

Energies 2022, 15, 6392. https://doi.org/10.3390/en15176392 www.mdpi.com/journal/energies

Review

Reinforcement Learning: Theory and Applications in HEMS

Omar Al-Ani and Sanjoy Das *

Electrical & Computer Engineering Department, Kansas State University, Manhattan, KS 66506, USA

* Correspondence: sdas@ksu.edu

Abstract: The steep rise in reinforcement learning (RL) in various applications in energy as well as

the penetration of home automation in recent years are the motivation for this article. It surveys the

use of RL in various home energy management system (HEMS) applications. There is a focus on

deep neural network (DNN) models in RL. The article provides an overview of reinforcement learn-

ing. This is followed with discussions on state-of-the-art methods for value, policy, and actor–critic

methods in deep reinforcement learning (DRL). In order to make the published literature in rein-

forcement learning more accessible to the HEMS community, verbal descriptions are accompanied

with explanatory figures as well as mathematical expressions using standard machine learning ter-

minology. Next, a detailed survey of how reinforcement learning is used in different HEMS domains

is described. The survey also considers what kind of reinforcement learning algorithms are used in

each HEMS application. It suggests that research in this direction is still in its infancy. Lastly, the

article proposes four performance metrics to evaluate RL methods.

Keywords: home energy management systems (HEMS); reinforcement learning (RL); deep neural

network (DNN); Q-value; policy gradient; natural gradient; actor–critic; residential; commercial;

academic

1. Introduction

The largest group of consumers of electricity in the US are residential units. In the

year 2020, this sector alone accounted for approximately 40% of all electricity usage [1].

The average daily residential consumption of electricity is 12 kWh per person [2]. There-

fore, effectively managing the usage of electricity in homes, while maintaining acceptable

comfort levels, is vital to address the global challenges of dwindling natural resources and

climate change. Rapid technological advances have now made home energy management

systems (HEMS) an attainable goal that is worth pursuing. HEMS consist of automation

technologies that can respond to a continuously or periodically changing home environ-

mental as well as relevant external conditions, without human intervention [3,4]. In this

review, the term ‘home’ is taken in a broad context to also include all residential units,

classrooms, apartments, offices complexes, and other buildings in the smart grid [5–8].

Artificial Intelligence (AI), more specifically machine learning, is one of the key con-

tributing factors that have helped realize HEMS today [9–11]. Reinforcement learning (RL)

is a class of machine learning algorithms that is making deep inroads in various applica-

tions in HEMS. This learning paradigm incorporates the twin capabilities of learning from

experience and learning at higher levels of abstraction. It allows algorithmic agents to

replace human beings in the real world, including in homes and buildings, in applications

that had hitherto been considered to be beyond today’s capabilities.

RL allows an algorithmic entity to make sequences of decisions and implement ac-

tions from experience in the same manner as a human being [12–17]. DNN has proven to

be a powerful tool in RL, for it endows the RL agent with the capability to adapt to a wide

variety of complex real-world applications [18,19]. Moreover, it has been proposed in [20]

that RL can attain the ultimate goal of artificial general intelligence [21].

Citation: Al-Ani, O.; Das, S.

Reinforcement Learning: Theory and

Applications in HEMS. Energies

2022, 15, 6392. https://doi.org/

10.3390/en15176392

Academic Editors: Israa Medlej and

Ambra Fioravanti

Received: 3 August 2022

Accepted: 27 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Energies 2022, 15, 6392 2 of 37

Consequently, RL is making deep inroads into many application domains today. It

has been applied extensively to robotics [22]. Specific applications in this area include ro-

botic manipulation with many degrees of freedom [23,24] and the navigation and path

planning of mobile robots and UAVs [25–27]. RL finds widespread applications in com-

munications and networking [28–30]. It has been used in 5G-enabled UAVs with cognitive

capabilities [31], cybersecurity [32–34], and edge computing [35]. In intelligent transpor-

tation systems, RL is used in a range of applications such as vehicle dispatching in online

ride-hailing platforms [36].

Other domains where RL has been used include hospital decision making [37], pre-

cision agriculture [38], and fluid mechanics [39]. The financial industry is another im-

portant sector where RL has been adopted for several scenarios [40–42]. It is of little sur-

prise that RL has been extensively used to solve various problems in energy systems [43–

47]. Another review article on the use of RL [47] considers three application areas in fre-

quency and voltage control as well as in energy management.

RL is increasingly being used in HEMS applications and several review papers have

already been published. The review article in [48] focuses on RL for HVAC and water

heaters. The paper in [49] is based on research published between 1997 and 2019. The

survey observes that only 11% of published research reports the deployment of RL in ac-

tual HEMS. The article in [50] specifically focuses on occupant comfort in residences and

offices. A more recent review on building energy management [51] focuses on deep neural

network-based RL. A recent article [52] considers RL along with model predictive control

in smart building applications. The article in [53] is a survey of RL in demand response.

In contrast to the previous reviews, the scope of our review is broad enough to cover

all areas of HEMS, including HEMS interfacing with the energy grid. More importantly,

it provides a comprehensive overview of all major RL methods, providing a sufficient

level of explanation for readers’ understanding. Therefore, this article would be of benefit

for researchers and practitioners in other areas of the energy systems, and beyond, to ac-

quire a theoretical level understanding of basic RL techniques.

The rest of this article is organized in the following manner. Section 2 addresses the

various elements of HEMS in greater detail. Section 3 introduces basic ideas on reinforce-

ment learning. Further details of value-based RL and associated deep architectures are

discussed in Section 4, while policy-based and actor–critic architectures—the other class

of RL algorithms—are described in Section 5. Sections 6 and 7 discuss the results of the

research survey: while Section 6 focuses on the application of RL, Section 7 is a study on

the classes of algorithms that were used. The article concludes in Section 8, where the

authors propose four metrics to evaluate the performances of RL algorithms in HEMS.

2. Home Energy Management Systems

HEMS refers to a slew of automation techniques that can respond to continuously or

periodically changing the home/building’s internal as well as relevant external conditions,

and without the need for human intervention. This section addresses the enabling tech-

nologies that make this an attainable goal.

2.1. Networking and Communication

All HEMS devices must have the ability to send/receive data with each other using

the same communication protocol. HEMS provides the occupants with the tools that allow

them to monitor, manage, and control all the activities within the system. The advance-

ments in technologies and more specifically in IoT-enabled devices and wireless commu-

nications protocols such as ZigBee, Wi-Fi, and Z-Wave made HEMS feasible [54,55]. These

smart devices are connected through a home area network (HAN) and/or to the internet,

i.e., a wide area network (WAN).

The choice of communication protocol for home automation is an open question. To

a large extent, it depends on the user’s personal requirements. If it is desired to automate

a smaller set of home appliances with ease of installation, and operability in a plug-and-

Energies 2022, 15, 6392 3 of 37

play manner, Wi-Fi is the appropriate one to use. However, with more extensive automa-

tion requirements, involving tens through to hundreds of smart devices, Wi-Fi is no longer

the optimal choice. There are issues relating to scalability and signal interference in Wi-Fi.

More importantly, due to its relatively high energy consumption, Wi-Fi is not appropriate

for battery-powered devices.

Under these circumstances, ZigBee and Z-Wave are more appropriate [56]. These

communication protocols dominate today’s home automation market. There are many

common features shared between the two protocols. Both protocols use RF communica-

tion mode and offer two-way communication. Both ZigBee and Z-Wave enjoy well estab-

lished commercial relationships with various companies, with tens of hundreds of smart

devices using one of these protocols.

Z-Wave is superior to than ZigBee in terms of the range of transmission (120 m with

three devices as repeaters vs. 60 m with two devices working as repeaters). In terms of

inter-brand operability, Z-Wave again holds the advantage. However, ZigBee is more

competitive in terms of data rate of transmission as well as in the number of connected

devices. Z-Wave was specially created for home automation applications, while ZigBee is

used in a wider range of places such as industry, research, health care, and home automa-

tion [57]. A study conducted by [58] foresees that ZigBee is most likely to be the standard

communication protocol for HEMS. However, due to the presence of numerous factors, it

is still difficult to tell with high certainty if this forecast would take place in future. It is

also possible that an alternative communication protocol will emerge in future.

HEMS requires this level of connectivity to be able to access electricity price from the

smart grid through the smart meter and control all the system’s elements accordingly (e.g.,

turn on/off the TV, control the thermostat settings, determine the charge/discharge battery

timings, etc.). In some scenarios, HEMS uses the forecasted electricity prices to schedule

shiftable loads (e.g., washing machine, dryer, electric vehicle charging) [54].

2.2. Sensors and Controller Platforms

HEMS consists of smart appliances with sensors, these IoT-enabled devices com-

municate with the controller by sending and receiving data. They collect information from

the environment and/or about their electricity usage using built-in sensors. The smart me-

ter gathers information regarding the total consumers’ consumption from the appliances,

the peak load period, and electricity price from the smart grid.

The controller can be in the form of a physical computer located within the premises,

that is equipped with the ability to run complex algorithms. An alternate approach is to

leverage any of the cloud services that are available to the consumers through cloud com-

puting firms.

The controller gathers information from the following sources: (i) the energy grid

through the smart meter, which includes the power supply status and electricity price, (ii)

the status of renewable energy and the energy storage systems, (iii) the electricity usage

of each smart device at home, and (iv) the outside environment. Then it processes all the

data through a computational algorithm to take specific action for each device in the

whole system separately [5].

2.3. Control Algorithms

AI and machine learning methods are making deep inroads into HEMS [10,59].

HEMS algorithms incorporated into the controller might be in the form of simple

knowledge-based systems. These approaches embody a set of if-then-else rules, which

may be crisp or fuzzy. However, due to their reliance on a fixed set of rules, such methods

may not be of much practical use with real-time controllers. Moreover, they cannot effec-

tively leverage the large amount of data available today [5]. Although it is possible to

impart a certain degree of trainability to fuzzy systems, the structural bottleneck of con-

solidating all inputs using only conjunctions (and) and disjunctions (or) still persists.

Energies 2022, 15, 6392 4 of 37

Numerical optimization comprises of another class of computational methods for the

smart home controller. These methods entail an objective function that is to be either min-

imized (e.g., cost) or maximized (e.g., occupant comfort), as well as a set of constraints

imposed by the underlying physical HEMS appliances and limitations. Due to its simplic-

ity, linear programing is a popular choice for this class of algorithms. More recently, game

theoretic approaches have emerged as an alternative approach for various HEMS optimi-

zation problems [5].

In recent years, artificial intelligence and machine learning, more specifically deep

learning techniques, have become popular for HEMS applications. Deep learning takes

advantage of all the available data for training the neural network to predict the output

and control the connected devices. It is very helpful to forecast the weather, load, and

electricity price. Furthermore, it handles non-linearities without resorting to explicit math-

ematical models. Since 2013, there have been significant efforts directed at using deep

neural networks within an RL framework [60,61], that have met with much success.

3. Overview of Reinforcement Learning

3.1. Deep Neural Networks

A deep neural network (DNN) is a trainable highly nonlinear function approximator

of the form �(∙): ℛ� → ℛ� where � and � are the dimensionalities of the input and

output spaces. Structurally, the DNN consists of an input layer and output layer, and at

least one hidden layer. The input layer receives the DNN input vector �. The neurons in

any other layer receive, as their inputs, the weighted outputs of neurons in the preceding

layer. The weights of the DNN make up its weight parameter, denoted �. For simplicity,

we consider DNNs with scalar outputs so that �(∙): ℛ� → ℛ. The actual output of the

DNN is represented as �(�|�), which is that of the sole neuron in the output layer.

In a typical regression application, the DNN’s training set � consists of pairs

��(�), �(�)� ∈ � where � = 1, . . . , |�| is the sample index (for the sake of conciseness, this

relationship is often denoted as � ∈ � in this article). The quantity �(�) is the target, or

desired output. During training, � is updated in steps so that for each input �(�), the

DNN’s output �(�) is as close as possible to �(�). Supervised learning algorithms aim to

minimize the DNN’s loss function ��(�). The subscript � indicates that the loss is an em-

pirically estimate over the sample in �. A popular choice of the latter is the averaged

squared �� norms of the difference between the target and output for all samples in �,

��(�) =
1

2

1

|�|
���(�(�)|�) − �(�)�

�

�∈�

 (1)

Training the DNN comprises of multiple passes called epochs, with each epoch com-

prising of one pass through all samples in �. In stochastic gradient descent (SGD), with � ≪

1 being the learning rate, the parameter � is incremented once for every sample � ∈ � as,

� ← � − ���(�(�)|�) − �(�)�∇��(�(�)|�) (2)

This increment is equivalent to a single gradient step with �(�) =
�

�
��(�(�)|�) −

�(�)�
�
.

While SGD is useful in many online applications, minibatch gradient descent is the most

common training method. In each epoch, � are divided into non-overlapping mini-

batches ℬ� ⊂ � (i.e., ⋃ ℬ�� = �, and � ≠ � ⇒ ℬ� ∩ ℬ� = �). The parameter � is updated

once for every minibatch ℬ as,

� ← � − �
1

|ℬ|
���(�(�)|�) − �(�)�

�∈ℬ

∇��(�(�)|�) (3)

One of the advantages of training in minibatches is that the trajectory taken by the

training algorithm is straightened out, thereby speeding up convergence. It can be seen

Energies 2022, 15, 6392 5 of 37

that the loss function is �ℬ(�), which is identical to that in Equation (1), with sample set

ℬ.

Typically, the loss function includes an additional regularization term designed to

keep the weights in � low in order to prevent overfitting; overfitting results in poorer

performance after the DNN is deployed into the real world. Nowadays, faster training is

accomplished by using extensions of gradient descent such as ADAM. These as well as

many other important aspects of DNNs and training algorithms have not been addressed

here; the above discussion minimally suffices to understand how DNNs are used in rein-

forcement learning (RL). A brief exposition to DNNs is available at [62]. For a rigorous

treatment of DNNs, the interested reader is referred to [63].

3.2. Reinforcement Learning

An agent in RL is a learning entity, such as a deep neural network (DNN) that exerts

control over a stochastic, external environment by means of a sequence of actions over time.

The agent learns to improve the performance of its environment using reward signals that

it receives from the environment.

Rewards are quantitative metrics that indicate the immediate performance of the en-

vironment (e.g., average instantaneous user comfort). The sets � and � are the state and

action spaces and can be discrete or continuous. Everywhere in this article it is assumed

that all temporal signals are sampled at discrete, regularly spaced intervals [62]. At each

discrete time instance �, the current state �� ∈ � of the environment is known to the agent,

which then implements an action �� ∈ �. The environment transitions to the next state

���� with a probability �(����|��, ��) while returning an immediate reward signal �� ≡

�(��, ��, ����); where �(∙): � × � × � → ℛ denotes the environment’s reward function that

it unknown to the agent. The transition can be denoted concisely as ��

��,��
�⎯� ����. The overall

schematic is shown in Figure 1.

Instead of greedily aiming to improve the immediate reward �� at every time in-

stance �, the agent may be iteratively trained to maximize the sum of the immediate and

the weighted future rewards, which is called the return,

�� = �� + � ���
�����

���

����

 (4)

The quantity � ∈ [0,1] is called the discount factor. This lookahead feature prevents

the agent to learn greedy actions that fetch large instantaneous rewards, �� at each instant

�, while adversely affect the environment later on. The process begins at time � = 0 and

terminates at time � = �, the time horizon. The environment’s initial state at � = 0 is de-

noted as �� ∈ � . The initial state may be probabilistic, following a distribution �� . It

should be noted that if � = ∞, then the discount must be less than unity (� < 1) so that

the return �� stays finitely bounded at all times �.

Figure 1. The quantities shown are associated with the transition ��

��,��
�⎯� ����. Although the agent is

depicted as a neural network (cf. [62]), it may be in the form of a tabular structure.

Energies 2022, 15, 6392 6 of 37

The 5-tuple (�, �, �, �, �) defines a Markov decision process (MDP). The initial state

distribution �� is assumed to be subsumed by the transition probabilities �. The MDP

can be viewed as an extension of a discrete Markov model.

The entire sequence of states, actions, and rewards is an episode, denoted ℰ, so that,

ℰ ≡ ��

��,��
�⎯� ��

��,��
�⎯� �� ⋯

����,����
�⎯⎯⎯⎯⎯⎯� ��

 (5)

The policy can be deterministic or stochastic. A deterministic policy can be treated as

a function �: � → � (see Figure 1) so that �� = �(��), whereas a stochastic policy � rep-

resents a probability distribution over � such that ��~�(��). In several domains, the

probability distribution is determined from the nature of the application itself.

