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Abstract: The steep rise in reinforcement learning (RL) in various applications in energy as well as 

the penetration of home automation in recent years are the motivation for this article. It surveys the 

use of RL in various home energy management system (HEMS) applications. There is a focus on 

deep neural network (DNN) models in RL. The article provides an overview of reinforcement learn-

ing. This is followed with discussions on state-of-the-art methods for value, policy, and actor–critic 

methods in deep reinforcement learning (DRL). In order to make the published literature in rein-

forcement learning more accessible to the HEMS community, verbal descriptions are accompanied 

with explanatory figures as well as mathematical expressions using standard machine learning ter-

minology. Next, a detailed survey of how reinforcement learning is used in different HEMS domains 

is described. The survey also considers what kind of reinforcement learning algorithms are used in 

each HEMS application. It suggests that research in this direction is still in its infancy. Lastly, the 

article proposes four performance metrics to evaluate RL methods. 
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1. Introduction 

The largest group of consumers of electricity in the US are residential units. In the 

year 2020, this sector alone accounted for approximately 40% of all electricity usage [1]. 

The average daily residential consumption of electricity is 12 kWh per person [2]. There-

fore, effectively managing the usage of electricity in homes, while maintaining acceptable 

comfort levels, is vital to address the global challenges of dwindling natural resources and 

climate change. Rapid technological advances have now made home energy management 

systems (HEMS) an attainable goal that is worth pursuing. HEMS consist of automation 

technologies that can respond to a continuously or periodically changing home environ-

mental as well as relevant external conditions, without human intervention [3,4]. In this 

review, the term ‘home’ is taken in a broad context to also include all residential units, 

classrooms, apartments, offices complexes, and other buildings in the smart grid [5–8]. 

Artificial Intelligence (AI), more specifically machine learning, is one of the key con-

tributing factors that have helped realize HEMS today [9–11]. Reinforcement learning (RL) 

is a class of machine learning algorithms that is making deep inroads in various applica-

tions in HEMS. This learning paradigm incorporates the twin capabilities of learning from 

experience and learning at higher levels of abstraction. It allows algorithmic agents to 

replace human beings in the real world, including in homes and buildings, in applications 

that had hitherto been considered to be beyond today’s capabilities. 

RL allows an algorithmic entity to make sequences of decisions and implement ac-

tions from experience in the same manner as a human being [12–17]. DNN has proven to 

be a powerful tool in RL, for it endows the RL agent with the capability to adapt to a wide 

variety of complex real-world applications [18,19]. Moreover, it has been proposed in [20] 

that RL can attain the ultimate goal of artificial general intelligence [21]. 
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Consequently, RL is making deep inroads into many application domains today. It 

has been applied extensively to robotics [22]. Specific applications in this area include ro-

botic manipulation with many degrees of freedom [23,24] and the navigation and path 

planning of mobile robots and UAVs [25–27]. RL finds widespread applications in com-

munications and networking [28–30]. It has been used in 5G-enabled UAVs with cognitive 

capabilities [31], cybersecurity [32–34], and edge computing [35]. In intelligent transpor-

tation systems, RL is used in a range of applications such as vehicle dispatching in online 

ride-hailing platforms [36]. 

Other domains where RL has been used include hospital decision making [37], pre-

cision agriculture [38], and fluid mechanics [39]. The financial industry is another im-

portant sector where RL has been adopted for several scenarios [40–42]. It is of little sur-

prise that RL has been extensively used to solve various problems in energy systems [43–

47]. Another review article on the use of RL [47] considers three application areas in fre-

quency and voltage control as well as in energy management. 

RL is increasingly being used in HEMS applications and several review papers have 

already been published. The review article in [48] focuses on RL for HVAC and water 

heaters. The paper in [49] is based on research published between 1997 and 2019. The 

survey observes that only 11% of published research reports the deployment of RL in ac-

tual HEMS. The article in [50] specifically focuses on occupant comfort in residences and 

offices. A more recent review on building energy management [51] focuses on deep neural 

network-based RL. A recent article [52] considers RL along with model predictive control 

in smart building applications. The article in [53] is a survey of RL in demand response. 

In contrast to the previous reviews, the scope of our review is broad enough to cover 

all areas of HEMS, including HEMS interfacing with the energy grid. More importantly, 

it provides a comprehensive overview of all major RL methods, providing a sufficient 

level of explanation for readers’ understanding. Therefore, this article would be of benefit 

for researchers and practitioners in other areas of the energy systems, and beyond, to ac-

quire a theoretical level understanding of basic RL techniques. 

The rest of this article is organized in the following manner. Section 2 addresses the 

various elements of HEMS in greater detail. Section 3 introduces basic ideas on reinforce-

ment learning. Further details of value-based RL and associated deep architectures are 

discussed in Section 4, while policy-based and actor–critic architectures—the other class 

of RL algorithms—are described in Section 5. Sections 6 and 7 discuss the results of the 

research survey: while Section 6 focuses on the application of RL, Section 7 is a study on 

the classes of algorithms that were used. The article concludes in Section 8, where the 

authors propose four metrics to evaluate the performances of RL algorithms in HEMS. 

2. Home Energy Management Systems 

HEMS refers to a slew of automation techniques that can respond to continuously or 

periodically changing the home/building’s internal as well as relevant external conditions, 

and without the need for human intervention. This section addresses the enabling tech-

nologies that make this an attainable goal. 

2.1. Networking and Communication 

All HEMS devices must have the ability to send/receive data with each other using 

the same communication protocol. HEMS provides the occupants with the tools that allow 

them to monitor, manage, and control all the activities within the system. The advance-

ments in technologies and more specifically in IoT-enabled devices and wireless commu-

nications protocols such as ZigBee, Wi-Fi, and Z-Wave made HEMS feasible [54,55]. These 

smart devices are connected through a home area network (HAN) and/or to the internet, 

i.e., a wide area network (WAN). 

The choice of communication protocol for home automation is an open question. To 

a large extent, it depends on the user’s personal requirements. If it is desired to automate 

a smaller set of home appliances with ease of installation, and operability in a plug-and-
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play manner, Wi-Fi is the appropriate one to use. However, with more extensive automa-

tion requirements, involving tens through to hundreds of smart devices, Wi-Fi is no longer 

the optimal choice. There are issues relating to scalability and signal interference in Wi-Fi. 

More importantly, due to its relatively high energy consumption, Wi-Fi is not appropriate 

for battery-powered devices. 

Under these circumstances, ZigBee and Z-Wave are more appropriate [56]. These 

communication protocols dominate today’s home automation market. There are many 

common features shared between the two protocols. Both protocols use RF communica-

tion mode and offer two-way communication. Both ZigBee and Z-Wave enjoy well estab-

lished commercial relationships with various companies, with tens of hundreds of smart 

devices using one of these protocols. 

Z-Wave is superior to than ZigBee in terms of the range of transmission (120 m with 

three devices as repeaters vs. 60 m with two devices working as repeaters). In terms of 

inter-brand operability, Z-Wave again holds the advantage. However, ZigBee is more 

competitive in terms of data rate of transmission as well as in the number of connected 

devices. Z-Wave was specially created for home automation applications, while ZigBee is 

used in a wider range of places such as industry, research, health care, and home automa-

tion [57]. A study conducted by [58] foresees that ZigBee is most likely to be the standard 

communication protocol for HEMS. However, due to the presence of numerous factors, it 

is still difficult to tell with high certainty if this forecast would take place in future. It is 

also possible that an alternative communication protocol will emerge in future. 

HEMS requires this level of connectivity to be able to access electricity price from the 

smart grid through the smart meter and control all the system’s elements accordingly (e.g., 

turn on/off the TV, control the thermostat settings, determine the charge/discharge battery 

timings, etc.). In some scenarios, HEMS uses the forecasted electricity prices to schedule 

shiftable loads (e.g., washing machine, dryer, electric vehicle charging) [54]. 

2.2. Sensors and Controller Platforms 

HEMS consists of smart appliances with sensors, these IoT-enabled devices com-

municate with the controller by sending and receiving data. They collect information from 

the environment and/or about their electricity usage using built-in sensors. The smart me-

ter gathers information regarding the total consumers’ consumption from the appliances, 

the peak load period, and electricity price from the smart grid. 

The controller can be in the form of a physical computer located within the premises, 

that is equipped with the ability to run complex algorithms. An alternate approach is to 

leverage any of the cloud services that are available to the consumers through cloud com-

puting firms. 

The controller gathers information from the following sources: (i) the energy grid 

through the smart meter, which includes the power supply status and electricity price, (ii) 

the status of renewable energy and the energy storage systems, (iii) the electricity usage 

of each smart device at home, and (iv) the outside environment. Then it processes all the 

data through a computational algorithm to take specific action for each device in the 

whole system separately [5]. 

2.3. Control Algorithms 

AI and machine learning methods are making deep inroads into HEMS [10,59]. 

HEMS algorithms incorporated into the controller might be in the form of simple 

knowledge-based systems. These approaches embody a set of if-then-else rules, which 

may be crisp or fuzzy. However, due to their reliance on a fixed set of rules, such methods 

may not be of much practical use with real-time controllers. Moreover, they cannot effec-

tively leverage the large amount of data available today [5]. Although it is possible to 

impart a certain degree of trainability to fuzzy systems, the structural bottleneck of con-

solidating all inputs using only conjunctions (and) and disjunctions (or) still persists. 
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Numerical optimization comprises of another class of computational methods for the 

smart home controller. These methods entail an objective function that is to be either min-

imized (e.g., cost) or maximized (e.g., occupant comfort), as well as a set of constraints 

imposed by the underlying physical HEMS appliances and limitations. Due to its simplic-

ity, linear programing is a popular choice for this class of algorithms. More recently, game 

theoretic approaches have emerged as an alternative approach for various HEMS optimi-

zation problems [5]. 

