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The Special Issue “Sensitivity Analysis, Uncertainty Quantification and Predictive
Modeling of Nuclear Energy Systems” comprises nine articles that present important
applications of concepts for performing sensitivity analyses and uncertainty quantifications
of models of nuclear energy systems. These models of nuclear systems include a stochastic
point kinetic reactor model [1], a reduced-order model for fuel burnup analysis [2], and
an OECD/NEA reactor physics benchmark [3–8]. The ninth article in this Special Issue
presents [9] a new methodology aimed at overcoming the curse of dimensionality [10] in
sensitivity analysis, uncertainty quantification, and predictive modeling.

A mixed spectral technique was used in [1] to quantify uncertainties in a stochastic
point-kinetics reactor model with six groups of delayed neutrons, comprising noise and
uncertain parameters. This stochastic model was decomposed into a system of deterministic
ordinary differential equations by using a Wiener–Ito expansion (WIE) to handle the noise
and by using a first-order Gaussian expansion to handle the model’s random parameters.
The simplified deterministic model thus derived was solved using deterministic methods
for solving ordinary differential equations. The solution of this simplified model was
subsequently used to compute the average neutronic power and the average delayed
neutron precursors, as well as the standard deviations in these quantities due to various
levels of noise, random parameters, and combinations thereof. The power was found to be
more sensitive to noise variations rather than to the standard deviations assumed for the
random parameters. For large deviations of the random parameters, the power decreased
with increasing the assumed parameter’s standard deviation, which is a counterintuitive
result whose correctness was not proven. The results presented in [1] were not validated
by comparisons to actual experiments.

A reduced order model (ROM) aimed at finding a compromise between computational
cost and solution accuracy in fuel burnup analysis has been presented in [2]. This ROM has
been constructed by using an offline/online strategy as follows:

(i) The offline stage commences by using proper orthogonal decomposition (POD) to
select, via singular value decomposition, the largest eigenvalues of a matrix generated
by using the solutions (“snapshots”) of the “full order model” (FOM) of a Monte Carlo
simulation of the burnup process. The largest eigenvalues are assumed to correspond
to the most significant features of the full order model (FOM). For the time-evolution
of the neutron fluxes and burnup matrices, a “snapshot” is a burnup-step between two
time points, for a burnup region at a specific power level. For the time-evolution of
the nuclide concentrations, a snapshot is provided by the concentrations at each time
point, including the concentrations at the end of the burnup history. Subsequently, a
low-dimensional approximation of the FOM was obtained by a Galerkin projection
onto the space spanned by the POD basis functions.

(ii) In the online stage, the ROM simulation is run repeatedly, as needed.

The above strategy was used to reproduce the time-evolution of the reactivity and
nuclide densities over 4 years of burnup of the TMI-1 unit cell benchmark by reconstructing
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fuel materials and burnup matrices over time with different levels of approximation. It
was found that the benchmark’s effective multiplication factor and nuclide concentrations
displayed reasonably good agreement (hundreds of percent per mille of reactivity) with
the FOM-results if over 50 basis-functions were used, but the results for the multiplication
factor were unphysical when fewer than 20 basis-functions were used. This indicates that
a monotonic behavior of the error between the POD and the FOM as a function of the
number of basis-functions included in the ROM is not guaranteed. The results presented
in [2] illustrate both the advantages (in terms of the reduced memory and computational
time requirements) as well as the disadvantages (in terms of accuracy and extrapolation
capabilities) of using a ROM instead of a FOM.

The sequence of works [3–8] presents a very large (probably the largest ever) ap-
plication of the Second-Order Adjoint Sensitivity Analysis Methodology conceived by
Cacuci [11–13] to compute exactly the 21,976 first-order sensitivities and 482,944,576 second-
order sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP)
OECD/NEA reactor physics benchmark [14] with respect to the benchmark’s imprecisely
known nuclear cross sections, isotopic number densities, number of neutrons per fission,
fission spectrum, and source parameters. The PERP benchmark consists of an inner sphere
containing α-phase plutonium surrounded by a spherical shell reflector made of polyethy-
lene; the benchmark comprises the constitutive materials specified in Table 1.

Table 1. Dimensions and material composition of the PERP benchmark.