During an episode, the action taken by the agent is in accordance with a policy � ∈ Π,

where Π is the policy space. From the Markovian (memoryless) property of the MDP, it

follows that the optimal action of an agent at each state in terms of its stated goal of max-

imizing the total return �� , is independent of all previous states of the environment.

Therefore, the action �� taken by the agent at time � under policy � is based solely on

the state ��, and the prior history of states and actions need not be taken into account.

The overall aim of reinforcement learning is usually to maximize an objective func-

tion �(∙). Let �(ℰ) denote the total return �� of a given episode ℰ. If the MDP is initial-

ized to any state � ∈ � at � = 0 (such that �� = �), the expected value of this return which

is dependent on policy � may be expressed as,

��(�) = ��[��|�� = �] (6)

The operator ��[∙] is the expectation when all episodes are generated by the MDP

under policy �. When it follows the MDP’s initial state distribution, i.e., ��~�, the expec-

tation may be denoted simply as �� without any argument. This informal function over-

loaded convention is adopted throughout this manuscript as there are other ways to de-

fine the objective function. The policy that at each state � implements the action that max-

imize ��(�) is referred to as the optimal policy and represented as �∗.

3.3. Taxonomy of Algorithms

RL methods can be classified in several ways. In model-free training, RL takes place

with the agent connected to the real-world environment, whereas in model-based RL, the

agent is trained using a simulation platform to represent the environment.

In model-based RL, as the transition probabilities and the reward function are avail-

able through the environmental model platform, the algorithm must be implemented in

an offline manner. Of more practical interest is online RL where the agent can be trained in

real time by interacting with the real physical environment as shown in Figure 1. Alt-

hough online RL is considered to be model-free, practically all research papers report the

use of HEMS models for training [49].

In on-policy RL, a referential policy �∗, such as that of a human, is considered to be

the optimal policy and is known a priori. The goal of RL is to learn a policy � ≅ �∗. In off-

policy approaches, the goal is to obtain the optimal policy �∗, which maximizes ��(�) in

Equation (6).

Another fundamental trichotomy of the plethora of RL approaches used today in-

cludes value-based RL, policy-based RL, and actor–critic RL, the latter having emerged more

recently. Actor–critic methods are hybrid approaches that borrow features from value-

based as well as policy-based RL [64]. The classification of various approaches used in

HEMS applications is shown in Figure 2. These are also described at great length in this

article, which may be used as a tutorial style exposition to RL for the interested reader.

Energies 2022, 15, 6392 7 of 37

Figure 2. Taxonomy of Deep Reinforcement Learning. Classification of all deep reinforcement

learning methods that are described in this article are shown. Section 3.2 provides a description of

each class. (See also [64].)

4. Value-Based Reinforcement Learning

Historically value-based RL, first proposed in [65], heralds the advent of the broad

area of reinforcement learning as a distinct branch of AI. These approaches are based on

dynamic programming. The formal definition of an MDP was introduced shortly thereaf-

ter [66,67]. As noted earlier, an MDP is memoryless. An implication of this feature is that

when the environment is in any given state �� = � at any instant �, the prior history ��
��,��
�⎯� ��

��,��
�⎯� ⋯

����,����
�⎯⎯⎯⎯⎯� is not of any consequence in deciding the future course of actions

[19]. Accordingly, one can define the state–action value, or Q-value of the state � ∈ � and

for each action � ∈ �, as the expected return when taking � from � (cf. [19]),

�(�, �) ≜ ��[��|�� = �, �� = �] (7)

Referring to a specific policy � may be achieved by using a superscript in the above

equation, so that the left-hand side of Equation (7) is written as ��(�, �).

It must be noted that even under a deterministic policy, ��(�, �) can still be defined

for any action � ≠ �(�) merely by treating � as an evaluative action and following the

policy at all future times. Whence (cf. [19]),

��(�, �) = � �(��|�, �) ��(�, �, ��) + � � �(�′|��)

��∈�

��(��, ��)�

��∈�

 (8)

The Q-value function ��: � × � → ℛ can be defined using (6) irrespective of whether

the policy is stochastic or deterministic. In case of a deterministic policy, Equation (8) can

be applied by letting �(�′|��) = 1 when �� = �(��), and �(�′|��) = 0 otherwise.

A stochastic policy is intrinsic to many real-world applications. For instance, in order

to decrease the ambient temperature by manually lowering the thermostatic setting, the

final setting involves a degree of randomness arising from human imprecision. In multi-

agent environments, the best course may often be to adopt a stochastic policy. As an ex-

ample, in a repeated game of rock–paper–scissors, randomly selecting each action (‘rock’,

‘paper’, or ‘scissors’) with equal probabilities of ⅓ is the only policy that would ensure

that the probability of losing a round of the game does not exceed that of winning.

From a machine learning standpoint, stochastic policies help explore and assess the

effects of the entire repertoire of actions available in �. Such exploration is critical during

the initial stages of the learning algorithm. The two most commonly used stochastic poli-

cies are the �-greedy and the softmax policies. Under an ϵ-greedy policy �, the probability

of picking an action � when the environmental state is � is given by,

DEEP R E INFORCEMENT L EARN ING

POLICY GRADIENT

REINFORCE

TRPOPPOA2C

TD3

DDPGSAC

A3C

OFF-POLICY

ON-POLICY

ACTOR-CRITIC

NFQI

DDQN

Dueling-DQN

VALUE-BASED

DQN

Energies 2022, 15, 6392 8 of 37

�(�|�) = �

�

|�|
+ (1 − �), � = argmax

��∈�
�(�, ��)

�

|�|
 , � ≠ argmax

��∈�
�(�, ��)

 (9)

It is always a good idea to lower the parameter � steadily so that as learning pro-

gresses, the agent is greedier—being likelier to select actions with the highest Q-values,

argmax�� �(�, ��). The softmax policy is the other popular method to incorporate explora-

tion into a policy. The probability of applying action � under such a policy � is,

�(�|�) = � � �
���,���

�

��∈�

�

��

�
�(�,�)

� (10)

Initialized to a high value, the Gibbs–Boltzmann parameter � may be steadily low-

ered as the learning algorithm progresses, so that the policy becomes increasingly exploi-

tative, that is, taking the action with the highest Q-value more often. Unless specified oth-

erwise, it shall be assumed hereafter that the policy space Π is stochastic so that actions

follow probability distribution (�~�(�)).

Exploration is applied to stochastically search and evaluate the available repertoire

of actions at each state, before converging towards the optimal one. It is an essential com-

ponent of value-based RL. Since exploitation is the strategy of picking the best actions in

Π, it should not be applied until the algorithm has all actions in a sufficient manner. How-

ever, endowing the learning algorithm with too much exploration slows down the learn-

ing. Identifying the right tradeoff between exploration and exploitation is a widely stud-

ied problem in machine learning [68]. It is for this reason that the parameters � in Equa-

tion (9), and � in Equation (10) are steadily lowered as learning progresses.

Instead of an evaluative action �, suppose the policy � is applied from state � (so

that either � = �(�) or �~�(�)), then the expected return is called the state’s value,

�(�) ≜ ��[��|�� = �] (11)

As with the Q-value function, the policy � becomes explicit if the value of � is writ-

ten as ��(�). The value of � can be expressed in terms of Q-values as,

�(�) ≡ � �(�|�)��(�, �)

�

= ��~�(�)[��(�, �)] (12)

The difference between value of any state � and the Q-value of implementing an

action � from � under policy is the advantage function, so that,

��(�) ≡ ��(�, �) − ��(�) (13)

Although the preferred notation in this manuscript is to use lowercase letters to de-

note variables, the advantage function is represented using uppercase as the lowercase �

is reserved to denote an action.

The value function �: � → ℛ allows the optimal policy �∗ to be defined in a formal

manner. If the objective function with the MDP initialized to some �� ∈ � is defined as in

Equation (6), then it is evident from Equation (10) that ��(��) = �(��). Furthermore, if the

MDP visits state �� = � at the instant �, then from Equation (4),

��[��] = �� + ��� + ⋯ + �������� + ����(�) (14)

At this stage, we invoke the memoryless property of the underlying MDP. At instant

� the partial sum of the terms �� + ��� + ⋯ + �������� in the right-hand side are part of

the episode’s history, while ����(�) is the expected future return. The optimal policy at

every such state � is to implement the action that maximizes ��(�), so that,

�∗(�) ≜ argmax
�∈�

�� (�) (15)

Energies 2022, 15, 6392 9 of 37

When the policy �∗ is deterministic, it can also be inferred that the optimal action

from state � is to select the action with the highest Q-value. From Equation (15) it follows

that,

�∗ ≜ argmax
�∈�

�∗(�, �) (16)

The Q-value �∗(�, �) is equal to ��∗
(�, �). It can be mathematically established that

the Q-values corresponding to the optimal policy are higher than those associated with

other policies, i.e., �∗(�, �) ≥ ��(�, �) [69].

The Bellman’s equation for optimality follows from the above consideration,

�∗(�, �) = � �(��|�, �) ��(�, �, ��) + � max
��∈�

�∗(��, ��)�

��∈�

 (17)

The difference between Equation (8) and Equation (17) is in the second term in each

summand. The policy-based Q-value in Equation (8) is replaced with the maximum Q-

value in Equation (17). A mathematically rigorous coverage of various RL methods can be

found in the seminal book [70] that is available online.

4.1. Tabular Q-Learning

The simplest possible implementation of the Q-learning algorithm is tabular Q-learn-

ing where an |�| × |�| sized array is maintained to store �(�, �) for every state–action

pair [71]. Initialized to either zeros or small random values, the tabular entries are period-

ically updated. As it is an online approach, Q-learning cannot use transition probabilities

�(��|�, �). For each transition �
�,�
�� ��, the tabular entry for �(�, �) is incremented as,

�(�, �) ← (1 − �)�(�, �) + �� (18)

The quantity � is the learning rate; usually � ≪ 1. The quantity � is the target,

� = � + � max
��∈�

�(��, ��) (19)

In order to impart an exploratory component to Q-learning, the action � must be

selected probabilistically as in Equation (9) or Equation (10). In many cases, increments

are applied in real time at the end of each time instance. It can be shown mathematically

that the tabular entries converge towards the maximum values, �∗(�, �) [69], implying

that Q-learning is an off-policy approach. The fully trained agent can select actions as per

Equation (16) during actual use.

SARSA (State–Action–Reward–State–Action) [70,72] is the on-policy RL algorithm that

can be implemented in a tabular manner. The update rule for SARSA is identical to the

earlier expression in Equation (19). However, since SARSA is an on-policy algorithm, the

target is specific to the policy � and is given by,

� = � + �����, �(��)� (20)

Both Q-learning and SARSA use the tabular entries �(��, ��) of the environment’s

new state �� following the transition �
�,�
�� ��. The difference is in how the entries are used.

Whereas Q-learning uses the tabular entry corresponding to the action �� with the high-

est �(��, ��), SARSA applies the specified policy �, using �(��, ��), the Q-value of the ac-

tion �� = �(��). This difference is analogous to that between Equation (17) and Equation

(8).

Tabular Q-learning and SARSA can handle continuous state as well as action spaces

by discretizing them into a finite and tractable number of subdivisions. Unfortunately,

such tabular learning methods cannot be applied in many large-scale domains. This is

because too many discrete levels would make the algorithm computationally too intensive

if not outright intractable.

When the state space � is too large (e.g., |�| ≈ 7.73 × 10�� in chess), tabular learn-

ing becomes prohibitively expensive not only in terms of storage requirements but also in

Energies 2022, 15, 6392 10 of 37

terms of computational time needed by the RL algorithm. DQNs are well equipped to

handle such large discrete as well as continuous state spaces [73]. However, |�|, the car-

dinality of the action space, must still be tractably small. In a DQN the mapping from

every state action pair (�, �) to its Q-value is carried out by means of a DNN.

In reality, the DNN input is some feature vector �(�) of the state �, where �: � →

ℛ� and � is the dimensionality of the feature space. In the same manner, the action �

can be represented in terms of its feature vectors. However, as |�| is small, it is assumed

that the action � itself is the other input. In practice, a unary encoding scheme may be

used to represent actions. For instance, if |�| = 4, the four discrete actions may be en-

coded as 0001, 0010, 0100, and 1000. Under these circumstances, the actual input to the

DNN is (�(�), �), and its actual output is �(�(�), �|�). For simplicity we will treat the

DNN input as (�, �) and the output as �(�, �|�) , that is, (�, �) ≡ (�(�), �) , and

�(�, �|�) ≡ �(�(�), �|�). The Q-value �(�, �|�) is conditioned in terms of the weight pa-

rameter � in this manner so as to explicitly reflect its dependence on the latter.

4.2. Deep Q-Networks

There are two possible ways in which the mapping of a state–action pair (�, �) to its

Q-value �(�, �|�) can be accomplished, which are as follows.

(i) A different DNN for each action is maintained, so that the total of DNNs in this

arrangement is |�|. The state � (encoded appropriately using the state’s features),

serves as the common input to all the DNNs.

(ii) A single DNN with separate inputs for state � and action � is maintained and its

output is �(�, �|�). While this manner of storing Q-values requires the use of only a

single DNN, in order to obtain max �(�, �|�) , the actions must be applied

sequentially to it.

The two schemes are depicted in Figure 3.

Figure 3. Deep Q-Network Layouts. One scheme uses a uses a separate DNN for each action (top).

The other scheme uses only one DNN that receives actions as another input (bottom).

Stochastic gradient descent can be applied in a straightforward fashion to train the

weight parameter � as in Equation (2) for the squared error loss
�

�
�� − �(�, �|�)�

�
, and

with the DNN’s output � now being �(�, �|�),

� ← � − �(�(�, �|�) − �)∇��(�, �|�) (21)

Energies 2022, 15, 6392 11 of 37

This simple approach is the neural-fitted Q-iteration (NFQI) that was proposed in [74].

The target �(�) is determined in accordance with Equation (19) with �(��, ��|�) used to

obtain the target � so that � = � + � max
��∈�

�(��, ��|�). When using tabular entries in place

of �, it becomes the fitted Q-iteration (FQI) When the learning agent interacts with the en-

vironment, the actions are generally selected using the ϵ-greedy method shown in Equa-

tion (9).

Temporal correlation in real-time training samples is an unfortunate drawback when

directly implementing stochastic gradient descent. Unlike in tabular learning, in DQN up-

dating � changes not only the output �(�, �|�) for the relevant state–action pair (�, �)

but the Q-values �(��, ��|�) of every other pair (��, ��) ≠ (�, �) as well. The change may

be barely noticeable when �� is at a large distance from � within the feature space �(�);

unfortunately, this is not usually the case in most real-world domains.

Consider two successive transitions ��

��,��
�⎯� ����

����,����
�⎯⎯⎯⎯⎯�. Due to the property of tem-

poral correlation between successive states, it is highly reasonable to expect that the dis-

tance ‖�(��) − �(��+1)‖ is very small. Therefore, applying Equation (21) to update

�(��, ��|�) will have an undesirable yet pronounced effect on �(��+1, ��+1|�). A similar ar-

gument holds for time sequences of actions as well.

To address the ill effects of temporal correlatedness, DNN training is carried out only

after the completion of an episode or multiple episodes, during which time the DQN agent

is allowed to exert control over the environment, while � remains unchanged. All train-

ing samples are stored in an experience replay buffer ℬ [75], which plays the role of a mini-

batch in DNN training. After enough training samples have been accumulated in ℬ, it is

shuffled randomly before incrementing �. The increment may be implemented either as

in Equation (21), or through minibatch gradient descent as indicated earlier in Equation

(3) with �(�, �|�) replacing �(�|�) (see Figure 4). For convenience, the update is shown

below,

� ← � − �
1

|ℬ|
���(�(�), �(�)|�) − �(�)�

�∈ℬ

∇��(�(�), �(�)|�) (22)

The buffer ℬ is flushed before the next cycle begins with the updated parameter �.

An improvement over this scheme is prioritized replay [76], where the probability of a

getting selected chosen for a training step is proportional to �� − �(�, �|�)�
�

+ �. The small

constant � > 0 is added to the squared loss term to ensure that all samples have non-zero

probabilities.