In recent years, artificial intelligence and machine learning, more specifically deep 

learning techniques, have become popular for HEMS applications. Deep learning takes 

advantage of all the available data for training the neural network to predict the output 

and control the connected devices. It is very helpful to forecast the weather, load, and 

electricity price. Furthermore, it handles non-linearities without resorting to explicit math-

ematical models. Since 2013, there have been significant efforts directed at using deep 

neural networks within an RL framework [60,61], that have met with much success. 

3. Overview of Reinforcement Learning 

3.1. Deep Neural Networks 

A deep neural network (DNN) is a trainable highly nonlinear function approximator 

of the form �(∙): ℛ� → ℛ�  where � and � are the dimensionalities of the input and 

output spaces. Structurally, the DNN consists of an input layer and output layer, and at 

least one hidden layer. The input layer receives the DNN input vector �. The neurons in 

any other layer receive, as their inputs, the weighted outputs of neurons in the preceding 

layer. The weights of the DNN make up its weight parameter, denoted �. For simplicity, 

we consider DNNs with scalar outputs so that �(∙): ℛ� → ℛ. The actual output of the 

DNN is represented as �(�|�), which is that of the sole neuron in the output layer. 

In a typical regression application, the DNN’s training set �  consists of pairs 

��(�), �(�)� ∈ � where � = 1, . . . , |�| is the sample index (for the sake of conciseness, this 

relationship is often denoted as � ∈ � in this article). The quantity �(�) is the target, or 

desired output. During training, � is updated in steps so that for each input �(�), the 

DNN’s output �(�) is as close as possible to �(�). Supervised learning algorithms aim to 

minimize the DNN’s loss function ��(�). The subscript � indicates that the loss is an em-

pirically estimate over the sample in �. A popular choice of the latter is the averaged 

squared �� norms of the difference between the target and output for all samples in �, 

��(�) =
1

2

1

|�|
���(�(�)|�) − �(�)�

�

�∈�

 (1)

Training the DNN comprises of multiple passes called epochs, with each epoch com-

prising of one pass through all samples in �. In stochastic gradient descent (SGD), with � ≪

1 being the learning rate, the parameter � is incremented once for every sample � ∈ � as, 

� ← � − ���(�(�)|�) − �(�)�∇��(�(�)|�)  (2)

This increment is equivalent to a single gradient step with �(�) =
�

�
��(�(�)|�) −

�(�)�
�
. 

While SGD is useful in many online applications, minibatch gradient descent is the most 

common training method. In each epoch, �  are divided into non-overlapping mini-

batches ℬ� ⊂ � (i.e., ⋃ ℬ�� = �, and � ≠ � ⇒ ℬ� ∩ ℬ� = �). The parameter � is updated 

once for every minibatch ℬ as, 

� ← � − �
1

|ℬ|
���(�(�)|�) − �(�)�

�∈ℬ

∇��(�(�)|�)  (3)

One of the advantages of training in minibatches is that the trajectory taken by the 

training algorithm is straightened out, thereby speeding up convergence. It can be seen 
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that the loss function is �ℬ(�), which is identical to that in Equation (1), with sample set 

ℬ. 

Typically, the loss function includes an additional regularization term designed to 

keep the weights in � low in order to prevent overfitting; overfitting results in poorer 

performance after the DNN is deployed into the real world. Nowadays, faster training is 

accomplished by using extensions of gradient descent such as ADAM. These as well as 

many other important aspects of DNNs and training algorithms have not been addressed 

here; the above discussion minimally suffices to understand how DNNs are used in rein-

forcement learning (RL). A brief exposition to DNNs is available at [62]. For a rigorous 

treatment of DNNs, the interested reader is referred to [63]. 

3.2. Reinforcement Learning 

An agent in RL is a learning entity, such as a deep neural network (DNN) that exerts 

control over a stochastic, external environment by means of a sequence of actions over time. 

The agent learns to improve the performance of its environment using reward signals that 

it receives from the environment. 

Rewards are quantitative metrics that indicate the immediate performance of the en-

vironment (e.g., average instantaneous user comfort). The sets � and � are the state and 

action spaces and can be discrete or continuous. Everywhere in this article it is assumed 

that all temporal signals are sampled at discrete, regularly spaced intervals [62]. At each 

discrete time instance �, the current state �� ∈ � of the environment is known to the agent, 

which then implements an action �� ∈ �. The environment transitions to the next state 

���� with a probability �(����|��, ��) while returning an immediate reward signal �� ≡

�(��, ��, ����); where �(∙): � × � × � → ℛ denotes the environment’s reward function that 

it unknown to the agent. The transition can be denoted concisely as ��

��,��
�⎯� ����. The overall 

schematic is shown in Figure 1. 

Instead of greedily aiming to improve the immediate reward �� at every time in-

stance �, the agent may be iteratively trained to maximize the sum of the immediate and 

the weighted future rewards, which is called the return, 

�� = �� + � ���
�����

���

����

 (4)

The quantity � ∈ [0,1] is called the discount factor. This lookahead feature prevents 

the agent to learn greedy actions that fetch large instantaneous rewards, �� at each instant 

�, while adversely affect the environment later on. The process begins at time � = 0 and 

terminates at time � = �, the time horizon. The environment’s initial state at � = 0 is de-

noted as �� ∈ � . The initial state may be probabilistic, following a distribution �� . It 

should be noted that if � = ∞, then the discount must be less than unity (� < 1) so that 

the return �� stays finitely bounded at all times �. 

 

Figure 1. The quantities shown are associated with the transition ��

��,��
�⎯� ����. Although the agent is 

depicted as a neural network (cf. [62]), it may be in the form of a tabular structure. 
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The 5-tuple (�, �, �, �, �) defines a Markov decision process (MDP). The initial state 

distribution �� is assumed to be subsumed by the transition probabilities �. The MDP 

can be viewed as an extension of a discrete Markov model. 

The entire sequence of states, actions, and rewards is an episode, denoted ℰ, so that, 

ℰ ≡ ��

��,��
�⎯� ��

��,��
�⎯� �� ⋯

����,����
�⎯⎯⎯⎯⎯⎯� ��

 (5)

The policy can be deterministic or stochastic. A deterministic policy can be treated as 

a function �: � → � (see Figure 1) so that �� = �(��), whereas a stochastic policy � rep-

resents a probability distribution over � such that ��~�(��). In several domains, the 

probability distribution is determined from the nature of the application itself. 

During an episode, the action taken by the agent is in accordance with a policy � ∈ Π, 

where Π is the policy space. From the Markovian (memoryless) property of the MDP, it 

follows that the optimal action of an agent at each state in terms of its stated goal of max-

imizing the total return �� , is independent of all previous states of the environment. 

Therefore, the action �� taken by the agent at time � under policy � is based solely on 

the state ��, and the prior history of states and actions need not be taken into account. 

The overall aim of reinforcement learning is usually to maximize an objective func-

tion �(∙). Let �(ℰ) denote the total return �� of a given episode ℰ. If the MDP is initial-

ized to any state � ∈ � at � = 0 (such that �� = �), the expected value of this return which 

is dependent on policy � may be expressed as, 

��(�) = ��[��|�� = �]  (6)

The operator ��[∙] is the expectation when all episodes are generated by the MDP 

under policy �. When it follows the MDP’s initial state distribution, i.e., ��~�, the expec-

tation may be denoted simply as �� without any argument. This informal function over-

loaded convention is adopted throughout this manuscript as there are other ways to de-

fine the objective function. The policy that at each state � implements the action that max-

imize ��(�) is referred to as the optimal policy and represented as �∗. 

3.3. Taxonomy of Algorithms 

RL methods can be classified in several ways. In model-free training, RL takes place 

with the agent connected to the real-world environment, whereas in model-based RL, the 

agent is trained using a simulation platform to represent the environment. 

In model-based RL, as the transition probabilities and the reward function are avail-

able through the environmental model platform, the algorithm must be implemented in 

an offline manner. Of more practical interest is online RL where the agent can be trained in 

real time by interacting with the real physical environment as shown in Figure 1. Alt-

hough online RL is considered to be model-free, practically all research papers report the 

use of HEMS models for training [49]. 

In on-policy RL, a referential policy �∗, such as that of a human, is considered to be 

the optimal policy and is known a priori. The goal of RL is to learn a policy � ≅ �∗. In off-

policy approaches, the goal is to obtain the optimal policy �∗, which maximizes ��(�) in 

Equation (6). 

Another fundamental trichotomy of the plethora of RL approaches used today in-

cludes value-based RL, policy-based RL, and actor–critic RL, the latter having emerged more 

recently. Actor–critic methods are hybrid approaches that borrow features from value-

based as well as policy-based RL [64]. The classification of various approaches used in 

HEMS applications is shown in Figure 2. These are also described at great length in this 

article, which may be used as a tutorial style exposition to RL for the interested reader. 
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Figure 2. Taxonomy of Deep Reinforcement Learning. Classification of all deep reinforcement 

learning methods that are described in this article are shown. Section 3.2 provides a description of 

each class. (See also [64].) 