Materials Isotopes Weight
Fraction

Density
(g/cm3) Zones

Material 1
(plutonium metal)

Isotope 1 (239Pu) 9.3804 × 10−1

19.6 Material 1 is assigned to zone 1,
which has a radius of 3.794 cm.

Isotope 2 (240Pu) 5.9411 × 10−2

Isotope 3 (69Ga) 1.5152 × 10−3

Isotope 4 (71Ga) 1.0346 × 10−3

Material 2
(polyethylene)

Isotope 5 (C) 8.5630 × 10−1

0.95
Material 2 is assigned to zone 2,

which has an inner radius of 3.794 cm and
an outer radius of 7.604 cm.Isotope 6 (1H) 1.4370 × 10−1

The neutron distribution within the PERP benchmark was modeled by means of the
six-dimensional linear integro-differential neutron transport equation, which was solved
numerically by using the PARTISN [15] multigroup discrete ordinates transport code. The
response of interest for the PERP benchmark was the total leakage of neutrons leaving
its outer surface (numerical value: 1.7648× 106 neutrons/s). The numerical model of the
PERP benchmark included 21,976 imprecisely known (uncertain) parameters, as presented
below in Table 2.

Table 2. Summary of imprecisely known parameters for the PERP benchmark.

Symbol Parameter Name Number of Parameters

σ
g
t,i Multigroup microscopic total cross sec tion for isotope i and energy group g 180; f or i = 1, . . . , 6; g = 1, . . . , 30

σ
g′→g
s,l,i

Multigroup microscopic scattering cross sec tion for l −
th order Legendre expansion, from energy group g′ into energy group g, for isotope i 21, 600; f or l = 0, . . . , 3; i = 1, . . . , 6;

g, g′ = 1, . . . , 30
σ

g
f ,i Multigroup microscopic fission cross sec tion i and energy group g 60; f or i = 1, 2; g = 1, . . . , 30

ν
g
i Average number of neutrons per fission for isotope i and energy group g 60; f or i = 1, 2; g = 1, . . . , 30

χ
g
i Fission spectrum for isotope i and energy group g 60; f or i = 1, 2; g = 1, . . . , 30

qj Source parameters : λ1, λ2; FSF
1 , FSF

2 ; a1, a2; b1, b2; νSF
1 , νSF

2 10
Ni,m Isotopic number density for isotope i and material m 6; N1,1, N2,1, N3,1, N4,1, N5,2, N6,2

Jα Total number of parameters: 21,976

It was found [3–8] that most of the first-order relative sensitivities of the leakage
response with respect to the model parameters were negligibly small, with absolute val-
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ues less than 0.1. The most important (i.e., largest) sensitivities of the leakage response
are with respect to the group-averaged total microscopic cross sections, followed by the
sensitivities of the leakage response with respect to the isotopic number densities. Addi-
tionally important were the first-order relative sensitivities of the leakage response with
respect to several source parameters for the isotope 240Pu. The first-order sensitivities
of the leakage response with respect to the fission spectrum were negligibly small. Sev-
eral tens of the 1st-order sensitivities, particularly with respect to the microscopic total
cross sections, were found to have absolute values between 0.1 and 1.0, thirteen of which
had values larger than 1.0. The largest first-order sensitivities have the following val-
ues: S(1)

(
σ30

t,i=6

)
= −9.366, S(1)(N1,1) = 5.963, S(1)

(
σ12

t,i=1

)
= −1.320, S(1)(N2,1) = 1.220,

S(1)(ν12
i=1

)
= 1.215, S(1)

(
σ17

t,i=6

)
= −1.173, S(1)

(
σ16

t,i=6

)
= −1.164, S(1)

(
σ13

t,i=1

)
= −1.154,

S(1)
(

σ18
t,i=6

)
= −1.141, S(1)

(
σ19

t,i=6

)
= −1.094, S(1)

(
σ20

t,i=6

)
= −1.033, S(1)(N6,2) = 1.001,

S(1)(λ2) = S(1)(FSF
2

)
= S(1)(νSF

2
)
= S(1)(N2,1) = 0.9998.

Although only 16 first-order sensitivities attained values larger than 0.99, many more
2nd-order sensitivities have values significantly larger than 1.0: 126 second-order relative
sensitivities have values greater than 10.0, and 1853 second-order relative sensitivities
have values between 1.0 and 10.0. The second-order sensitivities of the PERP model’s
leakage response to the model’s group-averaged total microscopic cross sections were
presented in [3]. It was found [3] that among the total of 32, 400 = 180× 180 second-order
sensitivities involving the total microscopic cross sections, many of them are much larger
than the corresponding first-order ones; in particular, 720 of these relative sensitivities have
relative values greater than 1.0. The largest second-order sensitivities involve the total
cross sections of 239Pu and 1H. The overall largest element is the unmixed second-order
relative sensitivity S(2)

(
σ30

t,6, σ30
t,6

)
= 429.6, which occurs in the lowest-energy group for

1H. Neglecting these second-order sensitivities would cause an erroneous reporting of the
response’s expected value and a very large non-conservative error by the under-reporting
of the response variance. For example, if the parameters were uncorrelated and had a
uniform standard deviation of 10%, neglecting second (and higher) order sensitivities
would cause a non-conservative error by the under-reporting of the response variance by a
factor of 947%.