Target non-stationarity is another closely related problem that arises in DQNs, one that

is not seen in tabular Q-learning. For any given sample transition �(�)
�(�),�(�)
�⎯⎯⎯⎯⎯� ��(�) as

the DNN weight parameter � is incremented in accordance with Equation (21), an unde-

sirable effect is that the target �(�) also changes. This is because the target is determined

as �(�) = � + � max
��∈�

�(��, ��|�) and this DNN is used to obtain �(��(�), ��|�). Target non-

stationarity is handled by storing an older copy ������� of the primary DNN � in memory

and using this stored copy to compute the target �(�). Effectively, the RL algorithm main-

tains a separate target DNN parametrized by �������. Thus, the target is,

�(�|�������) = �(�) + � max
��∈�

�(��(�), ��|�������) (23)

The target DNN’s weight parameter is updated infrequently, and only after � un-

dergoes a significant amount of training. In this manner, the targets remain stationary

when training the primary DNN’s parameter � so that gradient descent steps can be im-

plemented in a straightforward manner using terms
�

�
��(�(�), �(�)|�) − �(�|�������)�

�
 in

the loss function �(�). This scheme is shown in Figure 5.

Energies 2022, 15, 6392 12 of 37

Figure 4. Replay Buffer. Shown are the replay buffer, environment, and agent. The pathways are

involved during the agent’s interaction with the environment (solid blue) and training (dashed red).

Figure 5. Use of Target Network. The scheme used to correct temporal correlatedness is shown.

Pathways for control (solid red), learning (dashed green), and intermittent copying (dashed, thick

blue) are shown. The replay buffer has been omitted for simplicity.

Overestimation bias [77,78] is another problem frequently encountered in stochastic

environments. This is an outcome of maximization. As an example, consider an MDP with

� = {�, �, �} where � is the terminal state. This is shown in Figure 6. The action space

� = {��|� = 1,2, . . . , �} where � is relatively large, is available to the agent. From state

�, only action �� leads to � whereas the remaining ones, �� through ����, lead to �.

The reward received from state � is always zero, (i.e., �(�, ��) = 0. From state � all ac-

tions lead to �, with the reward being either −3 or +1 and with equal probabilities of

���. In other words, the possible transitions are �
��,�
�⎯� �, �

����,�
�⎯⎯⎯� �, �

��,�∈{��,�}
�⎯⎯⎯⎯⎯⎯� �. Since

the rewards of −3 and 1 have the same probability when the environment transitions

from � to �, the expected reward from � to � is −1 i.e., �[�(�, ��, �)] = −1. For sim-

plicity, let us assume that � = 1. The Q-values for some actions would be updated to −3,

whereas those of others, to +1. Since � is large enough, it is very likely that at least one

of them, say �� has the higher of the two. Consider the Q-values of actions from state �.

It is clear that for � = 1 through � − 1, �(�, ��) = 0. However, when the agent selects

action �� from �, thereby reaching �, the operation max
�∈�

 �(�, �) is likely to return +1

Energies 2022, 15, 6392 13 of 37

so that �(�, ��) would be updated to �max
�∈�

 �(�, �) = �. This makes �� appear to be the

optimal action from state �, when in fact it is the worst choice in �.

Figure 6. Overestimation Bias. This example is used to illustrate the effect of overestimation bias

(see text for complete explanation).

Double Q-learning [79] is a popular approach to circumvent overestimation bias in off-

policy RL (see Figure 7). Although first proposed in a tabular setting [77], more recent

research implements double Q-learning in conjunction with DNNs, which is called the

double deep Q-network (DDQN). It incorporates two DNNs with the parameters �� and

�� . Samples are collected by implementing actions using their mean Q-values,
�

�
��(�, �|��) + �(�, �|��)� . For each sample transition �(�)

�(�),�(�)
�⎯⎯⎯⎯⎯� ��(�) in ℬ during

training, one of the two DNNs, say DNN � (� ∈ {1,2}), is picked randomly and with equal

probability to compute the target, and the other DNN, � ̅ is trained with it. Whence,

�

�(�) = �(�) + � max
��∈�

�(��(�), ��|��)

��̅ ← ��̅ − � ���(�(�), �(�)|��̅) − �(�)�

�∈ℬ

∇��� �(�(�), �(�)|��̅)
 (24)

Each DNN has a 0.5 probability of getting trained with the transition sample. This is

the manner of updating that was originally proposed in [77].

An extension of DDQN is clipped DDQN [80–82]. Instead of selecting the target ran-

domly, it is obtained as minimum of the Q-values, �(��(�), ��|��) and �(��(�), ��|��),

�(�) = �(�) + � min
�∈{�,�}

max
��∈�

�(��(�), ��|��) (25)

Dueling DQN architectures (Dueling-DQN) [83] use a different scheme to avoid over-

estimation bias (see Figure 8). It divides the state–action value �(�, �) into two parts, the

state value �(�) and the state–action advantage �(�, �) . As shown in Equation (13),

�(�, �) is the difference between the two quantities. The advantage of action � in state �,

�(�, �) is the expected gain in the return obtained by picking action �. The DNN layout

consists of an input layer for the state �. After a few initial preprocessing layers, it splits

into two separate pathways, each of which is a fully connected DNN. Letting the symbols

�� and �� denote the weight parameters of the pathways, the scalar output of the value

pathway is the state’s value, �(�|��) and the output of the advantage pathway is an |�|

dimensional vector comprising of the advantages �(�, �|��) of all available actions in �.

The Q-value of the state–action pair (�, �) can be obtained in a straightforward manner

as provided in the following equation,

�(�, �|�) = �(�|��) − |�|�� � �(�, ��|��)

��

 (26)

The quantity � denotes the set of all weight parameters of the dueling-DQN, includ-

ing �� and �� as well as those present in the earlier preprocessing layers.

Energies 2022, 15, 6392 14 of 37

Figure 7. Double DQN. One DQN (�� or ��) is picked at random and its Q value (�� or ��) is used

to obtain the target (�), which is used to train the other DQN. For simplicity only the pathways

involved in training are shown. The target pathways are depicted with dotted lines.

Figure 8. Dueling DQN. Shown is the dueling DQN architecture. The two outputs of the DNN are

parametrized by �� and ��. The target pathway (dotted green) is for training.

5. Policy-Based and Actor–Critic Reinforcement Learning

Like tabular Q-learning, tabular policy-based RL uses an array of Q-values. Initial-

ized with an arbitrary policy �, the tabular policy RL algorithm is an iterative process

comprising of two steps [70,84]. Policy evaluation is carried out in the first stage, where

Q-values ��(�, �) are learned as shown in Equation (18) and Equation (20). In the second

step, the policy is refined by defining the action for each state as shown in Equation (16).

The two-step process is repeated until the policy can be refined no further.

Gradient descent policy learning methods do not directly draw upon tabular policy

learning in the same way that value-based learning does. These methods are realized

through DNNs as the agents. An attractive feature of deep policy RL is its intrinsic ability

to handle continuous states as well as continuous actions.

5.1. Deep Policy Networks

Policy gradient uses an experience replay buffer ℬ is the same manner as a DQN.

The buffer stores full episodes of sequences. Instead of using Equation (6), it is convenient

to directly express the loss function in terms of episodes ℰ and the DNN’s weight param-

eter �, in the following manner,

�(�) = �ℰ~��
[�(ℰ)] (27)

Policy gradient methods try to maximize this loss. The operator �ℰ~��
[∙] is the ex-

pected with the DNN agent operating under the probabilistic policy ��. The initial state

�� in the above expression is implicitly defined in ℰ. Moreover, the distribution of ��

within � is in accordance with the underlying MDP. The quantity �(ℰ) is the total return

�� of episode ℰ starting from � = 0.

Note that for a transition �
�
→ ��, the reward �(�, �, ��) is a feedback signal that is de-

termined by the environment (such as a home or residential complex) which is external to

the agent. So is the discounted, aggregate return �(ℰ), which is also equal to that in

Energies 2022, 15, 6392 15 of 37

Equation (4). No function �: �� × �� → ℛ that maps a sequence of states and action of

time horizon � to a return is available to the agent. Consequently, a straightforward gra-

dient descent step in the direction of ∇��(ℰ) cannot be applied. In an apparent paradox,

it turns out that its expected value �ℰ~��
[�(ℰ)], can be differentiated by the agent, which

is also the rationale behind expressing the loss as in Equation (27). This is due to a math-

ematical result known as the policy gradient theorem [14,85,86]. The policy gradient theorem

establishes the theoretical foundation for the majority of deep policy gradient methods. It

can be stated mathematically as below,

∇��ℰ~��
[�(ℰ)] = �ℰ~��

[�(ℰ)∇� log �(ℰ|�)] (28)

The significance of the theorem is that the gradient of the expected return,

�ℰ~��
[�(ℰ)] does not require the gradient of the return �(ℰ). Only the log probability of

the episode ℰ must be differentiated. Fortunately, this gradient can readily be computed

by the DNN agent. The probability of a transition ��

��,��
�⎯� ���� in ℰ (see Equation (5)) is the

product ��(��|��)�(����, ��|��, ��); its logarithm is log ��(��|��) + log �(����, ��|��, ��). The

second term is intrinsic to the environment, and independent of the DNN so that differ-

entiating it with respect to � is zero. Since log �(ℰ|�) is the product

�(��) ∏ ��(��|��)�(����, ��|��, ��)� , we arrive at the following interesting result,

∇� log �(ℰ|�) =
1

�
� ∇� log ��(��|��)

�

 (29)

The left-hand side of Equation (28) to be estimated rather easily using the expression

in Equation (29). This is because the policy �� is, in fact, based on the DPN output.

Whereas [85] uses softmax policies as in Equation (10), it is quite usual in later research to

adopt Gaussian policies (cf. [14]). Since �� is the same policy that is used to obtain tran-

sition samples, Equation (28) pertains to on-policy learning.

The expected gradient �ℰ~��
[�(ℰ)∇� log �(ℰ|�)] can be estimated as the average of

several Monte Carlo samples of episodes (also called rollouts) ℰ(�), � = 1, . . . , � that are

stored in ℬ. This provides an estimate of the gradient of the loss function defined in Equa-

tion (27). An early policy gradient method, REINFORCE [73] uses Equation (29) to incre-

ment �. The REINFORCE on-policy update rule is expressed as,

� ← � + �
1

|ℬ|�
� ���ℰ(�)� − �� � ∇� log �����(�)|��(�)�

��∈ℬ,�

 (30)

In the above expression, it is assumed for simplicity that the time horizon is fixed

across all � samples. The quantity � is called the baseline [87]. It can be set to zero in the

basic implementation of policy learning. Figure 9 shows a schematic of this approach.

Unfortunately, when the bias � = 0, the variance in the set of samples of the form,

��ℰ(�)� ∑ ∇� log �����(�)|��(�)����
��� becomes too large. This in turn requires a very large

number of Monte Carlo episode samples to be collected. Including the baseline in Equa-

tion (30) that is close to �ℰ~��
[�(ℰ)] helps reduce the variance to tractable limits. The the-

oretical optimal baseline estimate is given by,

� =
�ℰ~��

[�(ℰ)(∇� log �(ℰ|�))�]

�ℰ~��
[(∇� log �(ℰ|�))�]

 (31)

There are ways to obtain reasonable baseline estimates in practice that reduce the

variance without affecting the bias [87,88]. The purpose of actor–critic architectures, which

will be described subsequently, are also designed to obtain reliable bias estimates. Before

proceeding further, we will make improvements to Equation (30) on the basis of the fol-

lowing two observations.

The first observation is that in Equation (30) the gradient ∑ ∇� log �����(�)|��(�)�

linked with ℰ(�) is weighted by ��ℰ(�)� − � in the outer summation. In this manner,

the episode ℰ(�) would receive a higher weight if it fetched a higher return. However,

Energies 2022, 15, 6392 16 of 37

the weighting scheme is rather arbitrary. For instance, with � = 0, if all returns were non-

negative, then all gradients would receive positive weights. On the other hand, suppose

the bias � were to be replaced with the expected return, then the gradients of the episodes

with lower-than-expected returns would receive negative weights, whereas those with

better-than-expected returns would be assigned positive weights. Using Equation (11), it

is observed that the bias � is also the value of the starting state �(��). Our first improve-

ment would be to replace the bias with a value function.

Figure 9. Policy Gradient with Baseline. Shown is the overall scheme used in REINFORCE with

the baseline. There are different ways to implement the baseline.

The second observation is subtler, requiring the scrutiny of the weighting scheme at

each time instant �. To simplify the discussion, it will be assumed that the discount � =

1. Consider the episode ℰ(�) consisting of transitions of the form ��(�)
��(�),��(�)
�⎯⎯⎯⎯⎯⎯� ����(�).

Ignoring � , the corresponding term in the inner summation, which is

∇� log �����(�)|��(�)�, is weighted by the return ��ℰ(�)� = ��(�) + ⋯ + ����(�) + ��(�) +

⋯ + ��(�). At time instant �, the prior rewards ��(�) until ����(�) represent the past his-

tory of the episode ℰ(�); it has no role in how good the action ��(�) was from state ��(�).

Removing these terms, the weight becomes ��(�) + ����(�) + ⋯ + ��(�), which is, in fact,

�(��(�), ��(�)|�). Replacing ��ℰ(�)� in Equation (30) with �(��(�), ��(�)|�) is the other

improvement. Once the prior history of the episode is removed, the bias must be set to

�(��(�)|�) instead of �(��).

From the above discussion, it is seen that each factor ��ℰ(�)� − � in Equation (30)

should be replaced with �(��(�), ��(�)|�) − �(��(�)|�). From Equation (13), this is the ad-

vantage function �(��(�), ��(�)|�), so that we replace the step original increment rule

with the following update rule,

� ← � + �
1

|ℬ|�
� �(��(�), ��(�)|�)∇� log �����(�)|��(�)�

�∈ℬ,�

 (32)

5.2. Natural Gradient Methods

One of the problems associated with policy gradient learning approaches as in Equa-

tion (30) or Equation (32) is choosing an adequate learning rate �. Too small a value of �

would necessitate a large training period, whereas a value that is too large would produce

a ‘jump’ in � large enough to yield a new policy that is too different from the previous

one. Although there are several reliable methods to address this effect in gradient descent

for supervised learning as in Equation (3), it is too pronounced in RL diminishing the

efficacies of such methods. In extreme cases, a seemingly small increment along the direc-

tion of the gradient may lead to irretrievable distortion of the policy itself. The underlying

reason behind this limitation is that unlike in Equation (1), the loss function in Equation

(25) incorporates a probability distribution.

The change in any policy whenever a perturbation is applied to the parameter should

not be quantified in terms of the norm �� − �����, but using the Kullback–Leibler diver-

gence between to the distributions �� and ����� [89]. The K-L divergence is denoted as

Energies 2022, 15, 6392 17 of 37

��� ���||�
�old� where the new and previous values of the parameter are � and ����. Fig-

ure 10 illustrates the relevance of the K-L divergence. The Hessian (2nd derivative) of

��� ���||�
�old� is known as the Fisher information matrix ��. The increment ∆� applied

to � should be in proportion to ��
��∇��ℰ~��

[�(ℰ)], which is referred to as the natural gra-

dient [90] of the expectation �ℰ~��
[�(ℰ)]. The Fisher information matrix can be estimated

as in [14],

�� ≈ ∇��ℰ~��
[�(ℰ)]�∇��ℰ~��

[�(ℰ)] (33)

Figure 10. K-L Divergence. Two Gaussian distributions (solid, blue) with low variance � (left) and

high variance � (right) are shown, and θ = [�, �]. Incrementing � by ∆� (dashed green) results in

equal change in the norm ‖∆�‖� whereas ���(��||���∆�) is higher in the distribution appearing to

the left. The smaller distance in the right is due to the greater overlapping region shown on top.

Recent policy gradient algorithms use concepts derived from natural gradients [14]

to rectify the downside of ‘vanilla’ gradient descent to eliminate the use of an effective

learning rate �. The use of the natural gradient greatly reduces the natural gradient algo-

rithm’s dependence on how the policy is parametrized. Unfortunately, the gains of using

the natural gradient come at the cost of increased computational overheads associated

with matrix inversion. The overheads may outweigh the gains when the Fisher matrix ��

is very large. When the policy is represented effectively through the parameter �, natural

gradient training may not provide enough speed-up over vanilla gradient descent.

Trust region policy optimization (TRPO) is a class of training algorithms that directly

uses the Kullback–Leibler divergence [91]. In TRPO, a hard upper bound is imposed on

the divergence produced due to the increment ∆� is applied to the DNN weights �. De-

noting this bound as �,

������||������ ≤ � (34)

Under these circumstances it can be shown that the increment in TRPO is,

� ← � + �
2�

∇��ℰ~��
[�(ℰ)]���

��∇��ℰ~��
[�(ℰ)]

�

�
�

��
��∇��ℰ~��

[�(ℰ)] (35)

The expectation ∇��ℰ~��
[�(ℰ)] can be estimated in the same manner as in Equation

(30) or Equation (32).

