50.93 0.96 0.92
Validation 3495 96.07 0.94 0.86

Test 3495 109.11 0.92 0.83

Figure 6. ANN regression statistics for individual sets and the total set.

3.3. Long Short-Term Memory Network Model

The last model analyzed was the LSTM model, for which, as with the ANN models,
all input parameters were used. The best modeling results were obtained for the network
with the number of 2000 epochs, with Mini-Batch Size = 1000. The network diagram is
shown in Figure 7. The rest of the network learning data is shown in Figure 8. The number
of iterations per epoch was 1. Learning was done at a constant rate of 0.001. This property
was established to make the learning process more accurate. The regression layer is the last
in the considered model. For typical regression problems, the regression layer must follow
after the final fully connected layer (fc).

Figure 7. The LSTM structure.
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Figure 8. LSTM regression statistics for individual and the total set.

Table 6 shows the network learning results (MSE, R2 and Regression R value) by
learning, validation and test subsets. In addition, regression statistics are shown in Figure 9,
for which the regression (R) value for the learning data is 0.99, and 0.82 for the validation
data and 0.81 for the test data. The overall regression reached 0.81.

Table 6. LSTM regression statistics and MSE.

Observations MSE R R2

Training 16,310 3.1 0.99 0.99
Validation 3495 214.14 0.82 0.67

Test 3495 206.17 0.81 0.66

Figure 9. Training progress of the LSTM.



Energies 2022, 15, 6428 14 of 23

3.4. Selection of the Best Model

While comparing the modeling results of all the methods presented above and eval-
uating the quality parameters of the developed models, it can be concluded that ANN is
the best method in order to predict the level of PM10, as shown in Table 7. Additionally,
Table 8 shows the training time and prediction speed for all analyzed models.

Table 7. Quality parameters of all analyzed models.

Quality Parameter
Models Obtained Using Machine Learning Methods

ANN LSTM
LR KNNR SVM RT GPR

R2 0.8 0.79 0.82 0.77 0.89 0.90 0.82
MSE 135.51 135.24 119.3 156.57 85.36 68.09 233.52

RMSE 11.64 11.62 10.92 12.51 9.24 8.25 15.28
MAE 8.06 8.02 7.13 8.25 6.12 5.44 9.93

Table 8. Training time and prediction speed for all analyzed models.

Models Obtained Using Machine Learning Methods
ANN LSTM

LR KNNR SVM RT GPR

Training time [min] 10:05 00:06 65:11 10:38 129:42 06:49 450:25
Prediction speed [obs/s] 34,000 3380 12,000 78,000 1400 94,000 1500

Taking into account the quality of the presented network for predicting the approx-
imate level of PM10 (R2 = 0.90, MSE = 68.09, RMSE = 8.25 and MAE = 5.44), it can be
concluded that the presented ANN model shows an acceptable level of error, and thus, can
be considered a reliable predictor to support decision-making processes. A comparison
of real data and those obtained by prediction for this model is shown in Figure 10. Ad-
ditionally, by analyzing the training time and prediction speed, satisfactory results were
also obtained.

Figure 10. Comparison of the actual data and the data obtained by prediction.

Accordingly, the ANN model was selected for further study. In addition, the ANN
network is suitable for such prediction, because one can create models with several outputs
and there is no need to create each model separately.

3.5. Prediction Model of Level of PM10 at Different Time Points

The next stage of the study was to use the best model, i.e., ANN to predict the level of
PM10 at different time points (PM10 level, PM10 level after 1 h, after 6 h, after 12 h and
after 24 h). Input neurons remained unchanged (16 neurons), while the aforementioned
five neurons were specified in the output. A schematic representation of the artificial neural
network is shown in Figure 11. The number of neurons in the hidden layer (10–700) was
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selected experimentally. Other parameters remained unchanged, as in the case of modeling
ANN with one neuron at the output.
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The best modeling results were obtained for a network with 500 neurons, which
was obtained in 28 iterations. The structure of the ANN can be presented as follows:
16→ 500→ 5 , where the first value shows the number of inputs, the second number of
neurons in the hidden layer and the third number of output neurons. Other data, such as
performance validation, rate of error decrease (gradient) and Mu are presented in Table 9.
The best validation performance was obtained for iteration 22, which is shown in Figure 12,
while the early stopping strategy is shown in Figure 13.

Table 9. Network training conditions.