The results of the computations of the second-order sensitivities of the PERP bench-
mark’s computed leakage response with respect to the benchmark’s 21,600 parameters
underlying the computed group-averaged isotopic scattering cross sections are presented
in [4]. The numerical results obtained indicate that the vast majority of the (21,600)2 second-
order sensitivities with respect to the scattering cross sections are much smaller than the
corresponding first-order ones. However, it was found that 52 of the mixed second-order
sensitivities of the leakage response with respect to the scattering and total microscopic
cross sections had values that were significantly larger than the unmixed second-order sen-
sitivities of the leakage response with respect to the group-averaged scattering microscopic
cross sections.

The second-order sensitivities of the leakage response of the PERP benchmark involv-
ing the group-averaged isotopic fission microscopic cross sections and the average number
of neutrons per fission are presented in [5]. The numerical results obtained indicate that
the vast majority of the 2nd-order unmixed sensitivities involving the fission cross sections
are smaller than the corresponding 1st-order ones, but several 2nd-order sensitivities for
isotope 239Pu are significantly larger than the corresponding 1st-order sensitivities. It is
shown that the effects of the 2nd-order sensitivities of the PERP benchmark’s leakage
response with respect to the benchmark’s fission cross sections on the moments (expected
value, variance, and skewness) of the PERP benchmark’s leakage response distribution
are negligible in comparison to the corresponding effects (on the response distribution)
stemming from uncertainties in the total cross sections, but are larger than the correspond-
ing effects (on the response distribution) stemming from uncertainties in the scattering
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cross sections. It is also shown that the effects of the 2nd-order sensitivities of the PERP
benchmark’s leakage response with respect to the average number of neutrons per fis-
sion on the moments (expected value, variance, and skewness) of the PERP benchmark’s
leakage response distribution are negligible in comparison to the corresponding effects
stemming from uncertainties in the microscopic total cross sections, but are larger than the
corresponding effects stemming from uncertainties in the fission and scattering microscopic
cross sections.

The results for the 2nd-order sensitivities of the PERP benchmark’s leakage response
with respect to the benchmark’s imprecisely known source parameters are presented in [6].
These results indicate that the effects of the 1st- and 2nd-order sensitivities involving the
benchmark’s source parameters on the moments (expected value, variance, and skew-
ness) of the benchmark’s leakage response distribution are negligibly smaller than the
corresponding effects involving the total, fission, and scattering microscopic cross sections.

The 2nd-order sensitivities of the PERP benchmark’s leakage response involving the
benchmark’s imprecisely known isotopic number densities are presented in [7]. Many of
these sensitivities turned out to have large values, particularly those involving the isotopic
number density of 239Pu and the microscopic total, scattering, or fission cross sections for
the 12th or 30th energy groups of 239Pu or 1H, respectively. The largest in absolute value
(of −94.91) is attained by the 2nd-order mixed sensitivity of the PERP leakage response
involving the isotopic number density of 239Pu and the microscopic total cross section for
the 30th energy group of 1H.

The overall impact of the 1st- and 2nd-order sensitivities on propagating uncertainties
in the PERP’s parameters to the PERP’s leakage response is summarized in [8], underscoring
the importance of 2nd-order sensitivities for the PERP benchmark in particular, as well
as for other physical systems in general. For example, if the PERP’s total cross sections
were fully correlated, neglecting the 2nd-order sensitivities would cause an error as large
as 2000% in the expected value of the leakage response, and up to 6000% in the variance of
the leakage response for the microscopic total cross sections. Of course, neither the fully
uncorrelated nor the fully correlated illustrative examples presented in [3–8] realistically
describe the actual physical situations regarding the parameters describing the total and
other microscopic cross section. The fully uncorrelated case underestimates reality while
the fully correlated case overestimates it. In reality, cross sections are partially correlated, so
reality falls in between the fully uncorrelated and fully correlated cases, which underscores
the need for future experimental research aimed at obtaining values for the correlations that
might exist among the various cross sections, which are unavailable at this time. In all cases,
neglecting the second-order sensitivities would erroneously predict a Gaussian distribution
in parameter space (for the PERP leakage response) centered about the computed value of
the leakage response. In reality, the second-order sensitivities cause the leakage distribution
in parameter space to be skewed towards positive values relative to the expected value,
which, in turn, is significantly shifted to much larger positive values than the computed
leakage value. The effects of the second-order sensitivities underscore the need for obtaining
reliable data for correlations that might exist among the total cross sections; however, such
data is unavailable at this time.