Proximal policy optimization (PPO) [92] is another RL method that uses natural gradi-

ents. PPO replaces the bound in TRPO with a penalty term. An expression for the PPO’s

objective function for a single episode is as shown below,

�(�) =
1

�
�

��(��|��)

�����(��|��)
�(��, ��|�) − �������||������

 �

 (36)

large small

overlap

Energies 2022, 15, 6392 18 of 37

5.3. Off-Policy Methods

Only on-policy algorithms have been discussed so far in this section, including TRPO

and PPO. Nevertheless, policy gradient can also be applied for off-policy learning. Since

such an algorithm would be trained for the optimal policy, the samples in the replay buffer

(that are collected using earlier policies) can be recycled multiple times. This feature is a

significant advantage of off-policy learning.

Policy gradient methods for off-policy learning can be implemented using im-

portance sampling. Let �(�) be any function of the random variable �, which follows

some distribution �(�). Importance sampling can be used to estimate the expectation

��~�[�(�)] as follows. Samples � are drawn from a more tractable distribution �(�). Us-

ing �(�)���(�) as the weight for each sampled value of � , the weighted expectation

��~�[�(�)���(�)�(�)] is computed from several such samples. This serves as the esti-

mated value i.e., ��~�(�)[�(�)] ≈ ��~�[�(�)���(�)�(�)].

This approach is adopted in off-policy RL. Suppose samples in the replay buffer are

based on the policy ��. The gradient can be empirically estimated using some action dis-

tribution �~�(�) as,

∇��(�) = ��~� �
��(�)

�(�)
�(�, �|�)� (37)

5.4. Actor–Critic Networks

Actor–critic methods combine policy gradient and value-based RL methods [93]. The

actor–critic architecture consists of two learning agents, the actor and the critic (see Figure

11). From any environmental state, the actor is trained using policy gradient to respond

with an action. The critic is trained with a value-based RL method to evaluate the effec-

tiveness of the actor’s output, which is then used to train the latter.

Let us denote the actor’s and the critic’s parameters with the symbols �� and ��.

The critic network can be modeled as a DQN, although it is trained with the advantage

function as defined in Equation (13). When the environmental state is ��(�), for every ac-

tion ��(�) the critic network provides as its output, the value of the state–action pair

�(��(�), ��(�)|��). The actor is incremented using gradient ascent,

�� ← �� + ��
1

�
� �(��(�), ��(�)|��)∇�� log ���(��(�)|��(�); ��)

�

 (38)

Equation (38) shown above closely resembles the policy gradient increment in Equa-

tion (30) (with � = 0). The only difference is that the critic is used in order to compute the

gradient’s weight �(��(�), ��(�)|��).

The update rule for the critic network, which is similar to Equation (22), is shown

below,

�� ← �� − ��
1

�
���(��, ��|��) − (�� + �(����, ����|��)�∇���(��, ��|��)

�

 (39)

The advantage actor–critic (A2C) algorithm [94] is very effective in reducing the vari-

ance in the policy gradient algorithm of the actor. The A2C architecture entails a two-fold

improvement over the ‘vanilla’ actor–critic method, which are outlined below.

(i) The actor network uses an advantage function �(��, ��) , which is the difference

between a return value � and the value of state �(��|��). Accordingly, the critic is

trained to approximate the value function.

(ii) The reward � is computed using a �-step lookahead feature, where the log-gradient

is weighted using the sum of the next � rewards.

To better understand how the �-step lookahead works, let us turn our attention to

Equation (30). In this expression the gradient ∇� log ��(��|��) at time instant � is

Energies 2022, 15, 6392 19 of 37

weighted by the factor (�(ℰ) − �) where �(ℰ) is the return of an entire episode from

� = 0 until � − 1, so that �(ℰ) = �� + ��� + ⋯ ���� + ⋯ �������� + ⋯ ��������. The base-

line is � is the value of �(��|��). It is reasoned that the sum of the past rewards �� + ��� +

⋯ �������� does not have any bearing on the quality of the action �� taken at the instant

�. Hence all past rewards are dropped from �. Furthermore, rewards received in the dis-

tant future, i.e., after � instants are also dropped. In other words, � consists of the sum

of the discounted rewards between the instant � and the instant � + �. Whereupon, the

actor’s update rule is expressed as,

�� ← �� + ��
1

�
� ∇�� log ���(��|��) �� �����

�

����

− �(��|��)�

���

���

 (40)

The critic is updated using the same return �, in accordance with the expression

shown below,

�� ← �� − ��
1

�|ℬ|
� ��(��|��) − � �����

�

����

� ∇���(��|��)

���

���

 (41)

Figure 11. Actor–Critic Network. Shown is the overall schematic used in actor–critic learning, com-

prising of an actor DNN and a critic DNN.

The asynchronous advantage actor–critic (A3C) method [94] is an extension of A2C that

can be applied in parallel processing environments. A global network and a set of ‘work-

ers’ are maintained in A3C. Each worker receives the actor and critic parameters that it

implements on its own independent environment and collecting reward signals. The re-

wards are then used to determine increments ∆�� and ∆��, which are then used to asyn-

chronously update the parameters in the global network. An advantage of A3C is that due

to the parallel action of multiple workers, an experience replay buffer does not have to be

incorporated.

The deterministic policy gradient (DPG) algorithm was described in [85], and more re-

cently in SLH+14]. It was later extended to a deep framework in [95], known as the deep

deterministic policy gradient (DDPG). DDPG is an off-policy actor–critic method that con-

currently learns the optimal Q-function �∗, as well as the optimal policy �∗.

In any off-policy actor–critic model, the critic must be trained to output the optimal

policy �∗ . Hence, the term �(����, ����) in Equation (39) should be replaced with the

maximum over all actions �(����, �∗), where the optimal action �∗ = argmax
�∈�

�(����, �) as

in Equation (19). Unfortunately, when the action space � is continuous (|�| = ∞) an ex-

haustive search to find �∗ is impossible. Moreover, in a majority of applications, using

numerical optimization to obtain �∗ is computationally too intensive to be used within

the training algorithm.

Energies 2022, 15, 6392 20 of 37

In order to circumvent these difficulties in identifying the optimal action that max-

imizes the Q-value, there are three options available for use. These are outlined below.

(i) �(����, �) can be sampled for several different actions and �∗ be assigned the action

corresponding to the sample maximum [96].

(ii) A convex approximation of �(�, �) around ���� can be devised and �∗ obtained

over the approximate function [97].

(iii) A separate off-policy policy network can be used to learn the optimal policy �∗ [98].

Out of the above three available options discussed above, the third and last has been

adopted in DDPG. The critic parameter �� is updated in accordance with the expression

shown below,

�� ← �� − ��
1

�|ℬ|
� ��� + �(����(�), ����(�)|��) − ����(�), �(��(�)|��)�� ∇���(��(�), ��(�)|��)

�∈ℬ,�

(42)

In Equation (42), �(��(�)|��) is the output of DDPG’s actor. DDPG uses a replay

buffer ℬ that includes samples from older policies. The actor’s parameter �� is trained

using any off-policy policy gradient as in Equation (37).

One of the drawbacks of DDPG is the problem of overestimation [99]. Suppose dur-

ing the course of training, the function �(�, �|��) acquires a sharp local peak. Under these

circumstances, further training would converge towards this local optimum, leading to

undesirable results. This issue has been tackled by twin delayed deterministic policy gradient

(TD3) in [80]. TD3 maintains a pair of critics whose parameters we shall denote as ���

and ���, or more concisely as ���, where � ∈ {1,2}.

In Equation (42), it can be seen that DDPG has a target �� + �(����(�), ����(�)|��)

where �(����(�), ����(�)|��) is obtained from the critic. TD3 has two targets,

�(����(�), ����(�)|���), � ∈ {1,2}. The actions ����(�) in TD3 are clipped to lie within the

interval [����, ����]. In order to increase exploration, Gaussian noise is added to this ac-

tion. Finally, the target is obtained as �� + min
�∈{�,�}.

�(����(�), ����(�)|���), which is used for

training.

The soft actor–critic (SAC) RL proposed recently in [81,100] is an off-policy RL ap-

proach. The striking feature of SAC is the presence of an entropy term in the objective

function,

�(�) = ���
[�� + ��(��|��)] (43)

Incorporating the entropy �(��|��) in Equation (43) increases the degree of random-

ness in the policy which helps in exploration. As with TD3, SAC uses two critic networks.

6. Use of Reinforcement Learning in Home Energy Management Systems

This section addresses aspects of the survey on the use of RL approaches for various

HEMS applications. All articles in this survey have been published in established technical

journals that were published or made available online within the past five years.

6.1. Application Classes

In this study, all applications were divided into five classes as in Figure 12 below.

(i) Heating, Ventilation and Air Conditioning, Fans and Water Heaters: Heating, ventilation,

and air conditioning (HVAC) systems alone are responsible for about half of the total

electricity consumption [48,101–104]. In this survey, HVAC, fans and water heaters

(WH) have been placed under a single category. Effective control of these loads is a

major research topic in HEMS.

(ii) Electric Vehicles, Energy Storage, and Renewable Generation: The charging of electric ve-

hicles (EVs) and energy storage (ES) devices, i.e., batteries are studied in the literature

as in [105,106]. Wherever applicable, EV and ES must be charged in coordination with

renewable generation (RG) such as solar panels and wind turbines. The aim is to

Energies 2022, 15, 6392 21 of 37

make decisions in order to save energy costs, while addressing comfort and other

consumer requirements. Thus, EV, ES, and RG have been placed under a single class

for the purpose of this survey.

(iii) Other Loads: Suitable scheduling of several home appliances such as dishwasher,

washing machine, etc., can be achieved through HEMS to save energy usage or cost.

Lighting schedules are important in buildings with large occupancy. These loads

have been lumped into a single class.

(iv) Demand Response: With the rapid proliferation of green energies into homes and

buildings, and these sources merged into the grid, demand response (DR) has ac-

quired much research significance in HEMS. DR programs help in load balancing, by

scheduling and/or controlling shiftable loads and in incentivizing participants

[107,108] to do so through HEMS. RL for DR is one of the classes in this survey.

(v) Peer-to-Peer Trading: Home energy management has been used to maximize the profit

for the prosumers by trading the electricity with each other directly in peer-to-peer

(P2P) trading or indirectly through a third party as in [109]. Currently, theoretical

research on automated trading is receiving significant attention. P2P trading is the

fifth and final application category to have been considered in this survey.

Figure 12. HEMS Applications. All applications of reinforcement learning in home energy manage-

ment systems are classified into the five categories shown.

Each application class is associated with an objective function and a building type

that are discussed in subsequent paragraphs. The schematic in Figure 13 shows all links

that have been covered by the articles in this survey.

Figure 14 shows the number of research articles that applied RL to each class. Note

that a significant proportion of these papers addressed more than one class. More than

third of the papers we reviewed focused only on HVAC, fans and water heaters. Just

above 10% of the papers studied RL control for the energy storage (ES) systems. Only 7%

of the papers focused on the energy trading. However, most of the papers (46%) are tar-

geting more than one object. These results are shown in Figure 14.

Energies 2022, 15, 6392 22 of 37

Figure 13. Building Types and Objectives. The building type and the RL’s objective of each appli-

cation class. Note that the links are based on the existing literature covered in the survey. The ab-

sence of a link does not necessarily imply that the building type/objective cannot be used for the

application class.

Figure 14. Application Classes. The total number of articles in each application class (left), as well

as their corresponding proportions (right).

6.2. Objectives and Building Types

Within these HEMS applications, RL has been applied in several ways. It has been

used to reduce energy consumption within residential units and buildings [110]. It has

also been used to achieve a higher comfort level for the occupants [111]. In operations at

the interface between the residential units and the energy grid, RL has been applied to

maximize prosumers profit in energy trading as well as for load balancing.

For this purpose, we break down the objectives into three different types as listed

below.

(i) Energy Cost: The cost of using any electrical device by the consumer and in most of

the cases it is proportionally related to its energy consumption. In this paper we use

the terms ‘cost’ and ‘consumption’ interchangeably.

(ii) Occupant Comfort: the main factor that can affect the occupant’s comfort is the thermal

comfort, which depends mainly on the room temperature and humidity.

(iii) Load Balance: Power supply companies try to achieve load balance by reducing the

power consumption of consumers at peak periods to match the station power supply.

The consumers are motivated to participate in such programs by price incentives.

Figure 13 illustrates the RL objectives that were used in each application class.

Next, all buildings and complexes were categorized into the following three types.

(i) Residential: for the purpose of this survey, individual homes, residential communi-

ties, as well as apartment complexes fall under this type of building.

(ii) Commercial: these buildings include offices, office complexes, shops, malls, hotels, as

well as industrial buildings.

Energies 2022, 15, 6392 23 of 37

(iii) Academic: academic buildings range from schools, university classrooms, buildings,

research laboratories, up to entire campuses.

The research literature in this survey revealed that for residential buildings, RL was

applied in all five application classes. However, in case of commercial and academic

buildings, RL was typically applied to the first three categories, i.e., to HVAC, fans and

WH, to EVs, ESs and RGs, as well as to other loads. This is shown in Figure 13.

Figure 15 illustrates the outcome of this survey. It may be noted that in the largest

proportion of articles (42%) the RL algorithm took into account both cost and comfort.

About 27% of all articles addressed cost as the only objective, thereby defining the second

largest proportion.

Figure 15. Objectives and Building Types. Proportions of articles in each objective (left) and build-

ing type (right).

6.3. Deployment, Multi-Agents, and Discretization

The proportion of research articles where RL was actually deployed in the real world

was studied. It was found that only 12% of research articles report results where RL was

used with real HEMS. The results are consistent with an earlier survey [49] where this

proportion was 11%. The results are shown in Figure 16.

Figure 16. Real-World, Multi-Agents, and Discretization. Proportions of articles deployed in real

world HEMS (left), using multi-agents (middle), and whether the states/actions are discrete or con-

tinuous (right).

7. Reinforcement Learning Algorithms in Home Energy Management Systems

This section focuses on how the RL and DRL algorithms described in earlier sections

were used in HEMS applications. The references have been categorized in terms of the

application class, objective function, and building type, that were described in the imme-

diately preceding section. Table 1 provides a list of references that used tabular RL meth-

ods. About 28% of articles used tabular methods.

Energies 2022, 15, 6392 24 of 37

In a similar manner, Table 2 considers references that used DQN. Most algorithms in

the survey used DQN. However, DDQN was also popular in the HEMS research commu-

nity. The survey found that dueling-DQN was applied in only one article. Table 3 catego-

rizes references in the survey that used deep policy learning. PPO and TRPO are the only

approaches that have been used so far in HEMS.

The survey also indicates that actor–critic was the preferred approach in comparison

with deep policy learning. Table 4 provides a list of references that applied actor–critic

learning, which constituted 53% of all deep learning methods. It shows that PPO is more

popular than TRPO. We believe that this observation is due to the closer recency of the

latter algorithm. References that used either a combination of two or more approaches, or

any other approach not commonly used in RL literature, are shown in Table 5.

Table 1. References using Tabular Reinforcement Learning.

Reference Application Objective Building Type Algorithm

[112]

HVAC, Fans,

WH

Cost
Residential

Q-Learning

[113] Cost and Comfort

[114,115] Other Academic

[116] Comfort

Mixed/NA [117] Other

[109,118]
P2P Trading

Cost
[119,120]

Residential
[121]

EV, ES, and RG [122,123] Mixed/NA

[124] Other Residential

[125,126]

Other/Mixed

Cost and Comfort

Commercial

[127] Academic

[107,128–132]

Residential [133] Other

[134,135]
Cost

[136]

Mixed/NA

[137] Cost and Comfort

[138,139]
Cost and Load Bal-

ance

[140] Other

[141] P2P Trading Cost Distributed RL

[142–144]

HVAC, Fans,

WH

Cost and Comfort Residential Other (FQI)

[145] Comfort Commercial
Q-Learn. and

SARSA

[146] Cost and Comfort

Residential

SARSA

[147]

Other/Mixed

Cost and Load Bal-

ance Policy Learning

[148] Other

[149] Cost and Comfort Commercial Model Based RL

[150] HVAC, Fans,

WH

Cost Residential Other (CARLA)

[151] Cost and Comfort Commercial Other (Context. RL)

Energies 2022, 15, 6392 25 of 37

Table 2. References using Deep Q Networks.