Unit Initial Value Stopped Value Target Value

Epoch 0 28 1000
Elapsed Time - 04:15:51 -
Performance 5.76 × 106 82.8 0

Gradient 8.75 × 106 504 1 × 10−7

Mu 0.001 0.01 1 × 1010

Validation Checks 0 6 6

Figure 12. ANN teaching performance for a model with five neurons in the output.
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Figure 13. Early stopping strategy for ANN model with five neurons in the output.

Table 10 shows the results of network learning (MSE and Regression R value) by
learning, validation and test subsets. In addition, regression statistics are shown in Figure 14,
for which the regression (R) value for the learning data is 0.92948, and 0.80 for the validation
data and 0.83 for the test data. The overall regression was 0.89383.

Table 10. ANN regression statistics and MSE.

Observations MSE R

Training 16,310 91.24 0.92
Validation 3495 271.94 0.80

Test 3495 225.72 0.83

Figure 14. ANN regression statistics for individual sets and the total set.

Considering the quality of the presented network as measured by the level of MSE and
value of R (R = 0.89 and MSE = 141.89), it can be concluded that the presented ANN model
shows an acceptable level of error and can be used to predict the approximate level of
PM10. A graphical representation of the prediction obtained by using the ANN model with
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five output neurons in comparison with real data at successive time points (PM10 level,
PM10 level after 1 h, after 6 h, after 12 h and after 24 h) is shown in Figure 15. Additionally,
Figure 15b,d,f,h,j show fragments of these graphs for samples from 23,000 to 23,200.

Figure 15. Comparison of actual data and the results obtained by prediction at successive time
points: (a) PM10 level, (c) PM10 level after 1 h, (e) PM10 level after 6 h, (g) PM10 level after 12 h and
(i) PM10 level after 24 h; and results for sample numbers ranging from 23,000 to 23,200: (b) PM10 level,
(d) PM10 level after 1 h, (f) PM10 level after 6 h, (h) PM10 level after 12 h and (j) PM10 level after 24 h.
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4. Discussion

This paper compares machine learning models for predicting PM10 in the air. Various
machine learning algorithms have been used in the literature to predict the air quality pa-
rameters. Examples of these algorithms include LASSO regression [36–38], Support Vector
Machines (SVM) [39–42], Random Forest [43–46] and k-Nearest Neighbor (kNN) [39,47].
These studies show that machine learning models produce acceptable air pollution forecast-
ing results, can be trained to identify non-linear relationships between input and output
data, and are able to predict pollution levels when new data are inserted [48]. The literature
shows that the models created in forecasting local levels of particulate matter in the air
have a powerful ability to relate complex relationships between input and target variables,
directly from the raw data concerning air quality forecasts, and have shown good qual-
ity [24,49]. This paper compares machine learning models for predicting PM10 in the air.
The models chosen for this study are LR, KNNR, SVM, RT, GPR, ANN and LSTM. Although
these models have been partially used for similar purposes, the authors used these methods
to predict the amount of PM10 in Lublin using meteorological and chemical air pollution
data. One of the novelties of this research is the use of ANN to forecast the amount of PM10
in an area in eastern Poland, which was not previously studied, i.e., Lublin.

In the first phase of the study, the dominant input parameters for the prediction of
PM10 involved using LR, KNNR, SVM, RT and GPR. Linear regression was also a tool to
investigate the selection of input parameters for ANN and LSTM model. From Table 3,
it can be seen that most of the machine learning regression models are characterized by
a correlation coefficient R2 ≥ 0.8. Only in the case of the GPR model, this coefficient is
equal to 0.89, and for this model, it can be assumed to have acceptable quality in predicting
the PM10 levels. The lowest MSE value was also obtained for this model (MSE = 85.36).
The linear regression model can be a proper model to predict if the accuracy is sufficient,
which is known as one of the simplest machine learning models [50]. As their comparison
shows, the best results were obtained for the GPR model. Shahriar et al. (2020) predicted
PM10 using the machine learning models, such as linear-support vector machine (L-SVM),
medium Gaussian-support vector machine (M-SVM), Gaussian process regression (GPR)
and random forest regression (RFR). The modeling results also showed that GPR is the
best model for predicting PM10. They used the following variables: NOX, SO2, CO and
O3, along with meteorological variables in Dhaka, Chattogram, Rajshahi and Sylhet for
the period of 2013 to 2019. Shahriar GPR model achieved the R2 values ranging from
0.91 to 0.94, while in L-SVM models, R2 = 0.82–0.89 [51]. A study in Seoul by Jang et al.
(2020) used GPR to predict PM10, where the final R2 value was 0.98. In general, simple
Gaussian type models are used for short-range local problems. These models are applicable
for pollutant emissions into uniform atmospheric floors [52]. Moreover, they are widely
used in regulatory purposes because of their near real time solutions. Unfortunately, these
models are not suitable for predicting flow and concentration in complex urban or industrial
areas, which are the places where aerosol particles of major concern at present [53].