4. Value-Based Reinforcement Learning 

Historically value-based RL, first proposed in [65], heralds the advent of the broad 

area of reinforcement learning as a distinct branch of AI. These approaches are based on 

dynamic programming. The formal definition of an MDP was introduced shortly thereaf-

ter [66,67]. As noted earlier, an MDP is memoryless. An implication of this feature is that 

when the environment is in any given state �� = � at any instant �, the prior history ��
��,��
�⎯� ��

��,��
�⎯� ⋯

����,����
�⎯⎯⎯⎯⎯� is not of any consequence in deciding the future course of actions 

[19]. Accordingly, one can define the state–action value, or Q-value of the state � ∈ � and 

for each action � ∈ �, as the expected return when taking � from � (cf. [19]), 

�(�, �) ≜ ��[��|�� = �, �� = �]  (7)

Referring to a specific policy � may be achieved by using a superscript in the above 

equation, so that the left-hand side of Equation (7) is written as ��(�, �). 

It must be noted that even under a deterministic policy, ��(�, �) can still be defined 

for any action � ≠ �(�) merely by treating � as an evaluative action and following the 

policy at all future times. Whence (cf. [19]), 

��(�, �) = � �(��|�, �) ��(�, �, ��) + � � �(�′|��)

��∈�

��(��, ��)�

��∈�

 (8)

The Q-value function ��: � × � → ℛ can be defined using (6) irrespective of whether 

the policy is stochastic or deterministic. In case of a deterministic policy, Equation (8) can 

be applied by letting �(�′|��) = 1 when �� = �(��), and �(�′|��) = 0 otherwise. 

A stochastic policy is intrinsic to many real-world applications. For instance, in order 

to decrease the ambient temperature by manually lowering the thermostatic setting, the 

final setting involves a degree of randomness arising from human imprecision. In multi-

agent environments, the best course may often be to adopt a stochastic policy. As an ex-

ample, in a repeated game of rock–paper–scissors, randomly selecting each action (‘rock’, 

‘paper’, or ‘scissors’) with equal probabilities of ⅓ is the only policy that would ensure 

that the probability of losing a round of the game does not exceed that of winning. 

From a machine learning standpoint, stochastic policies help explore and assess the 

effects of the entire repertoire of actions available in �. Such exploration is critical during 

the initial stages of the learning algorithm. The two most commonly used stochastic poli-

cies are the �-greedy and the softmax policies. Under an ϵ-greedy policy �, the probability 

of picking an action � when the environmental state is � is given by, 

DEEP R E INFORCEMENT L EARN ING

POLICY GRADIENT

REINFORCE

TRPOPPOA2C

TD3

DDPGSAC

A3C

OFF-POLICY

ON-POLICY

ACTOR-CRITIC

NFQI

DDQN

Dueling-DQN

VALUE-BASED

DQN
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�(�|�) = �

�

|�|
+ (1 − �), � = argmax

��∈�
�(�, ��)

�

|�|
 , � ≠ argmax

��∈�
�(�, ��)

 (9)

It is always a good idea to lower the parameter � steadily so that as learning pro-

gresses, the agent is greedier—being likelier to select actions with the highest Q-values, 

argmax�� �(�, ��). The softmax policy is the other popular method to incorporate explora-

tion into a policy. The probability of applying action � under such a policy � is, 

�(�|�) = � � �
���,���

�

��∈�

�

��

�
�(�,�)

�  (10)

Initialized to a high value, the Gibbs–Boltzmann parameter � may be steadily low-

ered as the learning algorithm progresses, so that the policy becomes increasingly exploi-

tative, that is, taking the action with the highest Q-value more often. Unless specified oth-

erwise, it shall be assumed hereafter that the policy space Π is stochastic so that actions 

follow probability distribution (�~�(�)). 

Exploration is applied to stochastically search and evaluate the available repertoire 

of actions at each state, before converging towards the optimal one. It is an essential com-

ponent of value-based RL. Since exploitation is the strategy of picking the best actions in 

Π, it should not be applied until the algorithm has all actions in a sufficient manner. How-

ever, endowing the learning algorithm with too much exploration slows down the learn-

ing. Identifying the right tradeoff between exploration and exploitation is a widely stud-

ied problem in machine learning [68]. It is for this reason that the parameters � in Equa-

tion (9), and � in Equation (10) are steadily lowered as learning progresses. 

Instead of an evaluative action �, suppose the policy � is applied from state � (so 

that either � = �(�) or �~�(�)), then the expected return is called the state’s value, 

�(�) ≜ ��[��|�� = �]  (11)

As with the Q-value function, the policy � becomes explicit if the value of � is writ-

ten as ��(�). The value of � can be expressed in terms of Q-values as, 

�(�) ≡ � �(�|�)��(�, �)

�

= ��~�(�)[��(�, �)]  (12)

The difference between value of any state � and the Q-value of implementing an 

action � from � under policy is the advantage function, so that, 

��(�) ≡ ��(�, �) − ��(�)  (13)

Although the preferred notation in this manuscript is to use lowercase letters to de-

note variables, the advantage function is represented using uppercase as the lowercase � 

is reserved to denote an action. 

The value function �: � → ℛ allows the optimal policy �∗ to be defined in a formal 

manner. If the objective function with the MDP initialized to some �� ∈ � is defined as in 

Equation (6), then it is evident from Equation (10) that ��(��) = �(��). Furthermore, if the 

MDP visits state �� = � at the instant �, then from Equation (4), 

��[��] = �� + ��� + ⋯ + �������� + ����(�)  (14)

At this stage, we invoke the memoryless property of the underlying MDP. At instant 

� the partial sum of the terms �� + ��� + ⋯ + �������� in the right-hand side are part of 

the episode’s history, while ����(�) is the expected future return. The optimal policy at 

every such state � is to implement the action that maximizes ��(�), so that, 

�∗(�) ≜ argmax
�∈�

�� (�)  (15)
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When the policy �∗ is deterministic, it can also be inferred that the optimal action 

from state � is to select the action with the highest Q-value. From Equation (15) it follows 

that, 

�∗ ≜ argmax
�∈�

�∗(�, �)  (16)

The Q-value �∗(�, �) is equal to ��∗
(�, �). It can be mathematically established that 

the Q-values corresponding to the optimal policy are higher than those associated with 

other policies, i.e., �∗(�, �) ≥ ��(�, �) [69]. 

The Bellman’s equation for optimality follows from the above consideration, 

�∗(�, �) = � �(��|�, �) ��(�, �, ��) + � max
��∈�

�∗(��, ��)�

��∈�

 (17)

The difference between Equation (8) and Equation (17) is in the second term in each 

summand. The policy-based Q-value in Equation (8) is replaced with the maximum Q-

value in Equation (17). A mathematically rigorous coverage of various RL methods can be 

found in the seminal book [70] that is available online. 

4.1. Tabular Q-Learning 

The simplest possible implementation of the Q-learning algorithm is tabular Q-learn-

ing where an |�| × |�| sized array is maintained to store �(�, �) for every state–action 

pair [71]. Initialized to either zeros or small random values, the tabular entries are period-

ically updated. As it is an online approach, Q-learning cannot use transition probabilities 

�(��|�, �). For each transition �
�,�
�� ��, the tabular entry for �(�, �) is incremented as, 

�(�, �) ← (1 − �)�(�, �) + ��  (18)

The quantity � is the learning rate; usually � ≪ 1. The quantity � is the target, 

� = � + � max
��∈�

�(��, ��)  (19)

In order to impart an exploratory component to Q-learning, the action � must be 

selected probabilistically as in Equation (9) or Equation (10). In many cases, increments 

are applied in real time at the end of each time instance. It can be shown mathematically 

that the tabular entries converge towards the maximum values, �∗(�, �) [69], implying 

that Q-learning is an off-policy approach. The fully trained agent can select actions as per 

Equation (16) during actual use. 

SARSA (State–Action–Reward–State–Action) [70,72] is the on-policy RL algorithm that 

can be implemented in a tabular manner. The update rule for SARSA is identical to the 

earlier expression in Equation (19). However, since SARSA is an on-policy algorithm, the 

target is specific to the policy � and is given by, 

� = � + �����, �(��)�  (20)

Both Q-learning and SARSA use the tabular entries �(��, ��) of the environment’s 

new state �� following the transition �
�,�
�� ��. The difference is in how the entries are used. 

Whereas Q-learning uses the tabular entry corresponding to the action �� with the high-

est �(��, ��), SARSA applies the specified policy �, using �(��, ��), the Q-value of the ac-

tion �� = �(��). This difference is analogous to that between Equation (17) and Equation 

(8). 

Tabular Q-learning and SARSA can handle continuous state as well as action spaces 

by discretizing them into a finite and tractable number of subdivisions. Unfortunately, 

such tabular learning methods cannot be applied in many large-scale domains. This is 

because too many discrete levels would make the algorithm computationally too intensive 

if not outright intractable. 

When the state space � is too large (e.g., |�| ≈ 7.73 × 10�� in chess), tabular learn-

ing becomes prohibitively expensive not only in terms of storage requirements but also in 
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terms of computational time needed by the RL algorithm. DQNs are well equipped to 

handle such large discrete as well as continuous state spaces [73]. However, |�|, the car-

dinality of the action space, must still be tractably small. In a DQN the mapping from 

every state action pair (�, �) to its Q-value is carried out by means of a DNN. 

In reality, the DNN input is some feature vector �(�) of the state �, where �: � →

ℛ� and � is the dimensionality of the feature space. In the same manner, the action � 

can be represented in terms of its feature vectors. However, as |�| is small, it is assumed 

that the action � itself is the other input. In practice, a unary encoding scheme may be 

used to represent actions. For instance, if |�| = 4, the four discrete actions may be en-

coded as 0001, 0010, 0100, and 1000. Under these circumstances, the actual input to the 

DNN is (�(�), �), and its actual output is �(�(�), �|�). For simplicity we will treat the 

DNN input as (�, �)  and the output as �(�, �|�) , that is, (�, �) ≡ (�(�), �) , and 

�(�, �|�) ≡ �(�(�), �|�). The Q-value �(�, �|�) is conditioned in terms of the weight pa-

rameter � in this manner so as to explicitly reflect its dependence on the latter. 