Reference Application Objective Building Type Algorithm

[152,153]

Other/Mixed

Cost

Residential

DQN

[154]
Cost and Load Bal-

ance

[105]

EV, ES, and RG

Cost

[155] Other

[156] Cost and Comfort

[157] HVAC, Fans, WH
Cost

[158]
Other/Mixed Commercial

[159]
Cost and Comfort

[160,161] HVAC, Fans, WH
Mixed/NA

[162,163] Other/Mixed Cost

[164–166]

HVAC, Fans, WH
Cost and Comfort

Residential

DDQN

[167] Academic

[168] Comfort Commercial

[169]
Other/Mixed

Cost and Load Bal-

ance

Residential [106] Cost and Comfort Dueling-DQN

[170] HVAC, Fans, WH Cost
Other (FQI-LSTM,

FQI-CNN)

Table 3. References using Deep Policy Networks.

Reference Application Objective Building Type Algorithm

[171]
HVAC, Fans, WH Cost and Comfort

Academic

PPO

[172] Commercial

[173] P2P Trading
Other

Mixed/NA [174] EV, ES, and RG

[175]
Other/Mixed

Cost

[176] Cost and Comfort Residential TRPO

Table 4. References using Actor–Critic Networks.

Reference Application Objective Building Type Algorithm

[177,178] HVAC, Fans, WH

Cost and Comfort

Residential

DDPG

[61,179–

181]

Other/Mixed
[182,183]

Cost and Load Bal-

ance

[184]
Cost

[185] EV, ES, and RG

[186]
Other/Mixed

Cost and Comfort
Academic

[187]
Other

[188,189] EV, ES, and RG Commercial

[190–192] HVAC, Fans, WH Cost and Comfort
Mixed/NA

[193–195] EV, ES, and RG Other

[196,197] Other/Mixed
Cost and Load Bal-

ance
Residential

SAC

[198,199] HVAC, Fans, WH Cost Commercial

Energies 2022, 15, 6392 26 of 37

[103,200–

202]
Cost and Comfort

[203]
Other/Mixed

[204] Academic

[205–207]
HVAC, Fans, WH

Cost and Load Bal-

ance Mixed/NA

[208–210]
Cost and Comfort

[211] Other/Mixed Residential A2C

[212] HVAC, Fans, WH

Cost

Commercial A3C

[213] P2P Trading

Mixed/NA
TD3

[214]
HVAC, Fans, WH

[215]
Cost and Comfort

[216] Other/Mixed Residential

Table 5. References using Combination of Methods and/or Miscellaneous Methods.

Reference Application Objective Building Type Algorithm

[60]

Other/Mixed
Cost and Comfort

Residential

DQN, DDPG

[217] DQN, DDQN

[218]
Cost and Load Bal-

ance

DQN, DPG

[219] P2P Trading
Other (Model-

Based DRL)

[220]

HVAC, Fans, WH
Cost and Comfort

Academic
SAC, TD3, TRPO,

PPO

[221]
Mixed/NA

Other (Clustering

DRL)

[222]

EV, ES, and RG

PPO, TD3

[223]
Cost and Load Bal-

ance
Commercial

DDPG, DDQN,

DQN

8. Conclusions

This article surveys how effectively RL has been leveraged for various HEMS appli-

cations. The survey reveals the following:

(i) Although 66% of all articles used deep RL, many articles used tabular learning. This

may indicate that only simplified application were considered.

(ii) Around 53% of all articles used discrete states and actions. This is another indication

that the HEMS scenarios may have been simplified.

(iii) Around 12% of all approaches covered in this survey were deployed in the real

world, their use being limited to simulation platforms only.

These observations strongly suggest that the use of RL in HEMS application is at a

research stage and is yet to gain maturity. More in-depth investigation is necessary, par-

ticularly on RL algorithms that use DNN agents. Nonetheless, it was seen that 36% of all

articles made use of multiagent schemes, which is an encouraging sign.

The only truly viable alternative is to use nonlinear control, more specifically model

predictive control (MPC) [224]. MPC is widely used in various engineering applications

(cf. [225]). The benefit of MPC is in the explicit manner by which it handles physical con-

straints. At each iteration, MPC considers a receding time horizon into the future, and

applies a constrained optimization algorithm to determine the best control actions. How-

ever, in most cases, MPC uses linear or quadratic objective functions. This is a basic limi-

tation that must be taken into account before applying MPC to large-scale problems and

is in sharp contrast to RL that does not place any restriction on the reward signal.

Energies 2022, 15, 6392 27 of 37

Moreover, MPC is a model-based approach, whereas an overwhelming majority of refer-

ences in this survey used model-free RL methods ([149] being the sole exception).

There is a diverse array of algorithms available in the RL literature. Since tabular

methods require discrete states and actions, and furthermore, that these spaces have low

cardinalities, they may not be much use for most HEMS applications. Not surprisingly,

this survey shows that tabular methods have been used less frequently than DNN meth-

ods. In future, as the HEMS community investigates increasingly complex HEMS do-

mains, tabular methods would become even less likely to be used. Consequently, the

choice of algorithm would usually be confined to DNN methods.

Out of the DNN methods, it must be noted that DQN and its derivatives can only be

used in applications only when the action space is finite and small, such as in controlling

OFF–ON switches. The survey reveals that actor–critic methods, which include Q-learn-

ing and policy learning, are the most popular in HEMS applications. Another deciding

factor is whether to use policy-free or policy-based RL. On-policy learning may be used is

applications where abandoning the policy in the initial stages may occasionally very neg-

atively impact the environment. Thus, they may be used if the environment does not re-

quire too much exploration. On the other hand, off-policy RL can discover more novel

policies.

Unlike in the unsupervised and supervised learning where simple performance met-

rics are readily available, performance evaluation in RL is an open problem [226]. The

steadily increasing reward with iteration is the best means for any real application. The

authors suggest that the following four criteria should be considered.

(i) Saturation reward (��): the expected reward must be relatively high at saturation.

(ii) Variance at saturation (��): the reward must not have excessive variance at saturation.

(iii) Exploitation risk (����): The minimum possible reward must not be so low that the

environment is adversely affected. This is the risk associated with exploration and

tends to occur during the initial exploratory stages of the RL training.

(iv) Convergence rate (�): the number of iterations before the reward starts to saturate

should not be large.

Figure 17 shows how to graphically interpret ��, ��, ����, �.

Figure 17. Proposed Performance Metrics. The four metrics across multiple runs for performance

evaluation of an RL algorithm that have been suggested by the authors for HEMS and other practical

applications. A typical trajectory obtained from a single run (dashed red), the average of multiple

runs (solid green), and the variance (shaded light green) are shown. The quantity ���� is the mini-

mum attained from all runs.

Since the articles in this survey have always used some HEMS simulation platform,

it is assumed that the RL algorithm can be run at least a few times. The above four perfor-

mance metrics (��, ��, ����, �) proposed by the authors can be empirically estimated

(slope)

(learning iteration)

(r
ew

ar
d

)

Energies 2022, 15, 6392 28 of 37

using Monte Carlo samples of such runs. Suppose the sequence of rewards obtained from

the �th run is ���
� , ��

� , … , ��
� , … , ���

���
� �. Each ��

� is some reward and � represents an iter-

ation of the RL algorithm. The precise meanings of the terms (reward and iteration) are

entirely dependent on the specific HEMS application, how the reward function is imple-

mented, whether a replay buffer is used, and the RL algorithm.

A reward ��
� may be the either an aggregate return value, the instantaneous reward

at the time horizon �, or the reward at last parameter update, etc. Likewise, the iteration

index � may be an instantaneous time step � (� ≤ �), Alternately, � may refer to the

number of times the training algorithm adjusts the model parameter �, or flushes the re-

play buffer, etc. The exact meanings of the terms are left to the reader. However it must

be remembered that at the beginning of each run, all relevant model parameters should

be reinitialized, that at the end of each run after ��
��� iterations (subscripted since ��

���

may vary with run), the RL training algorithm converges to a different final model pa-

rameter, and that ���
���

� truly reflects the quality of the model. Moreover, it must be en-

sured that the algorithm terminates after ��
� attains saturation—i.e., there is no percepti-

ble gain from more iterations.

If the runs are indexed � = 1,2, … , |ℐ| where ℐ is the set of runs, the suggested per-

formance metrics can be estimated as,

�� ≈
1

|ℐ|
� ���

���
�

�∈ℐ

 (44)

�� ≈
1

|ℐ| − 1
� ����

���
� − ����

�

�∈ℐ

 (45)

���� ≈ min
�∈ℐ

min
�

��
� �or, ���� ≈ min

�∈ℐ
��

� � (46)

� ≈
1

|ℐ|
�

��
� − ���

���
�

��
���

�∈ℐ

 (47)

In Equation (46), it is assumed that ��� is the estimated average value of ��, deter-

mined in accordance with Equation (45). In some situations, it may be computationally

too expensive to obtain multiple runs. In such cases, as well as when the RL is imple-

mented on a real HEMS environment, ℐ may be a singleton set (|ℐ| = 1). In this case, ��

in Equation (46) is meaningless. An alternate metric may be used by using the last few

iterations before termination.

Author Contributions: Conceptualization, S.D.; methodology, S.D. and O.A.-A.; software, O.A.-A.

and S.D.; validation, S.D. and O.A.-A.; formal analysis, O.A.-A. and S.D.; investigation, S.D.; re-

sources, S.D.; data curation, O.A.-A.; writing—original draft preparation, S.D.; writing—review and

editing, S.D. and O.A.-A.; visualization, O.A.-A. and S.D.; supervision, S.D.; project administration,

S.D.; funding acquisition, N/A. All authors have read and agreed to the published version of the

manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Energies 2022, 15, 6392 29 of 37

References

1. U.S. Energy Information Administration. Electricity explained: use of electricity. 14 May 2021. Available online:

www.eia.gov/energyexplained/electricity/use-of-electricity.php (accessed on 10 April 2022).

2. Center for Sustainable Systems. U.S. Energy System Factsheet. Pub. No. CSS03-11; Center for Sustainable Systems, University of

Michigan: Ann Arbor, MI, USA, 2021. Available online: css.umich.edu/factsheets/us-energy-system-factsheet (accessed on 10

April 2022).

3. Shakeri, M.; Shayestegan, M.; Abunima, H.; Reza, S.S.; Akhtaruzzaman, M.; Alamoud, A.; Sopian, K.; Amin, N. An intelligent

system architecture in home energy management systems (HEMS) for efficient demand response in smart grid. Energy Build.

2017, 138, 154–164. https://doi.org/10.1016/j.enbuild.2016.12.026.

4. Leitão, J.; Gil, P.; Ribeiro, B.; Cardoso, A. A survey on home energy management. IEEE Access 2020, 8, 5699–5722.

5. Shareef, H.; Ahmed, M.S.; Mohamed, A.; Al Hassan, E. Review on Home Energy Management System Considering Demand

Responses, Smart Technologies, and Intelligent Controllers. IEEE Access 2018, 6, 24498–24509. https://doi.org/10.1109/AC-

CESS.2018.2831917.

6. Mahapatra, B.; Nayyar, A. Home energy management system (HEMS): Concept, architecture, infrastructure, challenges and

energy management schemes. Energy Syst. 2019, 13, 643–669. https://doi.org/10.1007/s12667-019-00364-w.

7. Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625.

8. Zafar, U.; Bayhan, S.; Sanfilippo, A. Home energy management system concepts, configurations, and technologies for the smart

grid. IEEE Access 2020, 8, 119271–119286. https://doi.org/10.1109/ACCESS.2020.3005244.

9. Alanne, K.; Sierla, S. An overview of machine learning applications for smart buildings. Sustain. Cities Soc. 2022, 76, 103445.

https://doi.org/10.1016/j.scs.2021.103445.

10. Aguilar, J.; Garces-Jimenez, A.; R-Moreno, M.D.; García, R. A systematic literature review on the use of artificial intelligence in

energy self-management in smart buildings. Renew. Sustain. Energy Rev. 2021, 151, 111530.

https://doi.org/10.1016/j.rser.2021.111530.

11. Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial intelligence based anomaly detection of energy con-

sumption in buildings: A review, current trends and new perspectives. Appl. Energy 2021, 287, 116601.

https://doi.org/10.1016/j.apenergy.2021.116601.

12. Barto, A.G.; Sutton, R.S.; Anderson, C.W. Neuronlike elements that can solve difficult learning control problems. IEEE Trans.

Syst. Man Cybern. 1983, 13, 835–846.

13. Tesauro, G. TD-Gammon, a self-teaching backgammon program, achieves master-level play. Neural Comput. 1994, 6, 215–219.

14. Peters, J.; Schaal, S. Reinforcement learning of motor skills with policy gradients. Neural Netw. 2008, 21, 682–697.

15. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Os-

trovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533.

16. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Pan-

neershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–

489.

17. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al.

Mastering the game of Go without human knowledge. Nature 2017, 550, 354–359.

18. Arulkumaran, K.; Deisenroth, M.P.; Brundage, M.; Bharath, A.A. A brief survey of deep reinforcement learning. IEEE Signal

Processing Mag. 2017, 34, 26–38.

19. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. Found.

Trends Mach. Learn. 2018, 11, 219–354. https://doi.org/10.1561/2200000071.

20. Silver, D.; Singh, S.; Precup, D.; Sutton, R.S. Reward is enough. Artif. Intell. 299, 2021, 299, 103535.

21. Goertzel, B. Artificial General Intelligence; Pennachin, C., Eds.; Springer: New York, NY, USA, 2007; Volume 2.

22. Zhang, T.; Mo, H. Reinforcement learning for robot research: A comprehensive review and open issues. Int. J. Adv. Robot. Syst.

2021, 18, 17298814211007305.

23. Bhagat, S.; Banerjee, H.; Tse, Z.T.H.; Ren, H. Deep reinforcement learning for soft, flexible robots: Brief review with impending

challenges. Robotics 2019, 8, 4.

24. Lee, C.; An, D. AI-Based Posture Control Algorithm for a 7-DOF Robot Manipulator. Machines 2022, 10, 651.

https://doi.org/10.3390/machines10080651.

25. Shakhatreh, H.; Sawalmeh, A.H.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.; Guizani, M. Un-

manned Aerial Vehicles (UAVs): A survey on civil applications and key research challenges. IEEE Access 2019, 7, 48572–48634.

https://doi.org/10.1109/ACCESS.2019.2909530.

26. Zeng, F.; Wang, C.; Ge, S.S. A survey on visual navigation for artificial agents with deep reinforcement learning. IEEE Access

2020, 8, 135426–135442. https://doi.org/10.1109/ACCESS.2020.3011438.

27. Sun, H.; Zhang, W.; Yu, R.; Zhang, Y. Motion planning for mobile robots-focusing on deep reinforcement learning: A systematic

review. IEEE Access 2021, 9, 69061–69081. https://doi.org/10.1109/ACCESS.2021.3076530.

28. Luong, N.C.; Hoang, D.T.; Gong, S.; Niyato, D.; Wang, P.; Liang, Y.-C.; Kim, D.I. Applications of deep reinforcement learning

in communications and networking: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 3133–3174.

https://doi.org/10.1109/COMST.2019.2916583.

Energies 2022, 15, 6392 30 of 37

29. Zhang, G.; Li, Y.; Niu, Y.; Zhou, Q. Anti-jamming path selection method in a wireless communication network based on Dyna-

Q. Electronics 2022, 11, 2397. https://doi.org/10.3390/electronics11152397.

30. Zhang, Y.; Zhu, J.; Wang, H.; Shen, X.; Wang, B.; Dong, Y. Deep reinforcement learning-based adaptive modulation for under-

water acoustic communication with outdated channel state information. Remote Sens. 2022, 14, 3947.

https://doi.org/10.3390/rs14163947.

31. Ullah, Z.; Al-Turjman, F.; Mostarda, L. Cognition in UAV-aided 5G and beyond communications: A survey. IEEE Trans. Cogn.

Commun. Netw. 2020, 6, 872–891. https://doi.org/10.1109/TCCN.2020.2968311.

32. Nguyen, T.T.; Reddi, V.J. Deep reinforcement learning for cyber security. arXiv 2019, arXiv:1906.05799.

33. Alavizadeh, H.; Alavizadeh, H.; Jang-Jaccard, J. Deep Q-Learning Based Reinforcement Learning Approach for Network Intru-

sion Detection. Computers 2022, 11, 41. https://doi.org/10.3390/computers11030041.

34. Jin, Z.; Zhang, S.; Hu, Y.; Zhang, Y.; Sun, C. Security state estimation for cyber-physical systems against DoS attacks via rein-

forcement learning and game theory. Actuators 2022, 11, 192. https://doi.org/10.3390/act11070192.

35. Zhu, H.; Cao, Y.; Wang, W.; Jiang, T.; Jin, S. Deep reinforcement learning for mobile edge caching: Review, new features, and

open issues. IEEE Netw. 2018, 32, 50–57. https://doi.org/10.1109/MNET.2018.1800109.