In the second phase of the study, neural network models were created—shallow neural
networks, e.g., ANN, and deep neural networks, e.g., LSTM. Accuracy is crucial in the
selection of appropriate input parameters for the development of ANN models, since
the accuracy of the created models mainly depends on its structure. ANN has a number
of advantages over other traditional modeling approaches, such as handling enormous
amounts of data, generalization capabilities, identifying complex relationships between
dependent and independent variables and detecting the inherent interactions between
process variables [54]. In recent years, some researchers have proposed that long short-term
memory (LSTM) networks have higher prediction accuracy. LSTM are probably the most
powerful approach to learning from sequential data. The potential of LSTM based models
is fully revealed when learning from massive datasets, from which we can detect complex
patterns. The LSTM model may have the best predictive ability, but it is greatly affected
by the data processing [35,54,55]. Several different algorithms for selecting dependent
variables have been presented in the literature: sensitivity analysis, correlation analysis,
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multi-objective genetic algorithms and geometric approaches [56]. However, these methods
have their advantages and disadvantages, so the selection of output variables is specific
and very important for the models created.

In addition, researchers use a variety of input data to predict the amount of PM10
using ANN. Most models are based on meteorological data, others on the data pertaining
to chemical pollutants, but there are few that combine both types of data, which is another
element of novelty of the research conducted. In the work presented here, the selection of
input parameters was made using regression analysis. All the data analyzed in the paper are
statistically significant, so they were used for modeling as input parameters: temperature
(T), relative humidity (RH), wind speed (WS), wind direction (WD) and air pollution data,
including SO2, PM10, NO2, NOx, CO, O3, C6H6, sin_h, cos_h, sin_M cos_M, sin_WD and
cos_WD. The results of the parameter quality of the created neural network models show
that ANN outperforms the LSTM model, obtaining a higher R2 value and three times lower
MSE values. The quality of ANN models is very satisfactory, and therefore, it is worth
considering their application in a broader aspect in environmental management.

The next step was to assess the quality of all the analyzed models. The ANN model
turned out to the best for predicting the amount of PM10. It is characterized by an R2 of 0.90
and an MSE of 68.09. The MSE parameter of the ANN model is half the value that achieved
by other models. The R2 for all machine learning methods is close to 0.8, or close to 1 in the
case of ANN. The conclusion from the analysis of the indicators in Table 7 suggests that the
machine learning methods have a greater potential for forecasting air pollution without
seasonality breakdown.

Other researchers have also succeeded in achieving high R2 values in machine learning
models. Of course, these studies are not directly comparable because they were carried out
at different locations with different datasets. Czernecki tested four ML models: AIC-based
stepwise regression, two tree-based algorithms (random forests and XGBoost) and neural
networks for forecasting PM10 and PM2.5 in four Polish cities (Łódź, Kraków, Poznań and
Gdańsk) during the winter season. For both PM10 and PM2.5, the XGBoost algorithm
provided the highest correlation values (about 0.98), while the weakest were obtained by
AIC (about 0.86) and the ANN R2 network obtained an R2 value of 0.919 [32]. Kowalski
created the following models: Multiple Linear Regression, Multiple Linear Regression with
Regularization and, finally, Linear Neural Networks for PM10 prediction. He obtained the
largest R2 value (R2 = 0.9256) for Linear Neural Networks [57]. Of course, these studies are
not directly comparable, because they were carried out at different locations with different
data sets. This study is one of the first to design PM10 machine learning models without
seasonality breakdown of input data.