4.2. Deep Q-Networks 

There are two possible ways in which the mapping of a state–action pair (�, �) to its 

Q-value �(�, �|�) can be accomplished, which are as follows. 

(i) A different DNN for each action is maintained, so that the total of DNNs in this 

arrangement is |�|. The state � (encoded appropriately using the state’s features), 

serves as the common input to all the DNNs. 

(ii) A single DNN with separate inputs for state � and action � is maintained and its 

output is �(�, �|�). While this manner of storing Q-values requires the use of only a 

single DNN, in order to obtain max �(�, �|�) , the actions must be applied 

sequentially to it. 

The two schemes are depicted in Figure 3. 

 

Figure 3. Deep Q-Network Layouts. One scheme uses a uses a separate DNN for each action (top). 

The other scheme uses only one DNN that receives actions as another input (bottom). 

Stochastic gradient descent can be applied in a straightforward fashion to train the 

weight parameter � as in Equation (2) for the squared error loss 
�

�
�� − �(�, �|�)�

�
, and 

with the DNN’s output � now being �(�, �|�), 

� ← � − �(�(�, �|�) − �)∇��(�, �|�)  (21)
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This simple approach is the neural-fitted Q-iteration (NFQI) that was proposed in [74]. 

The target �(�) is determined in accordance with Equation (19) with �(��, ��|�) used to 

obtain the target � so that � = � + � max
��∈�

�(��, ��|�). When using tabular entries in place 

of �, it becomes the fitted Q-iteration (FQI) When the learning agent interacts with the en-

vironment, the actions are generally selected using the ϵ-greedy method shown in Equa-

tion (9). 

Temporal correlation in real-time training samples is an unfortunate drawback when 

directly implementing stochastic gradient descent. Unlike in tabular learning, in DQN up-

dating � changes not only the output �(�, �|�) for the relevant state–action pair (�, �) 

but the Q-values �(��, ��|�) of every other pair (��, ��) ≠ (�, �) as well. The change may 

be barely noticeable when �� is at a large distance from � within the feature space �(�); 

unfortunately, this is not usually the case in most real-world domains. 

Consider two successive transitions ��

��,��
�⎯� ����

����,����
�⎯⎯⎯⎯⎯�. Due to the property of tem-

poral correlation between successive states, it is highly reasonable to expect that the dis-

tance ‖�(��) − �(��+1)‖  is very small. Therefore, applying Equation (21) to update 

�(��, ��|�) will have an undesirable yet pronounced effect on �(��+1, ��+1|�). A similar ar-

gument holds for time sequences of actions as well. 

To address the ill effects of temporal correlatedness, DNN training is carried out only 

after the completion of an episode or multiple episodes, during which time the DQN agent 

is allowed to exert control over the environment, while � remains unchanged. All train-

ing samples are stored in an experience replay buffer ℬ [75], which plays the role of a mini-

batch in DNN training. After enough training samples have been accumulated in ℬ, it is 

shuffled randomly before incrementing �. The increment may be implemented either as 

in Equation (21), or through minibatch gradient descent as indicated earlier in Equation 

(3) with �(�, �|�) replacing �(�|�) (see Figure 4). For convenience, the update is shown 

below, 

� ← � − �
1

|ℬ|
���(�(�), �(�)|�) − �(�)�

�∈ℬ

∇��(�(�), �(�)|�)  (22)

The buffer ℬ is flushed before the next cycle begins with the updated parameter �. 

An improvement over this scheme is prioritized replay [76], where the probability of a 

getting selected chosen for a training step is proportional to �� − �(�, �|�)�
�

+ �. The small 

constant � > 0 is added to the squared loss term to ensure that all samples have non-zero 

probabilities. 

Target non-stationarity is another closely related problem that arises in DQNs, one that 

is not seen in tabular Q-learning. For any given sample transition �(�)
�(�),�(�)
�⎯⎯⎯⎯⎯� ��(�) as 

the DNN weight parameter � is incremented in accordance with Equation (21), an unde-

sirable effect is that the target �(�) also changes. This is because the target is determined 

as �(�) = � + � max
��∈�

�(��, ��|�) and this DNN is used to obtain �(��(�), ��|�). Target non-

stationarity is handled by storing an older copy ������� of the primary DNN � in memory 

and using this stored copy to compute the target �(�). Effectively, the RL algorithm main-

tains a separate target DNN parametrized by �������. Thus, the target is, 

�(�|�������)  = �(�)  + � max
��∈�

�(��(�), ��|�������)  (23)

The target DNN’s weight parameter is updated infrequently, and only after � un-

dergoes a significant amount of training. In this manner, the targets remain stationary 

when training the primary DNN’s parameter � so that gradient descent steps can be im-

plemented in a straightforward manner using terms 
�

�
��(�(�), �(�)|�) − �(�|�������)�

�
 in 

the loss function �(�). This scheme is shown in Figure 5. 
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Figure 4. Replay Buffer. Shown are the replay buffer, environment, and agent. The pathways are 

involved during the agent’s interaction with the environment (solid blue) and training (dashed red). 

 

Figure 5. Use of Target Network. The scheme used to correct temporal correlatedness is shown. 

Pathways for control (solid red), learning (dashed green), and intermittent copying (dashed, thick 

blue) are shown. The replay buffer has been omitted for simplicity. 

Overestimation bias [77,78] is another problem frequently encountered in stochastic 

environments. This is an outcome of maximization. As an example, consider an MDP with 

� = {�, �, �} where � is the terminal state. This is shown in Figure 6. The action space 

� = {��|� = 1,2, . . . , �} where � is relatively large, is available to the agent. From state 

�, only action �� leads to � whereas the remaining ones, �� through ����, lead to �. 

The reward received from state � is always zero, (i.e., �(�, ��) = 0. From state � all ac-

tions lead to �, with the reward being either −3 or +1 and with equal probabilities of 

���. In other words, the possible transitions are �
��,�
�⎯� �, �

����,�
�⎯⎯⎯� �, �

��,�∈{��,�}
�⎯⎯⎯⎯⎯⎯� �. Since 

the rewards of −3 and 1 have the same probability when the environment transitions 

from � to �, the expected reward from � to � is −1 i.e., �[�(�, ��, �)] = −1. For sim-

plicity, let us assume that � = 1. The Q-values for some actions would be updated to −3, 

whereas those of others, to +1. Since � is large enough, it is very likely that at least one 

of them, say �� has the higher of the two. Consider the Q-values of actions from state �. 

It is clear that for � = 1 through � − 1, �(�, ��) = 0. However, when the agent selects 

action �� from �, thereby reaching �, the operation max
�∈�

 �(�, �) is likely to return +1 
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so that �(�, ��) would be updated to �max
�∈�

 �(�, �) = �. This makes �� appear to be the 

optimal action from state �, when in fact it is the worst choice in �. 

 

Figure 6. Overestimation Bias. This example is used to illustrate the effect of overestimation bias 

(see text for complete explanation). 

Double Q-learning [79] is a popular approach to circumvent overestimation bias in off-

policy RL (see Figure 7). Although first proposed in a tabular setting [77], more recent 

research implements double Q-learning in conjunction with DNNs, which is called the 

double deep Q-network (DDQN). It incorporates two DNNs with the parameters �� and 

�� . Samples are collected by implementing actions using their mean Q-values, 
�

�
��(�, �|��) + �(�, �|��)� . For each sample transition �(�)

�(�),�(�)
�⎯⎯⎯⎯⎯� ��(�)  in ℬ  during 

training, one of the two DNNs, say DNN � (� ∈ {1,2}), is picked randomly and with equal 

probability to compute the target, and the other DNN, � ̅ is trained with it. Whence, 

�

�(�) = �(�)  + � max
��∈�

�(��(�), ��|��) 

��̅ ← ��̅ − � ���(�(�), �(�)|��̅) − �(�)�

�∈ℬ

∇��� �(�(�), �(�)|��̅)
 (24)

Each DNN has a 0.5 probability of getting trained with the transition sample. This is 

the manner of updating that was originally proposed in [77]. 

An extension of DDQN is clipped DDQN [80–82]. Instead of selecting the target ran-

domly, it is obtained as minimum of the Q-values, �(��(�), ��|��) and �(��(�), ��|��), 

�(�) = �(�) + � min
�∈{�,�}

max
��∈�

�(��(�), ��|��)  (25)

Dueling DQN architectures (Dueling-DQN) [83] use a different scheme to avoid over-

estimation bias (see Figure 8). It divides the state–action value �(�, �) into two parts, the 

state value �(�)  and the state–action advantage �(�, �) . As shown in Equation (13), 

�(�, �) is the difference between the two quantities. The advantage of action � in state �, 

�(�, �) is the expected gain in the return obtained by picking action �. The DNN layout 

consists of an input layer for the state �. After a few initial preprocessing layers, it splits 

into two separate pathways, each of which is a fully connected DNN. Letting the symbols 

�� and �� denote the weight parameters of the pathways, the scalar output of the value 

pathway is the state’s value, �(�|��) and the output of the advantage pathway is an |�| 

dimensional vector comprising of the advantages �(�, �|��) of all available actions in �. 