36. Liu, Y.; Wu, F.; Lyu, C.; Li, S.; Ye, J.; Qu, X. Deep dispatching: A deep reinforcement learning approach for vehicle dispatching

on online ride-hailing platform. Transp. Res. Part E Logist. Transp. Rev. 2022, 161, 102694.

37. Liu, S.; See, K.C.; Ngiam, K.Y.; Celi, L.A.; Sun, X.; Feng, M. Reinforcement learning for clinical decision support in critical care:

comprehensive review. J. Med. Internet Res. 2020, 22, e18477.

38. Elavarasan, D.; Vincent, P.M.D. Crop yield prediction using deep reinforcement learning model for sustainable agrarian appli-

cations. IEEE Access 2020, 8, 86886–86901. https://doi.org/10.1109/ACCESS.2020.2992480.

39. Garnier, P.; Viquerat, J.; Rabault, J.; Larcher, A.; Kuhnle, A.; Hachem, E. A review on deep reinforcement learning for fluid

mechanics. Comput. Fluids 2021, 225, 104973.

40. Cheng, L.-C.; Huang, Y.-H.; Hsieh, M.-H.; Wu, M.-E. A novel trading strategy framework based on reinforcement deep learning

for financial market predictions. Mathematics 2021, 9, 3094. https://doi.org/10.3390/math9233094.

41. Kim, S.-H.; Park, D.-Y.; Lee, K.-H. Hybrid deep reinforcement learning for pairs trading. Appl. Sci. 2022, 12, 944.

https://doi.org/10.3390/app12030944.

42. Zhu, T.; Zhu, W. Quantitative trading through random perturbation Q-network with nonlinear transaction costs. Stats 2022, 5,

546–560. https://doi.org/10.3390/stats5020033.

43. Zhang, D.; Han, X.; Deng, C. Review on the research and practice of deep learning and reinforcement learning in smart grids.

CSEE J. Power Energy Syst. 2018, 4, 362–370. https://doi.org/10.17775/CSEEJPES.2018.00520.

44. Zhang, Z.; Zhang, D.; Qiu, R.C. Deep reinforcement learning for power system applications: An overview. CSEE J. Power Energy

Syst. 2020, 6, 213–225. https://doi.org/10.17775/CSEEJPES.2019.00920.

45. Jogunola, O.; Adebisi, B.; Ikpehai, A.; Popoola, S.I.; Gui, G.; Gacanin, H.; Ci, S. Consensus algorithms and deep reinforcement

learning in energy market: A review. IEEE Internet Things J. 2021, 8, 4211–4227. https://doi.org/10.1109/JIOT.2020.3032162.

46. Perera, A.T.D.; Kamalaruban, P. Applications of reinforcement learning in energy systems. Renew. Sustain. Energy Rev. 2021,

137, 110618. https://doi.org/10.1016/j.rser.2020.110618.

47. Chen, X.; Qu, G.; Tang, Y.; Low, S.; Li, N. Reinforcement learning for selective key applications in power systems: Recent ad-

vances and future challenges. IEEE Trans. Smart Grid 2022, 13, 2935–2958. https://doi.org/10.1109/TSG.2022.3154718.

48. Mason, K.; Grijalva, S. A review of reinforcement learning for autonomous building energy management. Comput. Electr. Eng.

2019, 78, 300–312.

49. Wang, Z.; Hong, T. Reinforcement learning for building controls: The opportunities and challenges. Appl. Energy 2020, 269,

115036. https://doi.org/10.1016/j.apenergy.2020.115036.

50. Han, M.; May, R.; Zhang, X.; Wang, X.; Pan, S.; da Yan; Jin, Y.; Xu, L. A review of reinforcement learning methodologies for

controlling occupant comfort in buildings. Sustain. Cities Soc. 2019, 51, 101748–101762. https://doi.org/10.1016/j.scs.2019.101748.

51. Yu, L.; Qin, S.; Zhang, M.; Shen, C.; Jiang, T.; Guan, X. A review of deep reinforcement learning for smart building energy

management. IEEE Internet Things J. 2021, 8, 12046–12063. https://doi.org/10.1109/JIOT.2021.3078462.

52. Zhang, H.; Seal, S.; Wu, D.; Bouffard, F.; Boulet, B. Building energy management with reinforcement learning and model pre-

dictive control: A survey. IEEE Access 2022, 10, 27853–27862. https://doi.org/10.1109/ACCESS.2022.3156581.

53. Vázquez-Canteli, J.R.; Nagy, Z. Reinforcement learning for demand response: A review of algorithms and modeling techniques.

Appl. Energy 2019, 235, 1072–1089. https://doi.org/10.1016/j.apenergy.2018.11.002.

54. Ali, H.O.; Ouassaid, M.; Maaroufi, M. Chapter 24: Optimal appliance management system with renewable energy integration

for smart homes. Renew. Energy Syst. 2021, 533–552. https://doi.org/10.1016/B978-0-12-820004-9.00025-5.

55. Sharda, S.; Singh, M.; Sharma, K. Demand side management through load shifting in IoT based HEMS: Overview, challenges

and opportunities. Sustain. Cities Soc. 2021, 65, 102517. https://doi.org/10.1016/j.scs.2020.102517.

56. Danbatta, S.J.; Varol, A. Comparison of Zigbee, Z-Wave, Wi-Fi, and Bluetooth wireless technologies used in home automation.

In Proceedings of the 7th International Symposium on Digital Forensics and Security (ISDFS), Barcelos, Portugal, 10–12 June

2019; pp. 1–5. https://doi.org/10.1109/ISDFS.2019.8757472.

57. Withanage, C.; Ashok, R.; Yuen, C.; Otto, K. A comparison of the popular home automation technologies. IEEE Innov. Smart

Grid Technol.-Asia 2014, 600–605. https://doi.org/10.1109/ISGT-Asia.2014.6873860.

Energies 2022, 15, 6392 31 of 37

58. van de Kaa, G.; Stoccuto, S.; Calderón, C.V. A battle over smart standards: Compatibility, governance, and innovation in home

energy management systems and smart meters in the Netherlands. Energy Res. Soc. Sci. 2021, 82, 102302.

https://doi.org/10.1016/j.erss.2021.102302.

59. Rajasekhar, B.; Tushar, W.; Lork, C.; Zhou, Y.; Yuen, C.; Pindoriya, N.M.; Wood, K.L. A survey of computational intelligence

techniques for air-conditioners energy management. IEEE Trans. Emerg. Top. Comput. Intell. 2020, 4, 555–570.

60. Huang, C.; Zhang, H.; Wang, L.; Luo, X.; Song, Y. Mixed deep reinforcement learning considering discrete-continuous hybrid

action space for smart home energy Management. J. Mod. Power Syst. Clean Energy 2022, 10, 743–754.

https://doi.org/10.35833/MPCE.2021.000394.

61. Yu, L.; Xie, W.; Xie, D.; Zou, Y.; Zhang, D.; Sun, Z.; Zhang, L.; Zhang, Y.; Jiang, T. Deep reinforcement learning for smart home

energy management. IEEE Internet Things J. 2020, 7, 2751–2762. https://doi.org/10.1109/JIOT.2019.2957289.

62. Das, S. Deep Neural Networks. YouTube, 31 January 2022 [Video File]. Available online:

www.youtube.com/playlist?list=PL_4Jjqx0pZY-SIO8jElzW0lNpzjcunOx4 (accessed on 1 April 2022).

63. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online:

www.deeplearningbook.org (accessed on 30 Aug 2022).

64. Achiam, J. Open AI, Part 2: Kinds of RL Algorithms. 2018. Available online: spinningup.openai.com/en/latest/spinningup/rl_in-

tro2.html (accessed on 30 August 2022).

65. Bellman, R. Dynamic Programming; Rand Corporation: Santa Monica, CA, USA, 1957.

66. Bellman, R. A Markovian decision process. J. Math. Mech. 1957, 6, 679–684.

67. Howard, R. Dynamic Programming and Markov Processes; MIT Press: Cambridge, MA, USA, 1960.

68. Castronovo, M.; Maes, F.; Fonteneau, R.; Ernst, D. Learning exploration/exploitation strategies for single trajectory reinforce-

ment learning. Eur. Workshop Reinf. Learn. PMLR 2013, 24, 1–10.

69. Fan, J.; Wang, Z.; Xie, Y.; Yang, Z. A theoretical analysis of deep Q-learning. Learn. Dyn. Control PMLR 2020, 120, 486–489.

70. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; Bradford Books; MIT Press: Cambridge, MA, USA, 1998; revised

2018. Available online: web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf (accessed on 30 August

2022).

71. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1989.

72. Rummery, G.A.; Niranjan, M. On-line Q-Learning Using Connectionist Systems; Technical Report; Department of Engineering,

University of Cambridge: Cambridge, UK, 1994; Volume 37.

73. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8,

229–256.

74. Riedmiller, M. Neural fitted Q iteration-first experiences with a data efficient neural reinforcement learning method. In Pro-

ceedings of the European Conference on Machine Learning, Porto, Portugal, 3–7 October 2005; Springer: Berlin/Heidelberg,

Germany, 2005; pp. 317–328.

75. Lin, L. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 1992, 8, 293–321.

76. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.

77. Hasselt, H. Double Q-learning. Adv. Neural Inf. Processing Syst. 2010, 23, 2613–2621.

78. Pentaliotis, A. Investigating Overestimation Bias in Reinforcement Learning. Ph.D. Thesis, University of Groningen, Groningen,

The Netherlands, 2020. Available online: www.ai.rug.nl/~mwiering/Thesis-Andreas-Pentaliotis.pdf (accessed on 1 April 2022).

79. van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double Q learning. In Proceedings of the 30th AAAI

Conference on Artificial Intelligence, Phoenix, Arizona, USA, 12–17 February 2016; Volume 30.

80. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the Inter-

national Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 1587–1596.

81. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp.

1861–1870.

82. Jiang, H.; Xie, J.; Yang, J. Action Candidate Driven Clipped Double Q-learning for discrete and continuous action tasks. arXiv

2022, arXiv:2203.11526.

83. Wang, Z.; Schaul, T.; Hessel, M.; van Hasselt, H.; Lanctot, M.; de Freitas, N. Dueling network architectures for deep reinforce-

ment learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016;

Volume 48, pp. 1995–2003.

84. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with function ap-

proximation. Adv. Neural Inf. Processing Syst. 2020, 12, 1057–1063.

85. Sutton, R.S.; Singh, S.; McAllester, D. Comparing Policy Gradient Methods for Reinforcement Learning with Function Approx-

imation. 2000. Available online: http://incompleteideas.net/papers/SSM-unpublished.pdf (accessed on 30 August 2022).

86. Ciosek, K.; Whiteson, S. Expected policy gradients for reinforcement learning. arXiv 2018, arXiv:1801.03326.

87. Thomas, P.S.; Brunskill, E. Policy gradient methods for reinforcement learning with function approximation and action-de-

pendent baselines. arXiv 2017, arXiv:1706.06643.

88. Weaver, L.; Tao, N. The optimal reward baseline for gradient-based reinforcement learning. In Proceedings of the 17th Confer-

ence on Uncertainty in Artificial Intelligence, Washington, DC, USA, 2–5 August 2001; pp. 538–545.

Energies 2022, 15, 6392 32 of 37

89. Costa, S.I.R.; Santos, S.A.; Strapasson, J.E. Fisher information distance: A geometrical reading. Discret. Appl. Math. 2015, 197, 59–

69.

90. Kakade, S. A natural policy gradient. Adv. Neural Inf. Processing Syst. 2002, 14. 1057–1063.

91. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the 32nd Interna-

tional Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 1889–1897.

92. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,

arXiv:1707.06347.

93. Konda, V.R.; Tsitsiklis, J.N. On actor-critic algorithms. SIAM J. Control. Optim. 2003, 42, 1143–1166.

94. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for

deep reinforcement learning. Int. Conf. Mach. Learn. PMLR 2016, 48, 1928–1937.

95. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep rein-

forcement learning. arXiv 2017, arXiv:1509.02971v6.

96. Kalashnikov, D.; Irpan, A.; Pastor, P.; Ibarz, J.; Herzog, A.; Jang, E.; Quillen, D.; Holly, E.; Kalakrishnan, M.; Vanhoucke, V.; et

al. Scalable deep reinforcement learning for vision-based robotic manipulation. In Proceedings of the Conference on Robot

Learning, Zürich, Switzerland, 15 June 2018; pp. 651–673.

97. Wang, Z.; Bapst, V.; Heess, N.; Mnih, V.; Munos, R.; Kavukcuoglu, K.; de Freitas, N. Sample efficient actor-critic with experience

replay. arXiv 2016, arXiv:1611.01224.

98. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. International

Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 387–395.

99. Meng, L.; Gorbet, R.; Kulić, D. The effect of multi-step methods on overestimation in deep reinforcement learning. In Proceed-

ings of the 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 347–353.

100. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-

critic algorithms and applications. arXiv 2018, arXiv:1812.05905.

101. Esrafilian-Najafabadi, M.; Haghighat, F. Occupancy-based HVAC control systems in buildings: A state-of-the-art review. Build.

Environ. 2021, 197, 107810. https://doi.org/10.1016/j.buildenv.2021.107810.

102. Jia, L.; Wei, S.; Liu, J. A review of optimization approaches for controlling water-cooled central cooling systems. Build. Environ.

2021, 203, 108100. https://doi.org/10.1016/j.buildenv.2021.108100.

103. Yu, L.; Sun, Y.; Xu, Z.; Shen, C.; Yue, D.; Jiang, T.; Guan, X. Multi-Agent Deep Reinforcement Learning for HVAC Control in

Commercial Buildings. IEEE Trans. Smart Grid 2021, 12, 407–419. https://doi.org/10.1109/TSG.2020.3011739.

104. Noye, S.; Martinez, R.M.; Carnieletto, L.; de Carli, M.; Aguirre, A.C. A review of advanced ground source heat pump control:

Artificial intelligence for autonomous and adaptive control. Renew. Sustain. Energy Rev. 2022, 153, 111685.

https://doi.org/10.1016/j.rser.2021.111685.

105. Paraskevas, A.; Aletras, D.; Chrysopoulos, A.; Marinopoulos, A.; Doukas, D.I. Optimal Management for EV Charging Stations:

A Win–Win Strategy for Different Stakeholders Using Constrained Deep Q-Learning. Energies 2022, 15, 2323.

https://doi.org/10.3390/en15072323.

106. Ren, M.; Liu, X.; Yang, Z.; Zhang, J.; Guo, Y.; Jia, Y. A novel forecasting based scheduling method for household energy man-

agement system based on deep reinforcement learning. Sustain. Cities Soc. 2022, 76, 103207.

https://doi.org/10.1016/j.scs.2021.103207.

107. Alfaverh, F.; Denaï, M.; Sun, Y. Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home

Energy Management. IEEE Access 2020, 8, 39310–39321. https://doi.org/10.1109/ACCESS.2020.2974286.

108. Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial

intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy

Rev. 2020, 130, 109899. https://doi.org/10.1016/j.rser.2020.109899.

109. Chen, T.; Su, W. Indirect Customer-to-Customer Energy Trading with Reinforcement Learning. IEEE Trans. Smart Grid 2019, 10,

4338–4348. https://doi.org/10.1109/TSG.2018.2857449.

110. Bourdeau, M.; Zhai, X.q.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modeling and forecasting building energy consumption: A review

of data-driven techniques. Sustain. Cities Soc. 2019, 48, 101533. https://doi.org/10.1016/j.scs.2019.101533.

111. Ma, N.; Aviv, D.; Guo, H.; Braham, W.W. Measuring the right factors: A review of variables and models for thermal comfort

and indoor air quality. Renew. Sustain. Energy Rev. 2021, 135, 110436. https://doi.org/10.1016/j.rser.2020.110436.

112. Xu, J.; Mahmood, H.; Xiao, H.; Anderlini, E.; Abusara, M. Electric Water Heaters Management via Reinforcement Learning with

Time-Delay in Isolated Microgrids. IEEE Access 2021, 9, 132569–132579. https://doi.org/10.1109/ACCESS.2021.3112817.

113. Lork, C.; Li, We.; Qin, Y.; Zhou, Y.; Yuen, C.; Tushar, W.; Saha, T.K. An uncertainty-aware deep reinforcement learning frame-

work for residential air conditioning energy management. Appl. Energy 2020, 276, 115426. https://doi.org/10.1016/j.apen-

ergy.2020.115426.