The final step in the analysis presented here was the creation of an ANN model to
predict PM10 levels after 1 h, after 6 h, after 12 h and after 24 h with meteorological input
data and chemical air pollutants. The model created was characterized by R = 0.89383 and
MSE = 141.897. The results obtained are not significantly different from those presented
in the literature, but there are few models that combine both meteorological as well as
chemical inputs and additionally predict PM10 levels at five different time intervals. The
use of a single model for simultaneous prediction of PM10 at five different time intervals
allows faster determination of the risk of exceeding the PM10 alert level.

The results of the current study are herein compared with the findings of other research
studies. This is to serve as the proof that inputting both meteorological and chemical data
without seasonality breakdown can work just as well as other available models. While
comparing the created model with others (Table 11—values of R and RMSE), it can be stated
that the general goodness of fit between the measured and simulated data is satisfactory.
On the basis of the RMSE data, it can be surmised that the findings of the current study
are an improvement on the status quo. The RMSE obtained is lower than those of most
other architectures.
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The ANN model created for forecasting the PM10 levels and those presented in the
literature appear to be a promising tool for air pollution forecasts and could be an alternative
to current models.

Table 11. Comparison with other ANN models.

Year, Place Model Type of Input Data Target RMSE R References

Only winter period
(December, January,

February) in the period
2002/2003–2016/2021;

Gdansk, Gdynia,
Sopot, Poland

MLP-ANN
air temperature (AT),

relative humidity (RH),
air pressure, wind speed (VS)

hourly PM10
concentrations

1–6 h ahead
9.42–23.56 0.50–0.84 [31]

2009–2017, 6 stations
in Ankara ANN PM10 24-h PM10

concentration 20.8 0.58 [58]

Canetto 2009–2014 ANN meteorological variables 24-h PM10
concentration - 0.59 [59]

London, 2007–2012 ANN

Meteorological variables
(wind velocities, wind

direction, solar radiation,
relative humidity, ambient
temperature) and the data
type (traffic volume, sound

level and speeds)

24-h PM10
concentration - 0.8 [26]

2020, 28 cities of India,
2016–2018 MLP–ANN

PM10, WS,
RH, AT, CO2, NO2,

SO2, Rainfall, Dew point

PM10 for
1 day ahead - 0.65 [60]

Kocaeli, Turcja, 120 dni,
2 stacje ANN T, RH, AP (hPa), WS

direction PM-10 - 0.74 [61]

Delhi, India,
May 2016–May 2018 ANN

PM, CO, SO2, NOx NO, C7H8,
NO2, WS, WD (wind

direction), VWS (vertical wind
speed), RH, Temperature (T),

Solar radiation

PM-10 - 0.85 [62]

the model presented in
the work ANN

T, RH, WS, WD, and air
pollution data were: SO2,

PM10, NO2, NOx, CO,
O3, C6H6

PM10 after 1 h,
after 6 h, after

12 h and after 24 h
8.25 0.89

5. Conclusions

This article presents the research on the effectiveness of the use of machine learning
methods to predict PM10. The quality of the seven methods was compared. The first
of those compared involved machine learning methods: LR, KNNR, SVM, RT and GPR.
Linear regression was also a tool to investigate the selection of input parameters for the
ANN and LSTM models.

The models were trained on the data from the Lublin-Radawiec meteorological station
for 2017–2019; 18 input variables of meteorology and chemical pollutants were used,
without considering the seasons. The highest quality was obtained for the ANN model
(R2 = 0.904, MSE = 68.09) and the lowest quality for RT (R2 = 0.77, MSE = 156.57).

In addition, an ANN model was created with five output neurons for PM10 prediction
after 1 h, after 6 h, after 12 h and after 24 h. The input variables for ANN modeling were
selected based on linear regression analysis. The ANN model was characterized by the
correlation coefficient of 0.89, as well as MSE equal to 91.24, 271.94 and 225.72 for the
training, testing and validating set, respectively. These results were obtained with the
following set division: training (70%) and testing (30%), using the Neural Network Fitting
app, and the Levenberg–Marquardt algorithm for training. The results of the study indicate
that ANN models can forecast PM10 best among all the models analyzed, at different time
intervals and using the data from meteorological stations.



Energies 2022, 15, 6428 21 of 23

The ANN approach, therefore, may be useful to effectively derive a predictive under-
standing of the PM10 concentration level, and thus, provide a tool to the policymakers for
improving the decision making associated with air pollution and public health. The created
model can be used to predict other pollutants, such as ozone.

In future works, the authors will attempt to classify air pollution levels using machine
learning methods.
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