The Q-value of the state–action pair (�, �) can be obtained in a straightforward manner 

as provided in the following equation, 

�(�, �|�) = �(�|��) − |�|�� � �(�, ��|��)

��

 (26)

The quantity � denotes the set of all weight parameters of the dueling-DQN, includ-

ing �� and �� as well as those present in the earlier preprocessing layers. 
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Figure 7. Double DQN. One DQN (�� or ��) is picked at random and its Q value (�� or ��) is used 

to obtain the target (�), which is used to train the other DQN. For simplicity only the pathways 

involved in training are shown. The target pathways are depicted with dotted lines. 

 

Figure 8. Dueling DQN. Shown is the dueling DQN architecture. The two outputs of the DNN are 

parametrized by �� and ��. The target pathway (dotted green) is for training. 

5. Policy-Based and Actor–Critic Reinforcement Learning 

Like tabular Q-learning, tabular policy-based RL uses an array of Q-values. Initial-

ized with an arbitrary policy �, the tabular policy RL algorithm is an iterative process 

comprising of two steps [70,84]. Policy evaluation is carried out in the first stage, where 

Q-values ��(�, �) are learned as shown in Equation (18) and Equation (20). In the second 

step, the policy is refined by defining the action for each state as shown in Equation (16). 

The two-step process is repeated until the policy can be refined no further. 

Gradient descent policy learning methods do not directly draw upon tabular policy 

learning in the same way that value-based learning does. These methods are realized 

through DNNs as the agents. An attractive feature of deep policy RL is its intrinsic ability 

to handle continuous states as well as continuous actions. 

5.1. Deep Policy Networks 

Policy gradient uses an experience replay buffer ℬ is the same manner as a DQN. 

The buffer stores full episodes of sequences. Instead of using Equation (6), it is convenient 

to directly express the loss function in terms of episodes ℰ and the DNN’s weight param-

eter �, in the following manner, 

�(�) = �ℰ~��
[�(ℰ)]  (27)

Policy gradient methods try to maximize this loss. The operator �ℰ~��
[∙] is the ex-

pected with the DNN agent operating under the probabilistic policy ��. The initial state 

�� in the above expression is implicitly defined in ℰ. Moreover, the distribution of �� 

within � is in accordance with the underlying MDP. The quantity �(ℰ) is the total return 

�� of episode ℰ starting from � = 0. 

Note that for a transition �
�
→ ��, the reward �(�, �, ��) is a feedback signal that is de-

termined by the environment (such as a home or residential complex) which is external to 

the agent. So is the discounted, aggregate return �(ℰ), which is also equal to that in 
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Equation (4). No function �: �� × �� → ℛ that maps a sequence of states and action of 

time horizon � to a return is available to the agent. Consequently, a straightforward gra-

dient descent step in the direction of ∇��(ℰ) cannot be applied. In an apparent paradox, 

it turns out that its expected value �ℰ~��
[�(ℰ)], can be differentiated by the agent, which 

is also the rationale behind expressing the loss as in Equation (27). This is due to a math-

ematical result known as the policy gradient theorem [14,85,86]. The policy gradient theorem 

establishes the theoretical foundation for the majority of deep policy gradient methods. It 

can be stated mathematically as below, 

∇��ℰ~��
[�(ℰ)] = �ℰ~��

[�(ℰ)∇� log �(ℰ|�)]  (28)

The significance of the theorem is that the gradient of the expected return, 

�ℰ~��
[�(ℰ)] does not require the gradient of the return �(ℰ). Only the log probability of 

the episode ℰ must be differentiated. Fortunately, this gradient can readily be computed 

by the DNN agent. The probability of a transition ��

��,��
�⎯� ���� in ℰ (see Equation (5)) is the 

product ��(��|��)�(����, ��|��, ��); its logarithm is log ��(��|��) + log �(����, ��|��, ��). The 

second term is intrinsic to the environment, and independent of the DNN so that differ-

entiating it with respect to �  is zero. Since log �(ℰ|�)  is the product 

�(��) ∏ ��(��|��)�(����, ��|��, ��)� , we arrive at the following interesting result, 

∇� log �(ℰ|�) =
1

�
� ∇� log ��(��|��)

�

 (29)

The left-hand side of Equation (28) to be estimated rather easily using the expression 

in Equation (29). This is because the policy ��  is, in fact, based on the DPN output. 

Whereas [85] uses softmax policies as in Equation (10), it is quite usual in later research to 

adopt Gaussian policies (cf. [14]). Since �� is the same policy that is used to obtain tran-

sition samples, Equation (28) pertains to on-policy learning. 

The expected gradient �ℰ~��
[�(ℰ)∇� log �(ℰ|�)] can be estimated as the average of 

several Monte Carlo samples of episodes (also called rollouts) ℰ(�), � = 1, . . . , � that are 

stored in ℬ. This provides an estimate of the gradient of the loss function defined in Equa-

tion (27). An early policy gradient method, REINFORCE [73] uses Equation (29) to incre-

ment �. The REINFORCE on-policy update rule is expressed as, 

� ← � + �
1

|ℬ|�
� ���ℰ(�)� − �� � ∇� log �����(�)|��(�)�

��∈ℬ,�

 (30)

In the above expression, it is assumed for simplicity that the time horizon is fixed 

across all � samples. The quantity � is called the baseline [87]. It can be set to zero in the 

basic implementation of policy learning. Figure 9 shows a schematic of this approach. 

Unfortunately, when the bias � = 0, the variance in the set of samples of the form, 

��ℰ(�)� ∑ ∇� log �����(�)|��(�)����
���  becomes too large. This in turn requires a very large 

number of Monte Carlo episode samples to be collected. Including the baseline in Equa-

tion (30) that is close to �ℰ~��
[�(ℰ)] helps reduce the variance to tractable limits. The the-

oretical optimal baseline estimate is given by, 

� =
�ℰ~��

[�(ℰ)(∇� log �(ℰ|�))�]

�ℰ~��
[(∇� log �(ℰ|�))�]

 (31)

There are ways to obtain reasonable baseline estimates in practice that reduce the 

variance without affecting the bias [87,88]. The purpose of actor–critic architectures, which 

will be described subsequently, are also designed to obtain reliable bias estimates. Before 

proceeding further, we will make improvements to Equation (30) on the basis of the fol-

lowing two observations. 

The first observation is that in Equation (30) the gradient ∑ ∇� log �����(�)|��(�)� 

linked with ℰ(�) is weighted by ��ℰ(�)� − � in the outer summation. In this manner, 

the episode ℰ(�) would receive a higher weight if it fetched a higher return. However, 
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the weighting scheme is rather arbitrary. For instance, with � = 0, if all returns were non-

negative, then all gradients would receive positive weights. On the other hand, suppose 

the bias � were to be replaced with the expected return, then the gradients of the episodes 

with lower-than-expected returns would receive negative weights, whereas those with 

better-than-expected returns would be assigned positive weights. Using Equation (11), it 

is observed that the bias � is also the value of the starting state �(��). Our first improve-

ment would be to replace the bias with a value function. 

 

Figure 9. Policy Gradient with Baseline. Shown is the overall scheme used in REINFORCE with 

the baseline. There are different ways to implement the baseline. 

The second observation is subtler, requiring the scrutiny of the weighting scheme at 

each time instant �. To simplify the discussion, it will be assumed that the discount � =

1. Consider the episode ℰ(�) consisting of transitions of the form ��(�)
��(�),��(�)
�⎯⎯⎯⎯⎯⎯� ����(�). 

Ignoring � , the corresponding term in the inner summation, which is 

∇� log �����(�)|��(�)�, is weighted by the return ��ℰ(�)� = ��(�) + ⋯ + ����(�) + ��(�) +

⋯ + ��(�). At time instant �, the prior rewards ��(�) until ����(�) represent the past his-

tory of the episode ℰ(�); it has no role in how good the action ��(�) was from state ��(�). 

Removing these terms, the weight becomes ��(�) + ����(�) + ⋯ + ��(�), which is, in fact, 

�(��(�), ��(�)|�). Replacing ��ℰ(�)� in Equation (30) with �(��(�), ��(�)|�) is the other 

improvement. Once the prior history of the episode is removed, the bias must be set to 

�(��(�)|�) instead of �(��). 

From the above discussion, it is seen that each factor ��ℰ(�)� − � in Equation (30) 

should be replaced with �(��(�), ��(�)|�) − �(��(�)|�). From Equation (13), this is the ad-

vantage function �(��(�), ��(�)|�), so that we replace the step original increment rule 

with the following update rule, 

� ← � + �
1

|ℬ|�
� �(��(�), ��(�)|�)∇� log �����(�)|��(�)�

�∈ℬ,�

 (32)

5.2. Natural Gradient Methods 

One of the problems associated with policy gradient learning approaches as in Equa-

tion (30) or Equation (32) is choosing an adequate learning rate �. Too small a value of � 

would necessitate a large training period, whereas a value that is too large would produce 

a ‘jump’ in � large enough to yield a new policy that is too different from the previous 

one. Although there are several reliable methods to address this effect in gradient descent 

for supervised learning as in Equation (3), it is too pronounced in RL diminishing the 

efficacies of such methods. In extreme cases, a seemingly small increment along the direc-

tion of the gradient may lead to irretrievable distortion of the policy itself. The underlying 

reason behind this limitation is that unlike in Equation (1), the loss function in Equation 

(25) incorporates a probability distribution. 