114. Correa-Jullian, C.; Droguett, E.L.; Cardemil, J.M. Operation scheduling in a solar thermal system: A reinforcement learning-

based framework. Appl. Energy 2020, 268, 114943. https://doi.org/10.1016/j.apenergy.2020.114943.

115. Hao, J.; Gao, D.W.; Zhang, J.J. Reinforcement Learning for Building Energy Optimization Through Controlling of Central HVAC

System. IEEE Open Access J. Power Energy 2020, 7, 320–328. https://doi.org/10.1109/OAJPE.2020.3023916.

116. Lu, S.; Wang, W.; Lin, C.; Hameen, E.C. Data-driven simulation of a thermal comfort-based temperature set-point control with

ASHRAE RP884. Build. Environ. 2019, 156, 137–146. https://doi.org/10.1016/j.buildenv.2019.03.010.

Energies 2022, 15, 6392 33 of 37

117. Liu, M.; Peeters, S.; Callaway, D.S.; Claessens, B.J. Trajectory Tracking with an Aggregation of Domestic Hot Water Heaters:

Combining Model-Based and Model-Free Control in a Commercial Deployment. IEEE Trans. Smart Grid 2019, 10, 5686–5695.

https://doi.org/10.1109/TSG.2018.2890275.

118. Saifuddin, M.R.B.M.; Logenthiran, T.; Naayagi, R.T.; Woo, W.L. A Nano-Biased Energy Management Using Reinforced Learn-

ing Multi-Agent on Layered Coalition Model: Consumer Sovereignty. IEEE Access 2019, 7, 52542–52564.

https://doi.org/10.1109/ACCESS.2019.2911543.

119. Zhou, S.; Hu, Z.; Gu, W.; Jiang, M.; Zhang, X. Artificial intelligence based smart energy community management: A reinforce-

ment learning approach. CSEE J. Power Energy Syst. 2019, 5, 1–10. https://doi.org/10.17775/CSEEJPES.2018.00840.

120. Ojand, K.; Dagdougui, H. Q-Learning-Based Model Predictive Control for Energy Management in Residential Aggregator. IEEE

Trans. Autom. Sci. Eng. 2022, 19, 70–81. https://doi.org/10.1109/TASE.2021.3091334.

121. Wang, Y.; Lin, X.; Pedram, M. A Near-Optimal Model-Based Control Algorithm for Households Equipped with Residential

Photovoltaic Power Generation and Energy Storage Systems. IEEE Trans. Sustain. Energy 2016, 7, 77–86.

https://doi.org/10.1109/TSTE.2015.2467190.

122. Kim, S.; Lim, H. Reinforcement Learning Based Energy Management Algorithm for Smart Energy Buildings. Energies 2018, 11,

2010. https://doi.org/10.3390/en11082010.

123. Shang, Y.; Wu, W.; Guo, J.; Ma, Z.; Sheng, W.; Lv, Z.; Fu, C. Stochastic dispatch of energy storage in microgrids: An augmented

reinforcement learning approach. Appl. Energy 2020, 261, 114423. https://doi.org/10.1016/j.apenergy.2019.114423.

124. Kofinas, P.; Dounis, A.I.; Vouros, G.A. Fuzzy Q-Learning for multi-agent decentralized energy management in microgrids. Appl.

Energy 2018, 219, 53–67. https://doi.org/10.1016/j.apenergy.2018.03.017.

125. Park, J.Y.; Dougherty, T.; Fritz, H.; Nagy, Z. LightLearn: An adaptive and occupant centered controller for lighting based on

reinforcement learning. Build. Environ. 2019, 147, 397–414. https://doi.org/10.1016/j.buildenv.2018.10.028.

126. Korkidis, P.; Dounis, A.; Kofinas, P. Computational Intelligence Technologies for Occupancy Estimation and Comfort Control

in Buildings. Energies 2021, 14, 4971. https://doi.org/10.3390/en14164971.

127. Zhang, X.; Lu, R.; Jiang, J.; Hong, S.H.; Song, W.S. Testbed implementation of reinforcement learning-based demand response

energy management system. Appl. Energy 2021, 297, 117131. https://doi.org/10.1016/j.apenergy.2021.117131.

128. Lu, R.; Hong, S.H.; Yu, M. Demand Response for Home Energy Management Using Reinforcement Learning and Artificial

Neural Network. IEEE Trans. Smart Grid 2019, 10, 6629–6639. https://doi.org/10.1109/TSG.2019.2909266.

129. Remani, T.; Jasmin, E.A.; Ahamed, T.P.I. Residential Load Scheduling With Renewable Generation in the Smart Grid: A Rein-

forcement Learning Approach. IEEE Syst. J. 2019, 13, 3283–3294. https://doi.org/10.1109/JSYST.2018.2855689.

130. Khan, M.; Seo, J.; Kim, D. Real-Time Scheduling of Operational Time for Smart Home Appliances Based on Reinforcement

Learning. IEEE Access 2020, 8, 116520–116534. https://doi.org/10.1109/ACCESS.2020.3004151.

131. Ahrarinouri, M.; Rastegar, M.; Seifi, A.R. Multiagent Reinforcement Learning for Energy Management in Residential Buildings.

IEEE Trans. Ind. Inform. 2021, 17, 659–666. https://doi.org/10.1109/TII.2020.2977104.

132. Chen, S.-J.; Chiu, W.-Y.; Liu, W.-J. User Preference-Based Demand Response for Smart Home Energy Management Using Mul-

tiobjective Reinforcement Learning. IEEE Access 2021, 9, 161627–161637. https://doi.org/10.1109/ACCESS.2021.3132962.

133. Xu, X.; Jia, Y.; Xu, Y.; Xu, Z.; Chai, S.; Lai, C.S. A Multi-Agent Reinforcement Learning-Based Data-Driven Method for Home

Energy Management. IEEE Trans. Smart Grid 2020, 11, 3201–3211. https://doi.org/10.1109/TSG.2020.2971427.

134. Fang, X.; Wang, J.; Song, G.; Han, Y.; Zhao, Q.; Cao, Z. Multi-Agent Reinforcement Learning Approach for Residential Microgrid

Energy Scheduling. Energies 2019, 13, 123. https://doi.org/10.3390/en13010123.

135. Wan, Y.; Qin, J.; Yu, X.; Yang, T.; Kang, Y. Price-Based Residential Demand Response Management in Smart Grids: A Reinforce-

ment Learning-Based Approach. IEEE/CAA J. Autom. Sin. 2022, 9, 123–134. https://doi.org/10.1109/JAS.2021.1004287.

136. Lu, R.; Hong, S.H.; Zhang, X. A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach.

Appl. Energy 2018, 220, 220–230. https://doi.org/10.1016/j.apenergy.2018.03.072.

137. Wen, Z.; O’Neill, D.; Maei, H. Optimal Demand Response Using Device-Based Reinforcement Learning. IEEE Trans. Smart Grid

2015, 6, 2312–2324. https://doi.org/10.1109/TSG.2015.2396993.

138. Lu, R.; Hong, S.H. Incentive-based demand response for smart grid with reinforcement learning and deep neural network. Appl.

Energy 2019, 236, 937–949. https://doi.org/10.1016/j.apenergy.2018.12.061.

139. Kong, X.; Kong, D.; Yao, J.; Bai, L.; Xiao, J. Online pricing of demand response based on long short-term memory and reinforce-

ment learning. Appl. Energy 2020, 271, 114945. https://doi.org/10.1016/j.apenergy.2020.114945.

140. Hurtado, L.A.; Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kamphuis, R.I.G. Enabling Cooperative Behavior for Building Demand

Response Based on Extended Joint Action Learning. IEEE Trans. Ind. Inform. 2018, 14, 127–136.

https://doi.org/10.1109/TII.2017.2753408.

141. Barth, D.; Cohen-Boulakia, B.; Ehounou, W. Distributed Reinforcement Learning for the Management of a Smart Grid Intercon-

necting Independent Prosumers. Energies 2022, 15, 1440. https://doi.org/10.3390/en15041440.

142. Ruelens, F.; Iacovella, S.; Claessens, B.; Belmans, R. Learning Agent for a Heat-Pump Thermostat with a Set-Back Strategy Using

Model-Free Reinforcement Learning. Energies 2015, 8, 8300–8318. https://doi.org/10.3390/en8088300.

143. Ruelens, F.; Claessens, B.J.; Vandael, S.; de Schutter, B.; Babuška, R.; Belmans, R. Residential Demand Response of Thermostat-

ically Controlled Loads Using Batch Reinforcement Learning. IEEE Trans. Smart Grid 2017, 8, 2149–2159.

https://doi.org/10.1109/TSG.2016.2517211.

Energies 2022, 15, 6392 34 of 37

144. Ruelens, F.; Claessens, B.J.; Quaiyum, S.; de Schutter, B.; Babuška, R.; Belmans, R. Reinforcement Learning Applied to an Electric

Water Heater: From Theory to Practice. IEEE Trans. Smart Grid 2018, 9, 3792–3800. https://doi.org/10.1109/TSG.2016.2640184.

145. Han, M.; May, R.; Zhang, X.; Wang, X.; Pan, S.; Da, Y.; Jin, Y. A novel reinforcement learning method for improving occupant

comfort via window opening and closing. Sustain. Cities Soc. 2020, 61, 102247. https://doi.org/10.1016/j.scs.2020.102247.

146. Kazmi, H.; Suykens, J.; Balint, A.; Driesen, J. Multi-agent reinforcement learning for modeling and control of thermostatically

controlled loads. Appl. Energy 2019, 238, 1022–1035. https://doi.org/10.1016/j.apenergy.2019.01.140.

147. Xu, S.; Chen, X.; Xie, J.; Rahman, S.; Wang, J.; Hui, H.; Chen, T. Agent-based modeling and simulation for the electricity market

with residential demand response. CSEE J. Power Energy Syst. 2021, 7, 368–380. https://doi.org/10.17775/CSEEJPES.2019.01750.

148. Reka, S.S.; Venugopal, P.; Alhelou, H.H.; Siano, P.; Golshan, M.E.H. Real Time Demand Response Modeling for Residential

Consumers in Smart Grid Considering Renewable Energy with Deep Learning Approach. IEEE Access 2021, 9, 56551–56562.

https://doi.org/10.1109/ACCESS.2021.3071993.

149. Kontes, G.; Giannakis, G.I.; Sánchez, V.; de Agustin-Camacho, P.; Romero-Amorrortu, A.; Panagiotidou, N.; Rovas, D.V.; Stei-

ger, S.; Mutschler, C.; Gruen, G. Simulation-Based Evaluation and Optimization of Control Strategies in Buildings. Energies

2018, 11, 3376. https://doi.org/10.3390/en11123376.

150. Jia, Q.; Chen, S.; Yan, Z.; Li, Y. Optimal Incentive Strategy in Cloud-Edge Integrated Demand Response Framework for Resi-

dential Air Conditioning Loads. IEEE Trans. Cloud Comput. 2022, 10, 31–42. https://doi.org/10.1109/TCC.2021.3118597.

151. Macieira, P.; Gomes, L.; Vale, Z. Energy Management Model for HVAC Control Supported by Reinforcement Learning. Energies

2021, 14, 8210. https://doi.org/10.3390/en14248210.

152. Vázquez-Canteli, J.R.; Ulyanin, S.; Kämpf, J.; Nagy, Z. Fusing TensorFlow with building energy simulation for intelligent energy

management in smart cities. Sustain. Cities Soc. 2019, 45, 243–257. https://doi.org/10.1016/j.scs.2018.11.021.

153. Zhou, T.; Lin, M. Deadline-Aware Deep-Recurrent-Q-Network Governor for Smart Energy Saving. IEEE Trans. Netw. Sci. Eng.

2021. https://doi.org/10.1109/TNSE.2021.3123280.

154. Claessens, B.J.; Vrancx, P.; Ruelens, F. Convolutional Neural Networks for Automatic State-Time Feature Extraction in Rein-

forcement Learning Applied to Residential Load Control. IEEE Trans. Smart Grid 2018, 9, 3259–3269.

https://doi.org/10.1109/TSG.2016.2629450.

155. Tuchnitz, F.; Ebell, N.; Schlund, J.; Pruckner, M. Development and Evaluation of a Smart Charging Strategy for an Electric

Vehicle Fleet Based on Reinforcement Learning. Appl. Energy 2021, 285, 116382. https://doi.org/10.1016/j.apenergy.2020.116382.

156. Tittaferrante, A.; Yassine, A. Multiadvisor Reinforcement Learning for Multiagent Multiobjective Smart Home Energy Control.

IEEE Trans. Artif. Intell. 2022, 3, 581–594. https://doi.org/10.1109/TAI.2021.3125918.

157. Zhong, S.; Wang, X.; Zhao, J.; Li, W.; Li, H.; Wang, Y.; Deng, S.; Zhu, J. Deep reinforcement learning framework for dynamic

pricing demand response of regenerative electric heating. Appl. Energy 2021, 288, 116623. https://doi.org/10.1016/j.apen-

ergy.2021.116623.

158. Wei, P.; Xia, S.; Chen, R.; Qian, J.; Li, C.; Jiang, X. A Deep-Reinforcement-Learning-Based Recommender System for Occupant-

Driven Energy Optimization in Commercial Buildings. IEEE Internet Things J. 2020, 7, 6402–6413.

https://doi.org/10.1109/JIOT.2020.2974848.

159. Liang, Z.; Huang, C.; Su, W.; Duan, N.; Donde, V.; Wang, B.; Zhao, X. Safe Reinforcement Learning-Based Resilient Proactive

Scheduling for a Commercial Building Considering Correlated Demand Response. IEEE Open Access J. Power Energy 2021, 8,

85–96. https://doi.org/10.1109/OAJPE.2021.3064319.

160. Deng, X.; Zhang, Y.; Zhang, Y.; Qi, H. Towards optimal HVAC control in non-stationary building environments combining

active change detection and deep reinforcement learning. Build. Environ. 2022, 211, 108680. https://doi.org/10.1016/j.build-

env.2021.108680.

161. Wei, T.; Ren, S.; Zhu, Q. Deep Reinforcement Learning for Joint Datacenter and HVAC Load Control in Distributed Mixed-Use

Buildings. IEEE Trans. Sustain. Comput. 2021, 6, 370–384. https://doi.org/10.1109/TSUSC.2019.2910533.

162. Chen, T.; Su, W. Local Energy Trading Behavior Modeling with Deep Reinforcement Learning. IEEE Access 2018, 6, 62806–62814.

https://doi.org/10.1109/ACCESS.2018.2876652.

163. Suanpang, P.; Jamjuntr, P.; Jermsittiparsert, K.; Kaewyong, P. Autonomous Energy Management by Applying Deep Q-Learning

to Enhance Sustainability in Smart Tourism Cities. Energies 2022, 15, 1906. https://doi.org/10.3390/en15051906.

164. Blad, C.; Bøgh, S.; Kallesøe, C. A Multi-Agent Reinforcement Learning Approach to Price and Comfort Optimization in HVAC-

Systems. Energies 2021, 14, 7491. https://doi.org/10.3390/en14227491.

165. Yang, T.; Zhao, L.; Li, W.; Wu, J.; Zomaya, A.Y. Towards healthy and cost-effective indoor environment management in smart

homes: A deep reinforcement learning approach. Appl. Energy 2021, 300, 117335. https://doi.org/10.1016/j.apenergy.2021.117335.

166. Heidari, A.; Maréchal, F.; Khovalyg, D. An occupant-centric control framework for balancing comfort, energy use and hygiene

in hot water systems: A model-free reinforcement learning approach. Appl. Energy 2022, 312, 118833.

https://doi.org/10.1016/j.apenergy.2022.118833.

167. Valladares, W.; Galindo, M.; Gutiérrez, J.; Wu, W.; Liao, K.; Liao, J.; Lu, K.; Wang, C. Energy optimization associated with

thermal comfort and indoor air control via a deep reinforcement learning algorithm. Build. Environ. 2019, 155, 105–117.

https://doi.org/10.1016/j.buildenv.2019.03.038.

168. Dmitrewski, A.; Molina-Solana, M.; Arcucci, R. CntrlDA: A building energy management control system with real-time adjust-

ments. Application to indoor temperature. Build. Environ. 2022, 215, 108938, https://doi.org/10.1016/j.buildenv.2022.108938.

Energies 2022, 15, 6392 35 of 37

169. Mathew, A.; Jolly, M.J.; Mathew, J. Improved residential energy management system using priority double deep Q-learning.

Sustain. Cities Soc. 2021, 69, 102812, https://doi.org/10.1016/j.scs.2021.102812.