The sequence of works [3–8] has revealed that the 2nd-order mixed relative sensitiv-
ities of the PERP benchmark’s leakage response to this benchmark’s total cross sections
exhibit a very large number of values that are greater than 1.0 (including many having
values significantly larger than 10.0). This finding has motivated the quest to develop a
methodology to enable the computation of 3rd-order sensitivities of model responses with
respect to the model’s uncertain parameters. The theoretical/mathematical framework
for achieving this goal was provided in [9], which presented the Third-Order Adjoint
Sensitivity Analysis Methodology (3rd-ASAM) for response-coupled forward and adjoint
linear systems. The 3rd-ASAM enables the efficient computation of the exact expressions
of the 3rd-order functional derivatives (“sensitivities”) of a general system response, which
depends on both the forward and adjoint state functions, with respect to all of the param-
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eters underlying the respective forward and adjoint systems. Such responses are often
encountered when mathematically representing detector responses and reaction rates in
reactor physics problems. The 3rd-ASAM extends the 2nd-ASAM in the quest to overcome
the “curse of dimensionality” in sensitivity analysis, uncertainty quantification, and predic-
tive modeling. This work [9] also presents new formulas that incorporate the contributions
of the 3rd-order sensitivities into the expressions of the first four cumulants of the response
distribution in the phase-space of model parameters, which are employed in a new pre-
dictive modeling method (called the “Second/Third-Order Best-Estimated Results with
Reduced Uncertainties Predictive Modeling”) that combines experimental and computa-
tional information in the joint phase-space of responses and model parameters by using
the maximum entropy principle. Eliminating the need for introducing and “minimizing”
a user-chosen “cost functional quantifying the discrepancies between measurements and
computations,” this new predictive modeling methodology yields results that are free of
subjective user-interferences while generalizing and significantly extending the so-called
“4D-VAR” data assimilation procedures. This new predictive modeling methodology also
provides a quantitative metric, constructed from sensitivity and covariance matrices, for
determining the degree of agreement among the various computational and experimental
data while eliminating discrepant information.

Regarding open issues: the work presented in [1] is a straightforward application of a
first-order Gaussian expansion to handle the model’s random parameters and the Wiener–
Ito expansion (WIE) to handle noise, thus inheriting all of the benefits and drawbacks
of these general procedures. Similarly, the work presented in [2] derives a reduced or-
der model (ROM) using proper orthogonal decomposition (POD) to select, via singular
value decomposition, the largest eigenvalues of a matrix generated by using solutions
(“snapshots”) produced by a full-order model (FOM) that uses the Monte Carlo method
for solving the nuclide burnup equations. Similar to the work presented in [1], the work
presented in [2] is an application of well-known methods, so the results presented in both
works [1,2] inherited all of the computational advantages and the accuracy-related short-
comings of the respective methods. The specific applications presented in [1,2] leave no
new open issues to be addressed.

The sequence of works [3–8] has presented the largest ever application of the second-
order adjoint sensitivity analysis methodology conceived by Cacuci [11–13] to compute
exactly and most efficiently the 21,976 first-order sensitivities and 482,944,576 second-
order sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP)
OECD/NEA reactor physics benchmark [14] with respect to the benchmark’s imprecisely
known nuclear cross sections, isotopic number densities, number of neutrons per fission,
fission spectrum, and source parameters. As has been mentioned in the foregoing discus-
sion, the finding from the sequence of works [3–8] has motivated the quest to develop a
methodology to enable the computation of the 3rd-order sensitivities of model responses
with respect to the model’s uncertain parameters, which was presented in [9]. Subsequently,
the methodology developed in [9] was applied [16,17] to compute the largest 3rd-order
sensitivities of the PERP benchmark’s leakage response with respect to the benchmark’s
imprecisely known total cross sections. The results obtained in [16,17] indicated that
many 3rd-order sensitivities were larger than the corresponding 2nd-order ones. This
finding motivated the subsequent development of the 4th-order comprehensive adjoint
sensitivity analysis of response-coupled linear forward/adjoint systems [18], which was
applied [19,20] to compute the largest 4th-order sensitivities of the PERP benchmark’s
leakage response with respect to the benchmark’s imprecisely known total cross sections.
The results obtained in [19,20] indicated that that many 4th-order sensitivities were larger
than the corresponding 3rd-order ones, dwarfing the effects of the lower-order sensitivities.
These works were followed by the development of the arbitrarily-high-order comprehen-
sive adjoint sensitivity analysis methodology for both linear systems [21] and nonlinear
systems [22]. The new methodologies developed in [21,22] represent a fundamental break-
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through in the quest for overcoming the curse of dimensionality [10] in sensitivity analysis,
uncertainty quantification, and the predictive modeling of large-scale models.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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