The change in any policy whenever a perturbation is applied to the parameter should 

not be quantified in terms of the norm �� − �����, but using the Kullback–Leibler diver-

gence between to the distributions �� and ����� [89]. The K-L divergence is denoted as 
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��� ���||�
�old� where the new and previous values of the parameter are � and ����. Fig-

ure 10 illustrates the relevance of the K-L divergence. The Hessian (2nd derivative) of 

��� ���||�
�old� is known as the Fisher information matrix ��. The increment ∆� applied 

to � should be in proportion to ��
��∇��ℰ~��

[�(ℰ)], which is referred to as the natural gra-

dient [90] of the expectation �ℰ~��
[�(ℰ)]. The Fisher information matrix can be estimated 

as in [14], 

�� ≈ ∇��ℰ~��
[�(ℰ)]�∇��ℰ~��

[�(ℰ)]  (33)

 

Figure 10. K-L Divergence. Two Gaussian distributions (solid, blue) with low variance � (left) and 

high variance � (right) are shown, and θ = [�, �]. Incrementing � by ∆� (dashed green) results in 

equal change in the norm ‖∆�‖� whereas ���(��||���∆�) is higher in the distribution appearing to 

the left. The smaller distance in the right is due to the greater overlapping region shown on top. 

Recent policy gradient algorithms use concepts derived from natural gradients [14] 

to rectify the downside of ‘vanilla’ gradient descent to eliminate the use of an effective 

learning rate �. The use of the natural gradient greatly reduces the natural gradient algo-

rithm’s dependence on how the policy is parametrized. Unfortunately, the gains of using 

the natural gradient come at the cost of increased computational overheads associated 

with matrix inversion. The overheads may outweigh the gains when the Fisher matrix �� 

is very large. When the policy is represented effectively through the parameter �, natural 

gradient training may not provide enough speed-up over vanilla gradient descent. 

Trust region policy optimization (TRPO) is a class of training algorithms that directly 

uses the Kullback–Leibler divergence [91]. In TRPO, a hard upper bound is imposed on 

the divergence produced due to the increment ∆� is applied to the DNN weights �. De-

noting this bound as �, 

������||������ ≤ �  (34)

Under these circumstances it can be shown that the increment in TRPO is, 

� ← � + �
2�

∇��ℰ~��
[�(ℰ)]���

��∇��ℰ~��
[�(ℰ)]

�

�
�

��
��∇��ℰ~��

[�(ℰ)]  (35)

The expectation ∇��ℰ~��
[�(ℰ)] can be estimated in the same manner as in Equation 

(30) or Equation (32). 

Proximal policy optimization (PPO) [92] is another RL method that uses natural gradi-

ents. PPO replaces the bound in TRPO with a penalty term. An expression for the PPO’s 

objective function for a single episode is as shown below, 

�(�) =
1

�
�

��(��|��)

�����(��|��)
�(��, ��|�) − �������||������

 �

 (36)

  

large small 

overlap
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5.3. Off-Policy Methods 

Only on-policy algorithms have been discussed so far in this section, including TRPO 

and PPO. Nevertheless, policy gradient can also be applied for off-policy learning. Since 

such an algorithm would be trained for the optimal policy, the samples in the replay buffer 

(that are collected using earlier policies) can be recycled multiple times. This feature is a 

significant advantage of off-policy learning. 

Policy gradient methods for off-policy learning can be implemented using im-

portance sampling. Let �(�) be any function of the random variable �, which follows 

some distribution �(�). Importance sampling can be used to estimate the expectation 

��~�[�(�)] as follows. Samples � are drawn from a more tractable distribution �(�). Us-

ing �(�)���(�) as the weight for each sampled value of � , the weighted expectation 

��~�[�(�)���(�)�(�)] is computed from several such samples. This serves as the esti-

mated value i.e., ��~�(�)[�(�)] ≈ ��~�[�(�)���(�)�(�)]. 

This approach is adopted in off-policy RL. Suppose samples in the replay buffer are 

based on the policy ��. The gradient can be empirically estimated using some action dis-

tribution �~�(�) as, 

∇��(�) = ��~� �
��(�)

�(�)
�(�, �|�)�  (37)

5.4. Actor–Critic Networks 

Actor–critic methods combine policy gradient and value-based RL methods [93]. The 

actor–critic architecture consists of two learning agents, the actor and the critic (see Figure 

11). From any environmental state, the actor is trained using policy gradient to respond 

with an action. The critic is trained with a value-based RL method to evaluate the effec-

tiveness of the actor’s output, which is then used to train the latter. 

Let us denote the actor’s and the critic’s parameters with the symbols �� and ��. 

The critic network can be modeled as a DQN, although it is trained with the advantage 

function as defined in Equation (13). When the environmental state is ��(�), for every ac-

tion ��(�) the critic network provides as its output, the value of the state–action pair 

�(��(�), ��(�)|��). The actor is incremented using gradient ascent, 

�� ← �� + ��
1

�
� �(��(�), ��(�)|��)∇�� log ���(��(�)|��(�); ��)

�

 (38)

Equation (38) shown above closely resembles the policy gradient increment in Equa-

tion (30) (with � = 0). The only difference is that the critic is used in order to compute the 

gradient’s weight �(��(�), ��(�)|��). 

The update rule for the critic network, which is similar to Equation (22), is shown 

below, 

�� ← �� − ��
1

�
���(��, ��|��) − (�� + �(����, ����|��)�∇���(��, ��|��)

�

 (39)

The advantage actor–critic (A2C) algorithm [94] is very effective in reducing the vari-

ance in the policy gradient algorithm of the actor. The A2C architecture entails a two-fold 

improvement over the ‘vanilla’ actor–critic method, which are outlined below. 

(i) The actor network uses an advantage function �(��, ��) , which is the difference 

between a return value � and the value of state �(��|��). Accordingly, the critic is 

trained to approximate the value function. 

(ii) The reward � is computed using a �-step lookahead feature, where the log-gradient 

is weighted using the sum of the next � rewards. 

To better understand how the �-step lookahead works, let us turn our attention to 

Equation (30). In this expression the gradient ∇� log ��(��|��)  at time instant �  is 



Energies 2022, 15, 6392 19 of 37 
 

 

weighted by the factor (�(ℰ) − �) where �(ℰ) is the return of an entire episode from 

� = 0 until � − 1, so that �(ℰ) = �� + ��� + ⋯ ���� + ⋯ �������� + ⋯ ��������. The base-

line is � is the value of �(��|��). It is reasoned that the sum of the past rewards �� + ��� +

⋯ �������� does not have any bearing on the quality of the action �� taken at the instant 

�. Hence all past rewards are dropped from �. Furthermore, rewards received in the dis-

tant future, i.e., after � instants are also dropped. In other words, � consists of the sum 

of the discounted rewards between the instant � and the instant � + �. Whereupon, the 

actor’s update rule is expressed as, 

�� ← �� + ��
1

�
� ∇�� log ���(��|��) �� �����

�

����

− �(��|��)�

���

���

 (40)

The critic is updated using the same return �, in accordance with the expression 

shown below, 

�� ← �� − ��
1

�|ℬ|
� ��(��|��) − � �����

�

����

� ∇���(��|��)

���

���

 (41)

 

Figure 11. Actor–Critic Network. Shown is the overall schematic used in actor–critic learning, com-

prising of an actor DNN and a critic DNN. 

The asynchronous advantage actor–critic (A3C) method [94] is an extension of A2C that 

can be applied in parallel processing environments. A global network and a set of ‘work-

ers’ are maintained in A3C. Each worker receives the actor and critic parameters that it 

implements on its own independent environment and collecting reward signals. The re-

wards are then used to determine increments ∆�� and ∆��, which are then used to asyn-

chronously update the parameters in the global network. An advantage of A3C is that due 

to the parallel action of multiple workers, an experience replay buffer does not have to be 

incorporated. 

The deterministic policy gradient (DPG) algorithm was described in [85], and more re-

cently in SLH+14]. It was later extended to a deep framework in [95], known as the deep 

deterministic policy gradient (DDPG). DDPG is an off-policy actor–critic method that con-

currently learns the optimal Q-function �∗, as well as the optimal policy �∗. 

In any off-policy actor–critic model, the critic must be trained to output the optimal 

policy �∗ . Hence, the term �(����, ����) in Equation (39) should be replaced with the 

maximum over all actions �(����, �∗), where the optimal action �∗ = argmax
�∈�

�(����, �) as 

in Equation (19). Unfortunately, when the action space � is continuous (|�| = ∞) an ex-

haustive search to find �∗ is impossible. Moreover, in a majority of applications, using 

numerical optimization to obtain �∗ is computationally too intensive to be used within 

the training algorithm. 
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In order to circumvent these difficulties in identifying the optimal action that max-

imizes the Q-value, there are three options available for use. These are outlined below. 

(i) �(����, �) can be sampled for several different actions and �∗ be assigned the action 

corresponding to the sample maximum [96]. 

(ii) A convex approximation of �(�, �) around ����  can be devised and �∗  obtained 

over the approximate function [97]. 

(iii) A separate off-policy policy network can be used to learn the optimal policy �∗ [98]. 

Out of the above three available options discussed above, the third and last has been 

adopted in DDPG. The critic parameter �� is updated in accordance with the expression 

shown below, 

�� ← �� − ��
1

�|ℬ|
� ��� + �(����(�), ����(�)|��) −  ����(�), �(��(�)|��)�� ∇���(��(�), ��(�)|��)

�∈ℬ,�

(42)

In Equation (42), �(��(�)|��) is the output of DDPG’s actor. DDPG uses a replay 

buffer ℬ that includes samples from older policies. The actor’s parameter �� is trained 

using any off-policy policy gradient as in Equation (37). 