170. Ruelens, F.; Claessens, B.J.; Vrancx, P.; Spiessens, F.; Deconinck, G. Direct load control of thermostatically controlled loads based

on sparse observations using deep reinforcement learning. CSEE J. Power Energy Syst. 2019, 5, 423–432.

https://doi.org/10.17775/CSEEJPES.2019.00590.

171. Chemingui, Y.; Gastli, A.; Ellabban, O. Reinforcement Learning-Based School Energy Management System. Energies 2020, 13,

6354. https://doi.org/10.3390/en13236354.

172. Zhang, X.; Chen, Y.; Bernstein, A.; Chintala, R.; Graf, P.; Jin, X.; Biagioni, D. Two-Stage Reinforcement Learning Policy Search

for Grid-Interactive Building Control. IEEE Trans. Smart Grid 2022, 13, 1976–1987. https://doi.org/10.1109/TSG.2022.3141625.

173. Yang, L.; Sun, Q.; Zhang, N.; Li, Y. Indirect Multi-energy Transactions of Energy Internet with Deep Reinforcement Learning

Approach. IEEE Trans. Power Syst. 2022. https://doi.org/10.1109/TPWRS.2022.3142969.

174. Guo, C.; Wang, X.; Zheng, Y.; Zhang, F. Real-time optimal energy management of microgrid with uncertainties based on deep

reinforcement learning. Energy 2022, 238, 121873. https://doi.org/10.1016/j.energy.2021.121873.

175. Jung, S.; Jeoung, J.; Kang, H.; Hong, T. Optimal planning of a rooftop PV system using GIS-based reinforcement learning. Appl.

Energy 2021, 298, 117239. https://doi.org/10.1016/j.apenergy.2021.117239.

176. Li, H.; Wan, Z.; He, H. Real-Time Residential Demand Response. IEEE Trans. Smart Grid 2020, 11, 4144–4154.

https://doi.org/10.1109/TSG.2020.2978061.

177. Gao, G.; Li, J.; Wen, Y. DeepComfort: energy-efficient thermal comfort control in buildings via reinforcement learning. IEEE

Internet Things J. 2020, 7, 8472–8484. https://doi.org/10.1109/JIOT.2020.2992117.

178. Du, Y.; Zandi, H.; Kotevska, O.; Kurte, K.; Munk, J.; Amasyali, K.; Mckee, E.; Li, F. Intelligent multi-zone residential HVAC

control strategy based on deep reinforcement learning. Appl. Energy 2021, 281, 116117, https://doi.org/10.1016/j.apen-

ergy.2020.116117.

179. Kodama, N.; Harada, T.; Miyazaki, K. Home Energy Management Algorithm Based on Deep Reinforcement Learning Using

Multistep Prediction. IEEE Access 2021, 9, 153108–153115. https://doi.org/10.1109/ACCESS.2021.3126365.

180. Svetozarevic, B.; Baumann, C.; Muntwiler, S.; di Natale, L.; Zeilinger, M.N.; Heer, P. Data-driven control of room temperature

and bidirectional EV charging using deep reinforcement learning: Simulations and experiments. Appl. Energy 2022, 307, 118127.

https://doi.org/10.1016/j.apenergy.2021.118127.

181. Zenginis, I.; Vardakas, J.; Koltsaklis, N.E.; Verikoukis, C. Smart Home’s Energy Management through a Clustering-based Rein-

forcement Learning Approach. IEEE Internet Things J. 2022, 9, 16363–16371. https://doi.org/10.1109/JIOT.2022.3152586.

182. Chung, H.-M.; Maharjan, S.; Zhang, Y.; Eliassen, F. Distributed Deep Reinforcement Learning for Intelligent Load Scheduling

in Residential Smart Grids. IEEE Trans. Ind. Inform. 2021, 17, 2752–2763. https://doi.org/10.1109/TII.2020.3007167.

183. Qiu, D.; Ye, Y.; Papadaskalopoulos, D.; Strbac, G. Scalable coordinated management of peer-to-peer energy trading: A multi-

cluster deep reinforcement learning approach. Appl. Energy 2021, 292, 116940, https://doi.org/10.1016/j.apenergy.2021.116940.

184. Ye, Y.; Qiu, D.; Wu, X.; Strbac, G.; Ward, J. Model-Free Real-Time Autonomous Control for a Residential Multi-Energy System

Using Deep Reinforcement Learning. IEEE Trans. Smart Grid 2020, 11, 3068–3082. https://doi.org/10.1109/TSG.2020.2976771.

185. Li, W.; Tang, M.; Zhang, X.; Gao, D.; Wang, J. Operation of Distributed Battery Considering Demand Response Using Deep

Reinforcement Learning in Grid Edge Control. Energies 2021, 14, 7749. https://doi.org/10.3390/en14227749.

186. Touzani, S.; Prakash, A.K.; Wang, Z.; Agarwal, S.; Pritoni, M.; Kiran, M.; Brown, R.; Granderson, J. Controlling distributed

energy resources via deep reinforcement learning for load flexibility and energy efficiency. Appl. Energy 2021, 304, 117733.

https://doi.org/10.1016/j.apenergy.2021.117733.

187. Zhou, X.; Lin, W.; Kumar, R.; Cui, P.; Ma, Z. A data-driven strategy using long short term memory models and reinforcement

learning to predict building electricity consumption. Appl. Energy 2022, 306, 118078. https://doi.org/10.1016/j.apen-

ergy.2021.118078.

188. Lu, R.; Li, Yi.; Li, Y.; Jiang, J.; Ding, Y. Multi-agent deep reinforcement learning based demand response for discrete manufac-

turing systems energy management. Appl. Energy 2020, 276, 115473. https://doi.org/10.1016/j.apenergy.2020.115473.

189. Desportes, L.; Fijalkow, I.; Andry, P. Deep Reinforcement Learning for Hybrid Energy Storage Systems: Balancing Lead and

Hydrogen Storage. Energies 2021, 14, 4706. https://doi.org/10.3390/en14154706.

190. Zou, Z.; Yu, X.; Ergan, S. Towards optimal control of air handling units using deep reinforcement learning and recurrent neural

network. Build. Environ. 2020, 168, 106535. https://doi.org/10.1016/j.buildenv.2019.106535.

191. Liu, B.; Akcakaya, M.; Mcdermott, T.E. Automated Control of Transactive HVACs in Energy Distribution Systems. IEEE Trans.

Smart Grid 2021, 12, 2462–2471. https://doi.org/10.1109/TSG.2020.3042498.

192. Li, J.; Zhang, W.; Gao, G.; Wen, Y.; Jin, G.; Christopoulos, G. Toward Intelligent Multizone Thermal Control with Multiagent

Deep Reinforcement Learning. IEEE Internet Things J. 2021, 8, 11150–11162. https://doi.org/10.1109/JIOT.2021.3051400.

193. Miao, Y.; Chen, T.; Bu, S.; Liang, H.; Han, Z. Co-Optimizing Battery Storage for Energy Arbitrage and Frequency Regulation in

Real-Time Markets Using Deep Reinforcement Learning. Energies 2021, 14, 8365. https://doi.org/10.3390/en14248365.

194. Du, Y.; Wu, D. Deep Reinforcement Learning from Demonstrations to Assist Service Restoration in Islanded Microgrids. IEEE

Trans. Sustain. Energy 2022, 13, 1062–1072. https://doi.org/10.1109/TSTE.2022.3148236.

195. Qiu, D.; Dong, Z.; Zhang, X.; Wang, Y.; Strbac, G. Safe reinforcement learning for real-time automatic control in a smart energy-

hub. Appl. Energy 2022, 309, 118403. https://doi.org/10.1016/j.apenergy.2021.118403.

Energies 2022, 15, 6392 36 of 37

196. Bahrami, S.; Chen, Y.C.; Wong, V.W.S. Deep Reinforcement Learning for Demand Response in Distribution Networks. IEEE

Trans. Smart Grid 2021, 12, 1496–1506. https://doi.org/10.1109/TSG.2020.3037066.

197. Ye, Y.; Tang, Y.; Wang, H.; Zhang, X.-P.; Strbac, G. A Scalable Privacy-Preserving Multi-Agent Deep Reinforcement Learning

Approach for Large-Scale Peer-to-Peer Transactive Energy Trading. IEEE Trans. Smart Grid 2021, 12, 5185–5200.

https://doi.org/10.1109/TSG.2021.3103917.

198. Deltetto, D.; Coraci, D.; Pinto, G.; Piscitelli, M.S.; Capozzoli, A. Exploring the Potentialities of Deep Reinforcement Learning for

Incentive-Based Demand Response in a Cluster of Small Commercial Buildings. Energies 2021, 14, 2933.

https://doi.org/10.3390/en14102933.

199. Brandi, S.; Fiorentini, M.; Capozzoli, A. Comparison of online and offline deep reinforcement learning with model predictive

control for thermal energy management. Autom. Constr. 2022, 135, 104128, https://doi.org/10.1016/j.autcon.2022.104128.

200. Hu, W.; Wen, Y.; Guan, K.; Jin, G.; Tseng, K.J. iTCM: Toward Learning-Based Thermal Comfort Modeling via Pervasive Sensing

for Smart Buildings. IEEE Internet Things J. 2018, 5, 4164–4177. https://doi.org/10.1109/JIOT.2018.2861831.

201. Coraci, D.; Brandi, S.; Piscitelli, M.S.; Capozzoli, A. Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor

Temperature Control and Energy Efficiency in Buildings. Energies 2021, 14, 997. https://doi.org/10.3390/en14040997.

202. Zhao, H.; Wang, B.; Liu, H.; Sun, H.; Pan, Z.; Guo, Q. Exploiting the Flexibility Inside Park-Level Commercial Buildings Con-

sidering Heat Transfer Time Delay: A Memory-Augmented Deep Reinforcement Learning Approach. IEEE Trans. Sustain. En-

ergy 2022, 13, 207–219. https://doi.org/10.1109/TSTE.2021.3107439.

203. Zhu, D.; Yang, B.; Liu, Y.; Wang, Z.; Ma, K.; Guan, X. Energy management based on multi-agent deep reinforcement learning

for a multi-energy industrial park. Appl. Energy 2022, 311, 118636. https://doi.org/10.1016/j.apenergy.2022.118636.

204. Qin, Y.; Ke, J.; Wang, B.; Filaretov, G.F. Energy optimization for regional buildings based on distributed reinforcement learning.

Sustain. Cities Soc. 2022, 78, 103625, https://doi.org/10.1016/j.scs.2021.103625.

205. Pinto, G.; Deltetto, D.; Capozzoli, A. Data-driven district energy management with surrogate models and deep reinforcement

learning. Appl. Energy 2021, 304, 117642. https://doi.org/10.1016/j.apenergy.2021.117642.

206. Pinto, G.; Piscitelli, M.S.; Vázquez-Canteli, J.R.; Nagy, Z.; Capozzoli, A. Coordinated energy management for a cluster of build-

ings through deep reinforcement learning. Energy 2021, 229, 120725, https://doi.org/10.1016/j.energy.2021.120725.

207. Pinto, G.; Kathirgamanathan, A.; Mangina, E.; Finn, D.P.; Capozzoli, A. Enhancing energy management in grid-interactive

buildings: A comparison among cooperative and coordinated architectures. Appl. Energy 2022, 310, 118497.

https://doi.org/10.1016/j.apenergy.2021.118497.

208. Zhang, Z.; Ma, C.; Zhu, R. Thermal and Energy Management Based on Bimodal Airflow-Temperature Sensing and Reinforce-

ment Learning. Energies 2018, 11, 2575. https://doi.org/10.3390/en11102575.

209. Hosseinloo, A.H.; Ryzhov, A.; Bischi, A.; Ouerdane, H.; Turitsyn, K.; Dahleh, M.A. Data-driven control of micro-climate in

buildings: An event-triggered reinforcement learning approach. Appl. Energy 2020, 277, 115451. https://doi.org/10.1016/j.apen-

ergy.2020.115451.

210. Taboga, V.; Bellahsen, A.; Dagdougui, H. An Enhanced Adaptivity of Reinforcement Learning-Based Temperature Control in

Buildings Using Generalized Training. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 6, 255–266.

https://doi.org/10.1109/TETCI.2021.3066999.

211. Lee, S.; Choi, D.-H. Federated Reinforcement Learning for Energy Management of Multiple Smart Homes with Distributed

Energy Resources. IEEE Trans. Ind. Inform. 2022, 18, 488–497. https://doi.org/10.1109/TII.2020.3035451.

212. Zhang, X.; Biagioni, D.; Cai, M.; Graf, P.; Rahman, S. An Edge-Cloud Integrated Solution for Buildings Demand Response Using

Reinforcement Learning. IEEE Trans. Smart Grid 2021, 12, 420–431. https://doi.org/10.1109/TSG.2020.3014055.

213. Chen, T.; Bu, S.; Liu, X.; Kang, J.; Yu, F.R.; Han, Z. Peer-to-Peer Energy Trading and Energy Conversion in Interconnected Multi-

Energy Microgrids Using Multi-Agent Deep Reinforcement Learning. IEEE Trans. Smart Grid 2022, 13, 715–727.

https://doi.org/10.1109/TSG.2021.3124465.

214. Woo, J.H.; Wu, L.; Park, J.-B.; Roh, J.H. Real-Time Optimal Power Flow Using Twin Delayed Deep Deterministic Policy Gradient

Algorithm. IEEE Access 2020, 8, 213611–213618. https://doi.org/10.1109/ACCESS.2020.3041007.

215. Fu, C.; Zhang, Y. Research and Application of Predictive Control Method Based on Deep Reinforcement Learning for HVAC

Systems. IEEE Access 2021, 9, 130845–130852. https://doi.org/10.1109/ACCESS.2021.3114161.

216. Ye, Y.; Qiu, D.; Wang, H.; Tang, Y.; Strbac, G. Real-Time Autonomous Residential Demand Response Management Based on

Twin Delayed Deep Deterministic Policy Gradient Learning. Energies 2021, 14, 531. https://doi.org/10.3390/en14030531.

217. Liu, Y.; Zhang, D.; Gooi, H.B. Optimization strategy based on deep reinforcement learning for home energy management. CSEE

J. Power Energy Syst. 2020, 6, 572–582. https://doi.org/10.17775/CSEEJPES.2019.02890.

218. Mocanu, E. et al., On-Line Building Energy Optimization Using Deep Reinforcement Learning. IEEE Trans. Smart Grid 2019, 10,

3698–3708. https://doi.org/10.1109/TSG.2018.2834219.

219. Shuai, H.; He, H. Online Scheduling of a Residential Microgrid via Monte-Carlo Tree Search and a Learned Model. IEEE Trans.

Smart Grid 2021, 12, 1073–1087. https://doi.org/10.1109/TSG.2020.3035127.

220. Biemann, M.; Scheller, F.; Liu, X.; Huang, L. Experimental evaluation of model-free reinforcement learning algorithms for con-

tinuous HVAC control. Appl. Energy 2021, 298, 117164. https://doi.org/10.1016/j.apenergy.2021.117164.

221. Homod, R.Z.; Togun, H.; Hussein, A.K.; Al-Mousawi, F.N.; Yaseen, Z.M.; Al-Kouz, W.; Abd, H.J.; Alawi, O.A.; Goodarzi, M.;

Hussein, O.A. Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent

to energy saving in intelligent buildings. Appl. Energy 2022, 313, 118863, https://doi.org/10.1016/j.apenergy.2022.118863.

Energies 2022, 15, 6392 37 of 37

222. Ceusters, G.; Rodríguez, R.C.; García, A.B.; Franke, R.; Deconinck, G.; Helsen, L.; Nowé, A.; Messagie, M.; Camargo, L.R. Model-

predictive control and reinforcement learning in multi-energy system case studies. Appl. Energy 2021, 303, 117634,

https://doi.org/10.1016/j.apenergy.2021.117634.

223. Dorokhova, M.; Martinson, Y.; Ballif, C.; Wyrsch, N. Deep reinforcement learning control of electric vehicle charging in the

presence of photovoltaic generation. Appl. Energy 2021, 301, 117504. https://doi.org/10.1016/j.apenergy.2021.117504.

224. Ernst, D.; Glavic, M.; Capitanescu, F.; Wehenkel, L. Reinforcement learning versus model predictive control: a comparison on

a power system problem. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2008, 39, 517–529.

225. Li, S.; Liu, Y.; Qu, X. Model controlled prediction: A reciprocal alternative of model predictive control. IEEE/CAA J. Autom. Sin.

2022, 9, 1107–1110. https://doi.org/10.1109/JAS.2022.105611.

226. Jordan, S.; Chandak, Y.; Cohen, D.; Zhang, M.; Thomas, P. Evaluating the performance of reinforcement learning algorithms. In

Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 4962–4973.