One of the drawbacks of DDPG is the problem of overestimation [99]. Suppose dur-

ing the course of training, the function �(�, �|��) acquires a sharp local peak. Under these 

circumstances, further training would converge towards this local optimum, leading to 

undesirable results. This issue has been tackled by twin delayed deterministic policy gradient 

(TD3) in [80]. TD3 maintains a pair of critics whose parameters we shall denote as ��� 

and ���, or more concisely as ���, where � ∈ {1,2}. 

In Equation (42), it can be seen that DDPG has a target �� + �(����(�), ����(�)|��) 

where �(����(�), ����(�)|��)  is obtained from the critic. TD3 has two targets, 

�(����(�), ����(�)|���), � ∈ {1,2}. The actions ����(�) in TD3 are clipped to lie within the 

interval [����, ����]. In order to increase exploration, Gaussian noise is added to this ac-

tion. Finally, the target is obtained as �� + min
�∈{�,�}.

�(����(�), ����(�)|���), which is used for 

training. 

The soft actor–critic (SAC) RL proposed recently in [81,100] is an off-policy RL ap-

proach. The striking feature of SAC is the presence of an entropy term in the objective 

function, 

�(�) = ���
[�� +  ��(��|��)]  (43)

Incorporating the entropy �(��|��) in Equation (43) increases the degree of random-

ness in the policy which helps in exploration. As with TD3, SAC uses two critic networks. 

6. Use of Reinforcement Learning in Home Energy Management Systems 

This section addresses aspects of the survey on the use of RL approaches for various 

HEMS applications. All articles in this survey have been published in established technical 

journals that were published or made available online within the past five years. 

6.1. Application Classes 

In this study, all applications were divided into five classes as in Figure 12 below. 

(i) Heating, Ventilation and Air Conditioning, Fans and Water Heaters: Heating, ventilation, 

and air conditioning (HVAC) systems alone are responsible for about half of the total 

electricity consumption [48,101–104]. In this survey, HVAC, fans and water heaters 

(WH) have been placed under a single category. Effective control of these loads is a 

major research topic in HEMS. 

(ii) Electric Vehicles, Energy Storage, and Renewable Generation: The charging of electric ve-

hicles (EVs) and energy storage (ES) devices, i.e., batteries are studied in the literature 

as in [105,106]. Wherever applicable, EV and ES must be charged in coordination with 

renewable generation (RG) such as solar panels and wind turbines. The aim is to 
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make decisions in order to save energy costs, while addressing comfort and other 

consumer requirements. Thus, EV, ES, and RG have been placed under a single class 

for the purpose of this survey. 

(iii) Other Loads: Suitable scheduling of several home appliances such as dishwasher, 

washing machine, etc., can be achieved through HEMS to save energy usage or cost. 

Lighting schedules are important in buildings with large occupancy. These loads 

have been lumped into a single class. 

(iv) Demand Response: With the rapid proliferation of green energies into homes and 

buildings, and these sources merged into the grid, demand response (DR) has ac-

quired much research significance in HEMS. DR programs help in load balancing, by 

scheduling and/or controlling shiftable loads and in incentivizing participants 

[107,108] to do so through HEMS. RL for DR is one of the classes in this survey. 

(v) Peer-to-Peer Trading: Home energy management has been used to maximize the profit 

for the prosumers by trading the electricity with each other directly in peer-to-peer 

(P2P) trading or indirectly through a third party as in [109]. Currently, theoretical 

research on automated trading is receiving significant attention. P2P trading is the 

fifth and final application category to have been considered in this survey. 

 

Figure 12. HEMS Applications. All applications of reinforcement learning in home energy manage-

ment systems are classified into the five categories shown. 

Each application class is associated with an objective function and a building type 

that are discussed in subsequent paragraphs. The schematic in Figure 13 shows all links 

that have been covered by the articles in this survey. 

Figure 14 shows the number of research articles that applied RL to each class. Note 

that a significant proportion of these papers addressed more than one class. More than 

third of the papers we reviewed focused only on HVAC, fans and water heaters. Just 

above 10% of the papers studied RL control for the energy storage (ES) systems. Only 7% 

of the papers focused on the energy trading. However, most of the papers (46%) are tar-

geting more than one object. These results are shown in Figure 14. 
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Figure 13. Building Types and Objectives. The building type and the RL’s objective of each appli-

cation class. Note that the links are based on the existing literature covered in the survey. The ab-

sence of a link does not necessarily imply that the building type/objective cannot be used for the 

application class. 

 

Figure 14. Application Classes. The total number of articles in each application class (left), as well 

as their corresponding proportions (right). 

6.2. Objectives and Building Types 

Within these HEMS applications, RL has been applied in several ways. It has been 

used to reduce energy consumption within residential units and buildings [110]. It has 

also been used to achieve a higher comfort level for the occupants [111]. In operations at 

the interface between the residential units and the energy grid, RL has been applied to 

maximize prosumers profit in energy trading as well as for load balancing. 

For this purpose, we break down the objectives into three different types as listed 

below. 

(i) Energy Cost: The cost of using any electrical device by the consumer and in most of 

the cases it is proportionally related to its energy consumption. In this paper we use 

the terms ‘cost’ and ‘consumption’ interchangeably. 

(ii) Occupant Comfort: the main factor that can affect the occupant’s comfort is the thermal 

comfort, which depends mainly on the room temperature and humidity. 

(iii) Load Balance: Power supply companies try to achieve load balance by reducing the 

power consumption of consumers at peak periods to match the station power supply. 

The consumers are motivated to participate in such programs by price incentives. 

Figure 13 illustrates the RL objectives that were used in each application class. 

Next, all buildings and complexes were categorized into the following three types. 

(i) Residential: for the purpose of this survey, individual homes, residential communi-

ties, as well as apartment complexes fall under this type of building. 

(ii) Commercial: these buildings include offices, office complexes, shops, malls, hotels, as 

well as industrial buildings. 
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(iii) Academic: academic buildings range from schools, university classrooms, buildings, 

research laboratories, up to entire campuses. 

The research literature in this survey revealed that for residential buildings, RL was 

applied in all five application classes. However, in case of commercial and academic 

buildings, RL was typically applied to the first three categories, i.e., to HVAC, fans and 

WH, to EVs, ESs and RGs, as well as to other loads. This is shown in Figure 13. 

Figure 15 illustrates the outcome of this survey. It may be noted that in the largest 

proportion of articles (42%) the RL algorithm took into account both cost and comfort. 

About 27% of all articles addressed cost as the only objective, thereby defining the second 

largest proportion. 

 

Figure 15. Objectives and Building Types. Proportions of articles in each objective (left) and build-

ing type (right). 

6.3. Deployment, Multi-Agents, and Discretization 

The proportion of research articles where RL was actually deployed in the real world 

was studied. It was found that only 12% of research articles report results where RL was 

used with real HEMS. The results are consistent with an earlier survey [49] where this 

proportion was 11%. The results are shown in Figure 16. 

 

Figure 16. Real-World, Multi-Agents, and Discretization. Proportions of articles deployed in real 

world HEMS (left), using multi-agents (middle), and whether the states/actions are discrete or con-

tinuous (right). 

7. Reinforcement Learning Algorithms in Home Energy Management Systems 

This section focuses on how the RL and DRL algorithms described in earlier sections 

were used in HEMS applications. The references have been categorized in terms of the 

application class, objective function, and building type, that were described in the imme-

diately preceding section. Table 1 provides a list of references that used tabular RL meth-

ods. About 28% of articles used tabular methods. 
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In a similar manner, Table 2 considers references that used DQN. Most algorithms in 

the survey used DQN. However, DDQN was also popular in the HEMS research commu-

nity. The survey found that dueling-DQN was applied in only one article. Table 3 catego-

rizes references in the survey that used deep policy learning. PPO and TRPO are the only 

approaches that have been used so far in HEMS. 

The survey also indicates that actor–critic was the preferred approach in comparison 

with deep policy learning. Table 4 provides a list of references that applied actor–critic 

learning, which constituted 53% of all deep learning methods. It shows that PPO is more 

popular than TRPO. We believe that this observation is due to the closer recency of the 

latter algorithm. References that used either a combination of two or more approaches, or 

any other approach not commonly used in RL literature, are shown in Table 5. 

Table 1. References using Tabular Reinforcement Learning. 

Reference Application Objective Building Type Algorithm 

[112] 

HVAC, Fans, 

WH  

Cost  
Residential 

Q-Learning 

[113] Cost and Comfort 

[114,115] Other Academic 

[116] Comfort 

Mixed/NA [117] Other 

[109,118] 
P2P Trading 

Cost  
[119,120] 

Residential 
[121] 

EV, ES, and RG [122,123] Mixed/NA 

[124] Other Residential 

[125,126] 

Other/Mixed 

Cost and Comfort 

Commercial 

[127] Academic 

[107,128–132] 

Residential [133] Other 

[134,135] 
Cost 

[136] 

Mixed/NA 

[137] Cost and Comfort 

[138,139] 
Cost and Load Bal-

ance 

[140] Other 

[141] P2P Trading Cost Distributed RL 

[142–144] 

HVAC, Fans, 

WH 

Cost and Comfort Residential Other (FQI) 

[145] Comfort Commercial 
Q-Learn. and 

SARSA 

[146] Cost and Comfort 

Residential 

SARSA 

[147] 

Other/Mixed 

Cost and Load Bal-

ance Policy Learning 

[148] Other 

[149] Cost and Comfort Commercial Model Based RL 

[150] HVAC, Fans, 

WH 

Cost Residential Other (CARLA) 

[151] Cost and Comfort Commercial Other (Context. RL) 
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Table 2. References using Deep Q Networks. 

Reference Application Objective Building Type Algorithm 

[152,153] 

Other/Mixed 

Cost 

Residential 

DQN 

[154] 
Cost and Load Bal-

ance 

[105] 

EV, ES, and RG 

Cost 

[155] Other 

[156] Cost and Comfort 

[157] HVAC, Fans, WH 
Cost 

[158] 
Other/Mixed Commercial 

[159] 
Cost and Comfort 

[160,161] HVAC, Fans, WH 
Mixed/NA 

[162,163] Other/Mixed Cost 

[164–166] 

HVAC, Fans, WH 
Cost and Comfort 

Residential 

DDQN 

[167] Academic 

[168] Comfort Commercial 

[169] 
Other/Mixed 

Cost and Load Bal-

ance 

Residential [106] Cost and Comfort Dueling-DQN 

[170] HVAC, Fans, WH Cost 
Other (FQI-LSTM, 

FQI-CNN) 

Table 3. References using Deep Policy Networks. 

Reference Application Objective Building Type Algorithm  

[171] 
HVAC, Fans, WH Cost and Comfort 

Academic 

PPO 

[172] Commercial 

[173] P2P Trading 
Other 

Mixed/NA [174] EV, ES, and RG 

[175] 
Other/Mixed 

Cost 

[176] Cost and Comfort Residential TRPO 

Table 4. References using Actor–Critic Networks. 

Reference Application Objective Building Type Algorithm  

[177,178] HVAC, Fans, WH 

Cost and Comfort 

Residential 

DDPG 

[61,179–

181] 

Other/Mixed 
[182,183] 

Cost and Load Bal-

ance 

[184] 
Cost 

[185] EV, ES, and RG 

[186] 
Other/Mixed 

Cost and Comfort 
Academic 

[187] 
Other 

[188,189] EV, ES, and RG Commercial 

[190–192] HVAC, Fans, WH Cost and Comfort 
Mixed/NA 

[193–195] EV, ES, and RG Other 

[196,197] Other/Mixed 
Cost and Load Bal-

ance 
Residential 

SAC 

[198,199] HVAC, Fans, WH Cost Commercial 
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[103,200–

202] 
Cost and Comfort 

[203] 
Other/Mixed 

[204] Academic 

[205–207] 
HVAC, Fans, WH 

Cost and Load Bal-

ance Mixed/NA 

[208–210] 
Cost and Comfort 

[211] Other/Mixed Residential A2C 

[212] HVAC, Fans, WH 

Cost 

Commercial A3C 

[213] P2P Trading 

Mixed/NA 
TD3 

[214] 
HVAC, Fans, WH 

[215] 
Cost and Comfort 

[216] Other/Mixed Residential 

Table 5. References using Combination of Methods and/or Miscellaneous Methods. 

Reference Application Objective Building Type Algorithm 

[60] 

Other/Mixed 
Cost and Comfort 

Residential 

DQN, DDPG 

[217] DQN, DDQN 

[218] 
Cost and Load Bal-

ance 

DQN, DPG 

[219] P2P Trading 
Other (Model-

Based DRL) 

[220] 

HVAC, Fans, WH 
Cost and Comfort 

Academic 
SAC, TD3, TRPO, 

PPO 

[221] 
Mixed/NA 

Other (Clustering 

DRL) 

[222] 

EV, ES, and RG 

PPO, TD3 

[223] 
Cost and Load Bal-

ance 
Commercial 

DDPG, DDQN, 

DQN 

8. Conclusions 

This article surveys how effectively RL has been leveraged for various HEMS appli-

cations. The survey reveals the following: 

(i) Although 66% of all articles used deep RL, many articles used tabular learning. This 

may indicate that only simplified application were considered. 

(ii) Around 53% of all articles used discrete states and actions. This is another indication 

that the HEMS scenarios may have been simplified. 

(iii) Around 12% of all approaches covered in this survey were deployed in the real 

world, their use being limited to simulation platforms only. 

These observations strongly suggest that the use of RL in HEMS application is at a 

research stage and is yet to gain maturity. More in-depth investigation is necessary, par-

ticularly on RL algorithms that use DNN agents. Nonetheless, it was seen that 36% of all 

articles made use of multiagent schemes, which is an encouraging sign. 

The only truly viable alternative is to use nonlinear control, more specifically model 

predictive control (MPC) [224]. MPC is widely used in various engineering applications 

(cf. [225]). The benefit of MPC is in the explicit manner by which it handles physical con-

straints. At each iteration, MPC considers a receding time horizon into the future, and 

applies a constrained optimization algorithm to determine the best control actions. How-

ever, in most cases, MPC uses linear or quadratic objective functions. This is a basic limi-

tation that must be taken into account before applying MPC to large-scale problems and 

is in sharp contrast to RL that does not place any restriction on the reward signal. 
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Moreover, MPC is a model-based approach, whereas an overwhelming majority of refer-

ences in this survey used model-free RL methods ([149] being the sole exception). 

There is a diverse array of algorithms available in the RL literature. Since tabular 

methods require discrete states and actions, and furthermore, that these spaces have low 

cardinalities, they may not be much use for most HEMS applications. Not surprisingly, 

this survey shows that tabular methods have been used less frequently than DNN meth-

ods. In future, as the HEMS community investigates increasingly complex HEMS do-

mains, tabular methods would become even less likely to be used. Consequently, the 

choice of algorithm would usually be confined to DNN methods. 

Out of the DNN methods, it must be noted that DQN and its derivatives can only be 

used in applications only when the action space is finite and small, such as in controlling 

OFF–ON switches. The survey reveals that actor–critic methods, which include Q-learn-

ing and policy learning, are the most popular in HEMS applications. Another deciding 

factor is whether to use policy-free or policy-based RL. On-policy learning may be used is 

applications where abandoning the policy in the initial stages may occasionally very neg-

atively impact the environment. Thus, they may be used if the environment does not re-

quire too much exploration. On the other hand, off-policy RL can discover more novel 

policies. 

Unlike in the unsupervised and supervised learning where simple performance met-

rics are readily available, performance evaluation in RL is an open problem [226]. The 

steadily increasing reward with iteration is the best means for any real application. The 

authors suggest that the following four criteria should be considered. 

(i) Saturation reward (��): the expected reward must be relatively high at saturation. 

(ii) Variance at saturation (��): the reward must not have excessive variance at saturation. 

(iii) Exploitation risk (����): The minimum possible reward must not be so low that the 

environment is adversely affected. This is the risk associated with exploration and 

tends to occur during the initial exploratory stages of the RL training. 

(iv) Convergence rate (�): the number of iterations before the reward starts to saturate 

should not be large. 

Figure 17 shows how to graphically interpret ��, ��, ����, �. 

 

Figure 17. Proposed Performance Metrics. The four metrics across multiple runs for performance 

evaluation of an RL algorithm that have been suggested by the authors for HEMS and other practical 

applications. A typical trajectory obtained from a single run (dashed red), the average of multiple 

runs (solid green), and the variance (shaded light green) are shown. The quantity ���� is the mini-

mum attained from all runs. 

Since the articles in this survey have always used some HEMS simulation platform, 

it is assumed that the RL algorithm can be run at least a few times. The above four perfor-

mance metrics (��, ��, ����, �) proposed by the authors can be empirically estimated 
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using Monte Carlo samples of such runs. Suppose the sequence of rewards obtained from 

the �th run is ���
� , ��

� , … , ��
� , … , ���

���
� �. Each ��

�  is some reward and � represents an iter-

ation of the RL algorithm. The precise meanings of the terms (reward and iteration) are 

entirely dependent on the specific HEMS application, how the reward function is imple-

mented, whether a replay buffer is used, and the RL algorithm. 

A reward ��
�  may be the either an aggregate return value, the instantaneous reward 

at the time horizon �, or the reward at last parameter update, etc. Likewise, the iteration 

index � may be an instantaneous time step � (� ≤ �), Alternately, � may refer to the 

number of times the training algorithm adjusts the model parameter �, or flushes the re-

play buffer, etc. The exact meanings of the terms are left to the reader. However it must 

be remembered that at the beginning of each run, all relevant model parameters should 

be reinitialized, that at the end of each run after ��
��� iterations (subscripted since ��

��� 

may vary with run), the RL training algorithm converges to a different final model pa-

rameter, and that ���
���

�  truly reflects the quality of the model. Moreover, it must be en-

sured that the algorithm terminates after ��
�  attains saturation—i.e., there is no percepti-

ble gain from more iterations. 

If the runs are indexed � = 1,2, … , |ℐ| where ℐ is the set of runs, the suggested per-

formance metrics can be estimated as, 

�� ≈
1

|ℐ|
� ���

���
�

�∈ℐ

 (44)

�� ≈
1

|ℐ| − 1
� ����

���
� − ����

�

�∈ℐ

 (45)

���� ≈ min
�∈ℐ

min
�

��
�  �or, ���� ≈ min

�∈ℐ
��

� �  (46)

� ≈
1

|ℐ|
�

��
� − ���

���
�

��
���

�∈ℐ

 (47)

In Equation (46), it is assumed that ��� is the estimated average value of ��, deter-

mined in accordance with Equation (45). In some situations, it may be computationally 

too expensive to obtain multiple runs. In such cases, as well as when the RL is imple-

mented on a real HEMS environment, ℐ may be a singleton set (|ℐ| = 1). In this case, �� 

in Equation (46) is meaningless. An alternate metric may be used by using the last few 

iterations before termination. 
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